1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

#![cfg_attr(not(feature = "std"), no_std)]

use frame_support::{
	dispatch::{Dispatchable, GetDispatchInfo},
	ensure,
};
use sp_runtime::traits::Saturating;
use sp_std::{marker::PhantomData, prelude::*};
use xcm::latest::{
	Error as XcmError, ExecuteXcm,
	Instruction::{self, *},
	MultiAssets, MultiLocation, Outcome, Response, SendXcm, Weight, Xcm,
};

pub mod traits;
use traits::{
	ClaimAssets, ConvertOrigin, DropAssets, FilterAssetLocation, InvertLocation, OnResponse,
	ShouldExecute, TransactAsset, VersionChangeNotifier, WeightBounds, WeightTrader,
};

mod assets;
pub use assets::Assets;
mod config;
pub use config::Config;

/// The XCM executor.
pub struct XcmExecutor<Config: config::Config> {
	pub holding: Assets,
	pub origin: Option<MultiLocation>,
	pub original_origin: MultiLocation,
	pub trader: Config::Trader,
	/// The most recent error result and instruction index into the fragment in which it occurred,
	/// if any.
	pub error: Option<(u32, XcmError)>,
	/// The surplus weight, defined as the amount by which `max_weight` is
	/// an over-estimate of the actual weight consumed. We do it this way to avoid needing the
	/// execution engine to keep track of all instructions' weights (it only needs to care about
	/// the weight of dynamically determined instructions such as `Transact`).
	pub total_surplus: u64,
	pub total_refunded: u64,
	pub error_handler: Xcm<Config::RuntimeCall>,
	pub error_handler_weight: u64,
	pub appendix: Xcm<Config::RuntimeCall>,
	pub appendix_weight: u64,
	_config: PhantomData<Config>,
}

/// The maximum recursion limit for `execute_xcm` and `execute_effects`.
pub const MAX_RECURSION_LIMIT: u32 = 8;

impl<Config: config::Config> ExecuteXcm<Config::RuntimeCall> for XcmExecutor<Config> {
	fn execute_xcm_in_credit(
		origin: impl Into<MultiLocation>,
		mut message: Xcm<Config::RuntimeCall>,
		weight_limit: Weight,
		mut weight_credit: Weight,
	) -> Outcome {
		let origin = origin.into();
		log::trace!(
			target: "xcm::execute_xcm_in_credit",
			"origin: {:?}, message: {:?}, weight_limit: {:?}, weight_credit: {:?}",
			origin,
			message,
			weight_limit,
			weight_credit,
		);
		let xcm_weight = match Config::Weigher::weight(&mut message) {
			Ok(x) => x,
			Err(()) => {
				log::debug!(
					target: "xcm::execute_xcm_in_credit",
					"Weight not computable! (origin: {:?}, message: {:?}, weight_limit: {:?}, weight_credit: {:?})",
					origin,
					message,
					weight_limit,
					weight_credit,
				);
				return Outcome::Error(XcmError::WeightNotComputable)
			},
		};
		if xcm_weight > weight_limit {
			log::debug!(
				target: "xcm::execute_xcm_in_credit",
				"Weight limit reached! weight > weight_limit: {:?} > {:?}. (origin: {:?}, message: {:?}, weight_limit: {:?}, weight_credit: {:?})",
				xcm_weight,
				weight_limit,
				origin,
				message,
				weight_limit,
				weight_credit,
			);
			return Outcome::Error(XcmError::WeightLimitReached(xcm_weight))
		}

		if let Err(e) =
			Config::Barrier::should_execute(&origin, &mut message, xcm_weight, &mut weight_credit)
		{
			log::debug!(
				target: "xcm::execute_xcm_in_credit",
				"Barrier blocked execution! Error: {:?}. (origin: {:?}, message: {:?}, weight_limit: {:?}, weight_credit: {:?})",
				e,
				origin,
				message,
				weight_limit,
				weight_credit,
			);
			return Outcome::Error(XcmError::Barrier)
		}

		let mut vm = Self::new(origin);

		while !message.0.is_empty() {
			let result = vm.execute(message);
			log::trace!(target: "xcm::execute_xcm_in_credit", "result: {:?}", result);
			message = if let Err(error) = result {
				vm.total_surplus.saturating_accrue(error.weight);
				vm.error = Some((error.index, error.xcm_error));
				vm.take_error_handler().or_else(|| vm.take_appendix())
			} else {
				vm.drop_error_handler();
				vm.take_appendix()
			}
		}

		vm.post_execute(xcm_weight)
	}
}

#[derive(Debug)]
pub struct ExecutorError {
	pub index: u32,
	pub xcm_error: XcmError,
	pub weight: u64,
}

#[cfg(feature = "runtime-benchmarks")]
impl From<ExecutorError> for frame_benchmarking::BenchmarkError {
	fn from(error: ExecutorError) -> Self {
		log::error!(
			"XCM ERROR >> Index: {:?}, Error: {:?}, Weight: {:?}",
			error.index,
			error.xcm_error,
			error.weight
		);
		Self::Stop("xcm executor error: see error logs")
	}
}

impl<Config: config::Config> XcmExecutor<Config> {
	pub fn new(origin: impl Into<MultiLocation>) -> Self {
		let origin = origin.into();
		Self {
			holding: Assets::new(),
			origin: Some(origin.clone()),
			original_origin: origin,
			trader: Config::Trader::new(),
			error: None,
			total_surplus: 0,
			total_refunded: 0,
			error_handler: Xcm(vec![]),
			error_handler_weight: 0,
			appendix: Xcm(vec![]),
			appendix_weight: 0,
			_config: PhantomData,
		}
	}

	/// Execute the XCM program fragment and report back the error and which instruction caused it,
	/// or `Ok` if there was no error.
	pub fn execute(&mut self, xcm: Xcm<Config::RuntimeCall>) -> Result<(), ExecutorError> {
		log::trace!(
			target: "xcm::execute",
			"origin: {:?}, total_surplus/refunded: {:?}/{:?}, error_handler_weight: {:?}",
			self.origin,
			self.total_surplus,
			self.total_refunded,
			self.error_handler_weight,
		);
		let mut result = Ok(());
		for (i, instr) in xcm.0.into_iter().enumerate() {
			match &mut result {
				r @ Ok(()) =>
					if let Err(e) = self.process_instruction(instr) {
						*r = Err(ExecutorError { index: i as u32, xcm_error: e, weight: 0 });
					},
				Err(ref mut error) =>
					if let Ok(x) = Config::Weigher::instr_weight(&instr) {
						error.weight.saturating_accrue(x)
					},
			}
		}
		result
	}

	/// Execute any final operations after having executed the XCM message.
	/// This includes refunding surplus weight, trapping extra holding funds, and returning any errors during execution.
	pub fn post_execute(mut self, xcm_weight: Weight) -> Outcome {
		self.refund_surplus();
		drop(self.trader);

		let mut weight_used = xcm_weight.saturating_sub(self.total_surplus);

		if !self.holding.is_empty() {
			log::trace!(target: "xcm::execute_xcm_in_credit", "Trapping assets in holding register: {:?} (original_origin: {:?})", self.holding, self.original_origin);
			let trap_weight = Config::AssetTrap::drop_assets(&self.original_origin, self.holding);
			weight_used.saturating_accrue(trap_weight);
		};

		match self.error {
			None => Outcome::Complete(weight_used),
			// TODO: #2841 #REALWEIGHT We should deduct the cost of any instructions following
			// the error which didn't end up being executed.
			Some((_i, e)) => {
				log::debug!(target: "xcm::execute_xcm_in_credit", "Execution errored at {:?}: {:?} (original_origin: {:?})", _i, e, self.original_origin);
				Outcome::Incomplete(weight_used, e)
			},
		}
	}

	/// Remove the registered error handler and return it. Do not refund its weight.
	fn take_error_handler(&mut self) -> Xcm<Config::RuntimeCall> {
		let mut r = Xcm::<Config::RuntimeCall>(vec![]);
		sp_std::mem::swap(&mut self.error_handler, &mut r);
		self.error_handler_weight = 0;
		r
	}

	/// Drop the registered error handler and refund its weight.
	fn drop_error_handler(&mut self) {
		self.error_handler = Xcm::<Config::RuntimeCall>(vec![]);
		self.total_surplus.saturating_accrue(self.error_handler_weight);
		self.error_handler_weight = 0;
	}

	/// Remove the registered appendix and return it.
	fn take_appendix(&mut self) -> Xcm<Config::RuntimeCall> {
		let mut r = Xcm::<Config::RuntimeCall>(vec![]);
		sp_std::mem::swap(&mut self.appendix, &mut r);
		self.appendix_weight = 0;
		r
	}

	/// Refund any unused weight.
	fn refund_surplus(&mut self) {
		let current_surplus = self.total_surplus.saturating_sub(self.total_refunded);
		if current_surplus > 0 {
			self.total_refunded.saturating_accrue(current_surplus);
			if let Some(w) = self.trader.refund_weight(current_surplus) {
				self.holding.subsume(w);
			}
		}
	}

	/// Process a single XCM instruction, mutating the state of the XCM virtual machine.
	fn process_instruction(
		&mut self,
		instr: Instruction<Config::RuntimeCall>,
	) -> Result<(), XcmError> {
		match instr {
			WithdrawAsset(assets) => {
				// Take `assets` from the origin account (on-chain) and place in holding.
				let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
				for asset in assets.drain().into_iter() {
					Config::AssetTransactor::withdraw_asset(&asset, origin)?;
					self.holding.subsume(asset);
				}
				Ok(())
			},
			ReserveAssetDeposited(assets) => {
				// check whether we trust origin to be our reserve location for this asset.
				let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
				for asset in assets.drain().into_iter() {
					// Must ensure that we recognise the asset as being managed by the origin.
					ensure!(
						Config::IsReserve::filter_asset_location(&asset, origin),
						XcmError::UntrustedReserveLocation
					);
					self.holding.subsume(asset);
				}
				Ok(())
			},
			TransferAsset { assets, beneficiary } => {
				// Take `assets` from the origin account (on-chain) and place into dest account.
				let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
				for asset in assets.inner() {
					Config::AssetTransactor::transfer_asset(&asset, origin, &beneficiary)?;
				}
				Ok(())
			},
			TransferReserveAsset { mut assets, dest, xcm } => {
				let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
				// Take `assets` from the origin account (on-chain) and place into dest account.
				for asset in assets.inner() {
					Config::AssetTransactor::transfer_asset(asset, origin, &dest)?;
				}
				let ancestry = Config::LocationInverter::ancestry();
				assets.reanchor(&dest, &ancestry).map_err(|()| XcmError::MultiLocationFull)?;
				let mut message = vec![ReserveAssetDeposited(assets), ClearOrigin];
				message.extend(xcm.0.into_iter());
				Config::XcmSender::send_xcm(dest, Xcm(message)).map_err(Into::into)
			},
			ReceiveTeleportedAsset(assets) => {
				let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
				// check whether we trust origin to teleport this asset to us via config trait.
				for asset in assets.inner() {
					// We only trust the origin to send us assets that they identify as their
					// sovereign assets.
					ensure!(
						Config::IsTeleporter::filter_asset_location(asset, origin),
						XcmError::UntrustedTeleportLocation
					);
					// We should check that the asset can actually be teleported in (for this to be in error, there
					// would need to be an accounting violation by one of the trusted chains, so it's unlikely, but we
					// don't want to punish a possibly innocent chain/user).
					Config::AssetTransactor::can_check_in(&origin, asset)?;
				}
				for asset in assets.drain().into_iter() {
					Config::AssetTransactor::check_in(origin, &asset);
					self.holding.subsume(asset);
				}
				Ok(())
			},
			Transact { origin_type, require_weight_at_most, mut call } => {
				// We assume that the Relay-chain is allowed to use transact on this parachain.
				let origin = self.origin.clone().ok_or(XcmError::BadOrigin)?;

				// TODO: #2841 #TRANSACTFILTER allow the trait to issue filters for the relay-chain
				let message_call = call.take_decoded().map_err(|_| XcmError::FailedToDecode)?;
				let dispatch_origin = Config::OriginConverter::convert_origin(origin, origin_type)
					.map_err(|_| XcmError::BadOrigin)?;
				let weight = message_call.get_dispatch_info().weight;
				ensure!(weight.ref_time() <= require_weight_at_most, XcmError::MaxWeightInvalid);
				let actual_weight = match message_call.dispatch(dispatch_origin) {
					Ok(post_info) => post_info.actual_weight,
					Err(error_and_info) => {
						// Not much to do with the result as it is. It's up to the parachain to ensure that the
						// message makes sense.
						error_and_info.post_info.actual_weight
					},
				}
				.unwrap_or(weight);
				let surplus = weight.saturating_sub(actual_weight);
				// We assume that the `Config::Weigher` will counts the `require_weight_at_most`
				// for the estimate of how much weight this instruction will take. Now that we know
				// that it's less, we credit it.
				//
				// We make the adjustment for the total surplus, which is used eventually
				// reported back to the caller and this ensures that they account for the total
				// weight consumed correctly (potentially allowing them to do more operations in a
				// block than they otherwise would).
				self.total_surplus.saturating_accrue(surplus.ref_time());
				Ok(())
			},
			QueryResponse { query_id, response, max_weight } => {
				let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
				Config::ResponseHandler::on_response(origin, query_id, response, max_weight);
				Ok(())
			},
			DescendOrigin(who) => self
				.origin
				.as_mut()
				.ok_or(XcmError::BadOrigin)?
				.append_with(who)
				.map_err(|_| XcmError::MultiLocationFull),
			ClearOrigin => {
				self.origin = None;
				Ok(())
			},
			ReportError { query_id, dest, max_response_weight: max_weight } => {
				// Report the given result by sending a QueryResponse XCM to a previously given outcome
				// destination if one was registered.
				let response = Response::ExecutionResult(self.error);
				let message = QueryResponse { query_id, response, max_weight };
				Config::XcmSender::send_xcm(dest, Xcm(vec![message]))?;
				Ok(())
			},
			DepositAsset { assets, max_assets, beneficiary } => {
				let deposited = self.holding.limited_saturating_take(assets, max_assets as usize);
				for asset in deposited.into_assets_iter() {
					Config::AssetTransactor::deposit_asset(&asset, &beneficiary)?;
				}
				Ok(())
			},
			DepositReserveAsset { assets, max_assets, dest, xcm } => {
				let deposited = self.holding.limited_saturating_take(assets, max_assets as usize);
				for asset in deposited.assets_iter() {
					Config::AssetTransactor::deposit_asset(&asset, &dest)?;
				}
				// Note that we pass `None` as `maybe_failed_bin` and drop any assets which cannot
				// be reanchored  because we have already called `deposit_asset` on all assets.
				let assets = Self::reanchored(deposited, &dest, None);
				let mut message = vec![ReserveAssetDeposited(assets), ClearOrigin];
				message.extend(xcm.0.into_iter());
				Config::XcmSender::send_xcm(dest, Xcm(message)).map_err(Into::into)
			},
			InitiateReserveWithdraw { assets, reserve, xcm } => {
				// Note that here we are able to place any assets which could not be reanchored
				// back into Holding.
				let assets = Self::reanchored(
					self.holding.saturating_take(assets),
					&reserve,
					Some(&mut self.holding),
				);
				let mut message = vec![WithdrawAsset(assets), ClearOrigin];
				message.extend(xcm.0.into_iter());
				Config::XcmSender::send_xcm(reserve, Xcm(message)).map_err(Into::into)
			},
			InitiateTeleport { assets, dest, xcm } => {
				// We must do this first in order to resolve wildcards.
				let assets = self.holding.saturating_take(assets);
				for asset in assets.assets_iter() {
					Config::AssetTransactor::check_out(&dest, &asset);
				}
				// Note that we pass `None` as `maybe_failed_bin` and drop any assets which cannot
				// be reanchored  because we have already checked all assets out.
				let assets = Self::reanchored(assets, &dest, None);
				let mut message = vec![ReceiveTeleportedAsset(assets), ClearOrigin];
				message.extend(xcm.0.into_iter());
				Config::XcmSender::send_xcm(dest, Xcm(message)).map_err(Into::into)
			},
			QueryHolding { query_id, dest, assets, max_response_weight } => {
				// Note that we pass `None` as `maybe_failed_bin` since no assets were ever removed
				// from Holding.
				let assets = Self::reanchored(self.holding.min(&assets), &dest, None);
				let max_weight = max_response_weight;
				let response = Response::Assets(assets);
				let instruction = QueryResponse { query_id, response, max_weight };
				Config::XcmSender::send_xcm(dest, Xcm(vec![instruction])).map_err(Into::into)
			},
			BuyExecution { fees, weight_limit } => {
				// There is no need to buy any weight is `weight_limit` is `Unlimited` since it
				// would indicate that `AllowTopLevelPaidExecutionFrom` was unused for execution
				// and thus there is some other reason why it has been determined that this XCM
				// should be executed.
				if let Some(weight) = Option::<u64>::from(weight_limit) {
					// pay for `weight` using up to `fees` of the holding register.
					let max_fee =
						self.holding.try_take(fees.into()).map_err(|_| XcmError::NotHoldingFees)?;
					let unspent = self.trader.buy_weight(weight, max_fee)?;
					self.holding.subsume_assets(unspent);
				}
				Ok(())
			},
			RefundSurplus => {
				self.refund_surplus();
				Ok(())
			},
			SetErrorHandler(mut handler) => {
				let handler_weight = Config::Weigher::weight(&mut handler)
					.map_err(|()| XcmError::WeightNotComputable)?;
				self.total_surplus.saturating_accrue(self.error_handler_weight);
				self.error_handler = handler;
				self.error_handler_weight = handler_weight;
				Ok(())
			},
			SetAppendix(mut appendix) => {
				let appendix_weight = Config::Weigher::weight(&mut appendix)
					.map_err(|()| XcmError::WeightNotComputable)?;
				self.total_surplus.saturating_accrue(self.appendix_weight);
				self.appendix = appendix;
				self.appendix_weight = appendix_weight;
				Ok(())
			},
			ClearError => {
				self.error = None;
				Ok(())
			},
			ClaimAsset { assets, ticket } => {
				let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
				let ok = Config::AssetClaims::claim_assets(origin, &ticket, &assets);
				ensure!(ok, XcmError::UnknownClaim);
				for asset in assets.drain().into_iter() {
					self.holding.subsume(asset);
				}
				Ok(())
			},
			Trap(code) => Err(XcmError::Trap(code)),
			SubscribeVersion { query_id, max_response_weight } => {
				let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?.clone();
				// We don't allow derivative origins to subscribe since it would otherwise pose a
				// DoS risk.
				ensure!(self.original_origin == origin, XcmError::BadOrigin);
				Config::SubscriptionService::start(&origin, query_id, max_response_weight)
			},
			UnsubscribeVersion => {
				let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
				ensure!(&self.original_origin == origin, XcmError::BadOrigin);
				Config::SubscriptionService::stop(origin)
			},
			ExchangeAsset { .. } => Err(XcmError::Unimplemented),
			HrmpNewChannelOpenRequest { .. } => Err(XcmError::Unimplemented),
			HrmpChannelAccepted { .. } => Err(XcmError::Unimplemented),
			HrmpChannelClosing { .. } => Err(XcmError::Unimplemented),
		}
	}

	/// NOTE: Any assets which were unable to be reanchored are introduced into `failed_bin`.
	fn reanchored(
		mut assets: Assets,
		dest: &MultiLocation,
		maybe_failed_bin: Option<&mut Assets>,
	) -> MultiAssets {
		assets.reanchor(dest, &Config::LocationInverter::ancestry(), maybe_failed_bin);
		assets.into_assets_iter().collect::<Vec<_>>().into()
	}
}