1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
//! [![GitHub](https://img.shields.io/github/tag/oconnor663/blake2_simd.svg?label=GitHub)](https://github.com/oconnor663/blake2_simd) [![crates.io](https://img.shields.io/crates/v/blake2s_simd.svg)](https://crates.io/crates/blake2s_simd) [![Actions Status](https://github.com/oconnor663/blake2_simd/workflows/tests/badge.svg)](https://github.com/oconnor663/blake2_simd/actions)
//!
//! An implementation of the BLAKE2s and BLAKE2sp hash functions. See also
//! [`blake2b_simd`](https://docs.rs/blake2b_simd).
//!
//! This crate includes:
//!
//! - 100% stable Rust.
//! - SIMD implementations based on Samuel Neves' [`blake2-avx2`](https://github.com/sneves/blake2-avx2).
//!   These are very fast. For benchmarks, see [the Performance section of the
//!   README](https://github.com/oconnor663/blake2_simd#performance).
//! - Portable, safe implementations for other platforms.
//! - Dynamic CPU feature detection. Binaries include multiple implementations by default and
//!   choose the fastest one the processor supports at runtime.
//! - All the features from the [the BLAKE2 spec](https://blake2.net/blake2.pdf), like adjustable
//!   length, keying, and associated data for tree hashing.
//! - `no_std` support. The `std` Cargo feature is on by default, for CPU feature detection and
//!   for implementing `std::io::Write`.
//! - Support for computing multiple BLAKE2s hashes in parallel, matching the efficiency of
//!   BLAKE2sp. See the [`many`](many/index.html) module.
//!
//! # Example
//!
//! ```
//! use blake2s_simd::{blake2s, Params};
//!
//! let expected = "08d6cad88075de8f192db097573d0e829411cd91eb6ec65e8fc16c017edfdb74";
//! let hash = blake2s(b"foo");
//! assert_eq!(expected, &hash.to_hex());
//!
//! let hash = Params::new()
//!     .hash_length(16)
//!     .key(b"Squeamish Ossifrage")
//!     .personal(b"Shaftoe")
//!     .to_state()
//!     .update(b"foo")
//!     .update(b"bar")
//!     .update(b"baz")
//!     .finalize();
//! assert_eq!("28325512782cbf5019424fa65da9a6c7", &hash.to_hex());
//! ```

#![cfg_attr(not(feature = "std"), no_std)]

use arrayref::{array_refs, mut_array_refs};
use core::cmp;
use core::fmt;
use core::mem::size_of;

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod avx2;
mod portable;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod sse41;

pub mod blake2sp;
mod guts;
pub mod many;

#[cfg(test)]
mod test;

type Word = u32;
type Count = u64;

/// The max hash length.
pub const OUTBYTES: usize = 8 * size_of::<Word>();
/// The max key length.
pub const KEYBYTES: usize = 8 * size_of::<Word>();
/// The max salt length.
pub const SALTBYTES: usize = 2 * size_of::<Word>();
/// The max personalization length.
pub const PERSONALBYTES: usize = 2 * size_of::<Word>();
/// The number input bytes passed to each call to the compression function. Small benchmarks need
/// to use an even multiple of `BLOCKBYTES`, or else their apparent throughput will be low.
pub const BLOCKBYTES: usize = 16 * size_of::<Word>();

const IV: [Word; 8] = [
    0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
];

const SIGMA: [[u8; 16]; 10] = [
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
    [14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3],
    [11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4],
    [7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8],
    [9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13],
    [2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9],
    [12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11],
    [13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10],
    [6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5],
    [10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0],
];

/// Compute the BLAKE2s hash of a slice of bytes all at once, using default
/// parameters.
///
/// # Example
///
/// ```
/// # use blake2s_simd::{blake2s, Params};
/// let expected = "08d6cad88075de8f192db097573d0e829411cd91eb6ec65e8fc16c017edfdb74";
/// let hash = blake2s(b"foo");
/// assert_eq!(expected, &hash.to_hex());
/// ```
pub fn blake2s(input: &[u8]) -> Hash {
    Params::new().hash(input)
}

/// A parameter builder that exposes all the non-default BLAKE2 features.
///
/// Apart from `hash_length`, which controls the length of the final `Hash`,
/// all of these parameters are just associated data that gets mixed with the
/// input. For more details, see [the BLAKE2 spec](https://blake2.net/blake2.pdf).
///
/// Several of the parameters have a valid range defined in the spec and
/// documented below. Trying to set an invalid parameter will panic.
///
/// # Example
///
/// ```
/// # use blake2s_simd::Params;
/// // Create a Params object with a secret key and a non-default length.
/// let mut params = Params::new();
/// params.key(b"my secret key");
/// params.hash_length(16);
///
/// // Use those params to hash an input all at once.
/// let hash = params.hash(b"my input");
///
/// // Or use those params to build an incremental State.
/// let mut state = params.to_state();
/// ```
#[derive(Clone)]
pub struct Params {
    hash_length: u8,
    key_length: u8,
    key_block: [u8; BLOCKBYTES],
    salt: [u8; SALTBYTES],
    personal: [u8; PERSONALBYTES],
    fanout: u8,
    max_depth: u8,
    max_leaf_length: u32,
    node_offset: u64,
    node_depth: u8,
    inner_hash_length: u8,
    last_node: guts::LastNode,
    implementation: guts::Implementation,
}

impl Params {
    /// Equivalent to `Params::default()`.
    #[inline]
    pub fn new() -> Self {
        Self {
            hash_length: OUTBYTES as u8,
            key_length: 0,
            key_block: [0; BLOCKBYTES],
            salt: [0; SALTBYTES],
            personal: [0; PERSONALBYTES],
            // NOTE: fanout and max_depth don't default to zero!
            fanout: 1,
            max_depth: 1,
            max_leaf_length: 0,
            node_offset: 0,
            node_depth: 0,
            inner_hash_length: 0,
            last_node: guts::LastNode::No,
            implementation: guts::Implementation::detect(),
        }
    }

    #[inline(always)]
    fn to_words(&self) -> [Word; 8] {
        let (salt_left, salt_right) = array_refs!(&self.salt, SALTBYTES / 2, SALTBYTES / 2);
        let (personal_left, personal_right) =
            array_refs!(&self.personal, PERSONALBYTES / 2, PERSONALBYTES / 2);
        [
            IV[0]
                ^ self.hash_length as u32
                ^ (self.key_length as u32) << 8
                ^ (self.fanout as u32) << 16
                ^ (self.max_depth as u32) << 24,
            IV[1] ^ self.max_leaf_length,
            IV[2] ^ self.node_offset as u32,
            IV[3]
                ^ (self.node_offset >> 32) as u32
                ^ (self.node_depth as u32) << 16
                ^ (self.inner_hash_length as u32) << 24,
            IV[4] ^ Word::from_le_bytes(*salt_left),
            IV[5] ^ Word::from_le_bytes(*salt_right),
            IV[6] ^ Word::from_le_bytes(*personal_left),
            IV[7] ^ Word::from_le_bytes(*personal_right),
        ]
    }

    /// Hash an input all at once with these parameters.
    #[inline]
    pub fn hash(&self, input: &[u8]) -> Hash {
        // If there's a key, just fall back to using the State.
        if self.key_length > 0 {
            return self.to_state().update(input).finalize();
        }
        let mut words = self.to_words();
        self.implementation.compress1_loop(
            input,
            &mut words,
            0,
            self.last_node,
            guts::Finalize::Yes,
            guts::Stride::Serial,
        );
        Hash {
            bytes: state_words_to_bytes(&words),
            len: self.hash_length,
        }
    }

    /// Construct a `State` object based on these parameters, for hashing input
    /// incrementally.
    pub fn to_state(&self) -> State {
        State::with_params(self)
    }

    /// Set the length of the final hash in bytes, from 1 to `OUTBYTES` (32). Apart from
    /// controlling the length of the final `Hash`, this is also associated data, and changing it
    /// will result in a totally different hash.
    #[inline]
    pub fn hash_length(&mut self, length: usize) -> &mut Self {
        assert!(
            1 <= length && length <= OUTBYTES,
            "Bad hash length: {}",
            length
        );
        self.hash_length = length as u8;
        self
    }

    /// Use a secret key, so that BLAKE2 acts as a MAC. The maximum key length is `KEYBYTES` (32).
    /// An empty key is equivalent to having no key at all.
    #[inline]
    pub fn key(&mut self, key: &[u8]) -> &mut Self {
        assert!(key.len() <= KEYBYTES, "Bad key length: {}", key.len());
        self.key_length = key.len() as u8;
        self.key_block = [0; BLOCKBYTES];
        self.key_block[..key.len()].copy_from_slice(key);
        self
    }

    /// At most `SALTBYTES` (8). Shorter salts are padded with null bytes. An empty salt is
    /// equivalent to having no salt at all.
    #[inline]
    pub fn salt(&mut self, salt: &[u8]) -> &mut Self {
        assert!(salt.len() <= SALTBYTES, "Bad salt length: {}", salt.len());
        self.salt = [0; SALTBYTES];
        self.salt[..salt.len()].copy_from_slice(salt);
        self
    }

    /// At most `PERSONALBYTES` (8). Shorter personalizations are padded with null bytes. An empty
    /// personalization is equivalent to having no personalization at all.
    #[inline]
    pub fn personal(&mut self, personalization: &[u8]) -> &mut Self {
        assert!(
            personalization.len() <= PERSONALBYTES,
            "Bad personalization length: {}",
            personalization.len()
        );
        self.personal = [0; PERSONALBYTES];
        self.personal[..personalization.len()].copy_from_slice(personalization);
        self
    }

    /// From 0 (meaning unlimited) to 255. The default is 1 (meaning sequential).
    #[inline]
    pub fn fanout(&mut self, fanout: u8) -> &mut Self {
        self.fanout = fanout;
        self
    }

    /// From 0 (meaning BLAKE2X B2 hashes), through 1 (the default, meaning sequential) to 255 (meaning unlimited).
    #[inline]
    pub fn max_depth(&mut self, depth: u8) -> &mut Self {
        self.max_depth = depth;
        self
    }

    /// From 0 (the default, meaning unlimited or sequential) to `2^32 - 1`.
    #[inline]
    pub fn max_leaf_length(&mut self, length: u32) -> &mut Self {
        self.max_leaf_length = length;
        self
    }

    /// From 0 (the default, meaning first, leftmost, leaf, or sequential) to `2^48 - 1`.
    #[inline]
    pub fn node_offset(&mut self, offset: u64) -> &mut Self {
        assert!(offset < (1 << 48), "Bad node offset: {}", offset);
        self.node_offset = offset;
        self
    }

    /// From 0 (the default, meaning leaf or sequential) to 255.
    #[inline]
    pub fn node_depth(&mut self, depth: u8) -> &mut Self {
        self.node_depth = depth;
        self
    }

    /// From 0 (the default, meaning sequential) to `OUTBYTES` (32).
    #[inline]
    pub fn inner_hash_length(&mut self, length: usize) -> &mut Self {
        assert!(length <= OUTBYTES, "Bad inner hash length: {}", length);
        self.inner_hash_length = length as u8;
        self
    }

    /// Indicates the rightmost node in a row. This can also be changed on the
    /// `State` object, potentially after hashing has begun. See
    /// [`State::set_last_node`].
    ///
    /// [`State::set_last_node`]: struct.State.html#method.set_last_node
    #[inline]
    pub fn last_node(&mut self, last_node: bool) -> &mut Self {
        self.last_node = if last_node {
            guts::LastNode::Yes
        } else {
            guts::LastNode::No
        };
        self
    }
}

impl Default for Params {
    fn default() -> Self {
        Self::new()
    }
}

impl fmt::Debug for Params {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "Params {{ hash_length: {}, key_length: {}, salt: {:?}, personal: {:?}, fanout: {}, \
             max_depth: {}, max_leaf_length: {}, node_offset: {}, node_depth: {}, \
             inner_hash_length: {}, last_node: {} }}",
            self.hash_length,
            // NB: Don't print the key itself. Debug shouldn't leak secrets.
            self.key_length,
            &self.salt,
            &self.personal,
            self.fanout,
            self.max_depth,
            self.max_leaf_length,
            self.node_offset,
            self.node_depth,
            self.inner_hash_length,
            self.last_node.yes(),
        )
    }
}

/// An incremental hasher for BLAKE2s.
///
/// To construct a `State` with non-default parameters, see `Params::to_state`.
///
/// # Example
///
/// ```
/// use blake2s_simd::{State, blake2s};
///
/// let mut state = blake2s_simd::State::new();
///
/// state.update(b"foo");
/// assert_eq!(blake2s(b"foo"), state.finalize());
///
/// state.update(b"bar");
/// assert_eq!(blake2s(b"foobar"), state.finalize());
/// ```
#[derive(Clone)]
pub struct State {
    words: [Word; 8],
    count: Count,
    buf: [u8; BLOCKBYTES],
    buflen: u8,
    last_node: guts::LastNode,
    hash_length: u8,
    implementation: guts::Implementation,
    is_keyed: bool,
}

impl State {
    /// Equivalent to `State::default()` or `Params::default().to_state()`.
    pub fn new() -> Self {
        Self::with_params(&Params::default())
    }

    fn with_params(params: &Params) -> Self {
        let mut state = Self {
            words: params.to_words(),
            count: 0,
            buf: [0; BLOCKBYTES],
            buflen: 0,
            last_node: params.last_node,
            hash_length: params.hash_length,
            implementation: params.implementation,
            is_keyed: params.key_length > 0,
        };
        if state.is_keyed {
            state.buf = params.key_block;
            state.buflen = state.buf.len() as u8;
        }
        state
    }

    fn fill_buf(&mut self, input: &mut &[u8]) {
        let take = cmp::min(BLOCKBYTES - self.buflen as usize, input.len());
        self.buf[self.buflen as usize..self.buflen as usize + take].copy_from_slice(&input[..take]);
        self.buflen += take as u8;
        *input = &input[take..];
    }

    // If the state already has some input in its buffer, try to fill the buffer and perform a
    // compression. However, only do the compression if there's more input coming, otherwise it
    // will give the wrong hash it the caller finalizes immediately after.
    fn compress_buffer_if_possible(&mut self, input: &mut &[u8]) {
        if self.buflen > 0 {
            self.fill_buf(input);
            if !input.is_empty() {
                self.implementation.compress1_loop(
                    &self.buf,
                    &mut self.words,
                    self.count,
                    self.last_node,
                    guts::Finalize::No,
                    guts::Stride::Serial,
                );
                self.count = self.count.wrapping_add(BLOCKBYTES as Count);
                self.buflen = 0;
            }
        }
    }

    /// Add input to the hash. You can call `update` any number of times.
    pub fn update(&mut self, mut input: &[u8]) -> &mut Self {
        // If we have a partial buffer, try to complete it.
        self.compress_buffer_if_possible(&mut input);
        // While there's more than a block of input left (which also means we cleared the buffer
        // above), compress blocks directly without copying.
        let mut end = input.len().saturating_sub(1);
        end -= end % BLOCKBYTES;
        if end > 0 {
            self.implementation.compress1_loop(
                &input[..end],
                &mut self.words,
                self.count,
                self.last_node,
                guts::Finalize::No,
                guts::Stride::Serial,
            );
            self.count = self.count.wrapping_add(end as Count);
            input = &input[end..];
        }
        // Buffer any remaining input, to be either compressed or finalized in a subsequent call.
        // Note that this represents some copying overhead, which in theory we could avoid in
        // all-at-once setting. A function hardcoded for exactly BLOCKSIZE input bytes is about 10%
        // faster than using this implementation for the same input.
        self.fill_buf(&mut input);
        self
    }

    /// Finalize the state and return a `Hash`. This method is idempotent, and calling it multiple
    /// times will give the same result. It's also possible to `update` with more input in between.
    pub fn finalize(&self) -> Hash {
        let mut words_copy = self.words;
        self.implementation.compress1_loop(
            &self.buf[..self.buflen as usize],
            &mut words_copy,
            self.count,
            self.last_node,
            guts::Finalize::Yes,
            guts::Stride::Serial,
        );
        Hash {
            bytes: state_words_to_bytes(&words_copy),
            len: self.hash_length,
        }
    }

    /// Set a flag indicating that this is the last node of its level in a tree hash. This is
    /// equivalent to [`Params::last_node`], except that it can be set at any time before calling
    /// `finalize`. That allows callers to begin hashing a node without knowing ahead of time
    /// whether it's the last in its level. For more details about the intended use of this flag
    /// [the BLAKE2 spec].
    ///
    /// [`Params::last_node`]: struct.Params.html#method.last_node
    /// [the BLAKE2 spec]: https://blake2.net/blake2.pdf
    pub fn set_last_node(&mut self, last_node: bool) -> &mut Self {
        self.last_node = if last_node {
            guts::LastNode::Yes
        } else {
            guts::LastNode::No
        };
        self
    }

    /// Return the total number of bytes input so far.
    ///
    /// Note that `count` doesn't include the bytes of the key block, if any.
    /// It's exactly the total number of input bytes fed to `update`.
    pub fn count(&self) -> Count {
        let mut ret = self.count.wrapping_add(self.buflen as Count);
        if self.is_keyed {
            ret -= BLOCKBYTES as Count;
        }
        ret
    }
}

#[inline(always)]
fn state_words_to_bytes(state_words: &[Word; 8]) -> [u8; OUTBYTES] {
    let mut bytes = [0; OUTBYTES];
    {
        const W: usize = size_of::<Word>();
        let refs = mut_array_refs!(&mut bytes, W, W, W, W, W, W, W, W);
        *refs.0 = state_words[0].to_le_bytes();
        *refs.1 = state_words[1].to_le_bytes();
        *refs.2 = state_words[2].to_le_bytes();
        *refs.3 = state_words[3].to_le_bytes();
        *refs.4 = state_words[4].to_le_bytes();
        *refs.5 = state_words[5].to_le_bytes();
        *refs.6 = state_words[6].to_le_bytes();
        *refs.7 = state_words[7].to_le_bytes();
    }
    bytes
}

#[cfg(feature = "std")]
impl std::io::Write for State {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        self.update(buf);
        Ok(buf.len())
    }

    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}

impl fmt::Debug for State {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // NB: Don't print the words. Leaking them would allow length extension.
        write!(
            f,
            "State {{ count: {}, hash_length: {}, last_node: {} }}",
            self.count(),
            self.hash_length,
            self.last_node.yes(),
        )
    }
}

impl Default for State {
    fn default() -> Self {
        Self::with_params(&Params::default())
    }
}

type HexString = arrayvec::ArrayString<{ 2 * OUTBYTES }>;

/// A finalized BLAKE2 hash, with constant-time equality.
#[derive(Clone, Copy)]
pub struct Hash {
    bytes: [u8; OUTBYTES],
    len: u8,
}

impl Hash {
    /// Convert the hash to a byte slice. Note that if you're using BLAKE2 as a MAC, you need
    /// constant time equality, which `&[u8]` doesn't provide.
    pub fn as_bytes(&self) -> &[u8] {
        &self.bytes[..self.len as usize]
    }

    /// Convert the hash to a byte array. Note that if you're using BLAKE2 as a
    /// MAC, you need constant time equality, which arrays don't provide. This
    /// panics in debug mode if the length of the hash isn't `OUTBYTES`.
    #[inline]
    pub fn as_array(&self) -> &[u8; OUTBYTES] {
        debug_assert_eq!(self.len as usize, OUTBYTES);
        &self.bytes
    }

    /// Convert the hash to a lowercase hexadecimal
    /// [`ArrayString`](https://docs.rs/arrayvec/0.7/arrayvec/struct.ArrayString.html).
    pub fn to_hex(&self) -> HexString {
        bytes_to_hex(self.as_bytes())
    }
}

fn bytes_to_hex(bytes: &[u8]) -> HexString {
    let mut s = arrayvec::ArrayString::new();
    let table = b"0123456789abcdef";
    for &b in bytes {
        s.push(table[(b >> 4) as usize] as char);
        s.push(table[(b & 0xf) as usize] as char);
    }
    s
}

impl From<[u8; OUTBYTES]> for Hash {
    fn from(bytes: [u8; OUTBYTES]) -> Self {
        Self {
            bytes,
            len: OUTBYTES as u8,
        }
    }
}

impl From<&[u8; OUTBYTES]> for Hash {
    fn from(bytes: &[u8; OUTBYTES]) -> Self {
        Self::from(*bytes)
    }
}

/// This implementation is constant time, if the two hashes are the same length.
impl PartialEq for Hash {
    fn eq(&self, other: &Hash) -> bool {
        constant_time_eq::constant_time_eq(&self.as_bytes(), &other.as_bytes())
    }
}

/// This implementation is constant time, if the slice is the same length as the hash.
impl PartialEq<[u8]> for Hash {
    fn eq(&self, other: &[u8]) -> bool {
        constant_time_eq::constant_time_eq(&self.as_bytes(), other)
    }
}

impl Eq for Hash {}

impl AsRef<[u8]> for Hash {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl fmt::Debug for Hash {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Hash(0x{})", self.to_hex())
    }
}

// Paint a byte pattern that won't repeat, so that we don't accidentally miss
// buffer offset bugs. This is the same as what Bao uses in its tests.
#[cfg(test)]
fn paint_test_input(buf: &mut [u8]) {
    let mut offset = 0;
    let mut counter: u32 = 1;
    while offset < buf.len() {
        let bytes = counter.to_le_bytes();
        let take = cmp::min(bytes.len(), buf.len() - offset);
        buf[offset..][..take].copy_from_slice(&bytes[..take]);
        counter += 1;
        offset += take;
    }
}

// This module is pub for internal benchmarks only. Please don't use it.
#[doc(hidden)]
pub mod benchmarks {
    use super::*;

    pub fn force_portable(params: &mut Params) {
        params.implementation = guts::Implementation::portable();
    }

    pub fn force_portable_blake2sp(params: &mut blake2sp::Params) {
        blake2sp::force_portable(params);
    }
}