1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use crate::store::StoreOpaque;
use crate::{StoreContext, StoreContextMut};
use std::fmt;
use std::marker;
use std::num::NonZeroU64;
use std::ops::{Index, IndexMut};
use std::sync::atomic::{AtomicU64, Ordering::Relaxed};

// This is defined here, in a private submodule, so we can explicitly reexport
// it only as `pub(crate)`. This avoids a ton of
// crate-private-type-in-public-interface errors that aren't really too
// interesting to deal with.
#[derive(Copy, Clone)]
pub struct InstanceId(pub(super) usize);

pub struct StoreData {
    id: StoreId,
    funcs: Vec<crate::func::FuncData>,
    tables: Vec<wasmtime_runtime::ExportTable>,
    globals: Vec<wasmtime_runtime::ExportGlobal>,
    instances: Vec<crate::instance::InstanceData>,
    memories: Vec<wasmtime_runtime::ExportMemory>,
    #[cfg(feature = "component-model")]
    pub(crate) components: crate::component::ComponentStoreData,
}

pub trait StoredData: Sized {
    fn list(data: &StoreData) -> &Vec<Self>;
    fn list_mut(data: &mut StoreData) -> &mut Vec<Self>;
}

macro_rules! impl_store_data {
    ($($field:ident => $t:ty,)*) => ($(
        impl StoredData for $t {
            #[inline]
            fn list(data: &StoreData) -> &Vec<Self> { &data.$field }
            #[inline]
            fn list_mut(data: &mut StoreData) -> &mut Vec<Self> { &mut data.$field }
        }
    )*)
}

impl_store_data! {
    funcs => crate::func::FuncData,
    tables => wasmtime_runtime::ExportTable,
    globals => wasmtime_runtime::ExportGlobal,
    instances => crate::instance::InstanceData,
    memories => wasmtime_runtime::ExportMemory,
}

impl StoreData {
    pub fn new() -> StoreData {
        StoreData {
            id: StoreId::allocate(),
            funcs: Vec::new(),
            tables: Vec::new(),
            globals: Vec::new(),
            instances: Vec::new(),
            memories: Vec::new(),
            #[cfg(feature = "component-model")]
            components: Default::default(),
        }
    }

    pub fn id(&self) -> StoreId {
        self.id
    }

    pub fn insert<T>(&mut self, data: T) -> Stored<T>
    where
        T: StoredData,
    {
        let list = T::list_mut(self);
        let index = list.len();
        list.push(data);
        Stored::new(self.id, index)
    }

    pub fn next_id<T>(&self) -> Stored<T>
    where
        T: StoredData,
    {
        Stored::new(self.id, T::list(self).len())
    }

    pub fn contains<T>(&self, id: Stored<T>) -> bool
    where
        T: StoredData,
    {
        if id.store_id != self.id {
            return false;
        }
        // This should be true as an invariant of our API, but double-check with
        // debug assertions enabled.
        debug_assert!(id.index() < T::list(self).len());
        true
    }

    pub(crate) fn funcs(&self) -> impl Iterator<Item = &crate::func::FuncData> {
        self.funcs.iter()
    }

    pub(crate) fn reserve_funcs(&mut self, count: usize) {
        self.funcs.reserve(count);
    }
}

impl<T> Index<Stored<T>> for StoreData
where
    T: StoredData,
{
    type Output = T;

    #[inline]
    fn index(&self, index: Stored<T>) -> &Self::Output {
        index.assert_belongs_to(self.id);
        // Note that if this is ever a performance bottleneck it should be safe
        // to use unchecked indexing here because presence of a `Stored<T>` is
        // proof of an item having been inserted into a store and lists in
        // stores are never shrunk. After the store check above the actual index
        // should always be valid.
        &T::list(self)[index.index()]
    }
}

impl<T> IndexMut<Stored<T>> for StoreData
where
    T: StoredData,
{
    #[inline]
    fn index_mut(&mut self, index: Stored<T>) -> &mut Self::Output {
        index.assert_belongs_to(self.id);
        // Note that this could be unchecked indexing, see the note in `Index`
        // above.
        &mut T::list_mut(self)[index.index()]
    }
}

// forward StoreContext => StoreData
impl<I, T> Index<I> for StoreContext<'_, T>
where
    StoreData: Index<I>,
{
    type Output = <StoreData as Index<I>>::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        self.0.store_data.index(index)
    }
}

// forward StoreContextMut => StoreData
impl<I, T> Index<I> for StoreContextMut<'_, T>
where
    StoreData: Index<I>,
{
    type Output = <StoreData as Index<I>>::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        self.0.store_data.index(index)
    }
}

// forward StoreOpaque => StoreData
impl<I> Index<I> for StoreOpaque
where
    StoreData: Index<I>,
{
    type Output = <StoreData as Index<I>>::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        self.store_data().index(index)
    }
}
impl<I> IndexMut<I> for StoreOpaque
where
    StoreData: IndexMut<I>,
{
    #[inline]
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        self.store_data_mut().index_mut(index)
    }
}

/// A unique identifier to get attached to a store.
///
/// This identifier is embedded into the `Stored<T>` structure and is used to
/// identify the original store that items come from. For example a `Memory` is
/// owned by a `Store` and will embed a `StoreId` internally to say which store
/// it came from. Comparisons with this value are how panics are generated for
/// mismatching the item that a store belongs to.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct StoreId(NonZeroU64);

impl StoreId {
    /// Allocates a new unique identifier for a store that has never before been
    /// used in this process.
    fn allocate() -> StoreId {
        static NEXT_ID: AtomicU64 = AtomicU64::new(0);

        // Only allow 2^63 stores at which point we start panicking to prevent
        // overflow.
        //
        // If a store is created once per microsecond then this will last the
        // current process for 584,540 years before overflowing.
        //
        // Also note the usage of `Relaxed` ordering here which should be ok
        // since we're only looking for atomicity on this counter and this
        // otherwise isn't used to synchronize memory stored anywhere else.
        let id = NEXT_ID.fetch_add(1, Relaxed);
        if id & (1 << 63) != 0 {
            NEXT_ID.store(1 << 63, Relaxed);
            panic!("store id allocator overflow");
        }

        StoreId(NonZeroU64::new(id + 1).unwrap())
    }

    #[inline]
    pub fn assert_belongs_to(&self, store: StoreId) {
        if *self == store {
            return;
        }
        store_id_mismatch();
    }
}

#[repr(C)] // used by reference in the C API
pub struct Stored<T> {
    store_id: StoreId,
    index: usize,
    _marker: marker::PhantomData<fn() -> T>,
}

impl<T> Stored<T> {
    fn new(store_id: StoreId, index: usize) -> Stored<T> {
        Stored {
            store_id,
            index,
            _marker: marker::PhantomData,
        }
    }

    #[inline]
    pub fn assert_belongs_to(&self, store: StoreId) {
        self.store_id.assert_belongs_to(store)
    }

    fn index(&self) -> usize {
        self.index
    }
}

#[cold]
fn store_id_mismatch() {
    panic!("object used with the wrong store");
}

impl<T> PartialEq for Stored<T> {
    fn eq(&self, other: &Stored<T>) -> bool {
        self.store_id == other.store_id && self.index == other.index
    }
}

impl<T> Copy for Stored<T> {}

impl<T> Clone for Stored<T> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<T> fmt::Debug for Stored<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "store={}, index={}", self.store_id.0, self.index())
    }
}