1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use core::convert::{TryFrom, TryInto};

use curve25519_dalek::{
    edwards::{CompressedEdwardsY, EdwardsPoint},
    scalar::Scalar,
    traits::IsIdentity,
};
use sha2::{Digest, Sha512};

use crate::{Error, Signature};

/// A refinement type for `[u8; 32]` indicating that the bytes represent an
/// encoding of an Ed25519 verification key.
///
/// This is useful for representing an encoded verification key, while the
/// [`VerificationKey`] type in this library caches other decoded state used in
/// signature verification.  
///
/// A `VerificationKeyBytes` can be used to verify a single signature using the
/// following idiom:
/// ```
/// use core::convert::TryFrom;
/// # use rand::thread_rng;
/// # use ed25519_zebra::*;
/// # let msg = b"Zcash";
/// # let sk = SigningKey::new(thread_rng());
/// # let sig = sk.sign(msg);
/// # let vk_bytes = VerificationKeyBytes::from(&sk);
/// VerificationKey::try_from(vk_bytes)
///     .and_then(|vk| vk.verify(&sig, msg));
/// ```
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct VerificationKeyBytes(pub(crate) [u8; 32]);

impl core::fmt::Debug for VerificationKeyBytes {
    fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
        fmt.debug_tuple("VerificationKeyBytes")
            .field(&hex::encode(&self.0))
            .finish()
    }
}

impl AsRef<[u8]> for VerificationKeyBytes {
    fn as_ref(&self) -> &[u8] {
        &self.0[..]
    }
}

impl TryFrom<&[u8]> for VerificationKeyBytes {
    type Error = Error;
    fn try_from(slice: &[u8]) -> Result<VerificationKeyBytes, Error> {
        if slice.len() == 32 {
            let mut bytes = [0u8; 32];
            bytes[..].copy_from_slice(slice);
            Ok(bytes.into())
        } else {
            Err(Error::InvalidSliceLength)
        }
    }
}

impl From<[u8; 32]> for VerificationKeyBytes {
    fn from(bytes: [u8; 32]) -> VerificationKeyBytes {
        VerificationKeyBytes(bytes)
    }
}

impl From<VerificationKeyBytes> for [u8; 32] {
    fn from(refined: VerificationKeyBytes) -> [u8; 32] {
        refined.0
    }
}

/// A valid Ed25519 verification key.
///
/// This is also called a public key by other implementations.
///
/// This type holds decompressed state used in signature verification; if the
/// verification key may not be used immediately, it is probably better to use
/// [`VerificationKeyBytes`], which is a refinement type for `[u8; 32]`.
///
/// ## Zcash-specific consensus properties
///
/// Ed25519 checks are described in [§5.4.5][ps] of the Zcash protocol specification and in
/// [ZIP 215].  The verification criteria for an (encoded) verification key `A_bytes` are:
///
/// * `A_bytes` MUST be an encoding of a point `A` on the twisted Edwards form of
///   Curve25519, and non-canonical encodings MUST be accepted;
///
/// [ps]: https://zips.z.cash/protocol/protocol.pdf#concreteed25519
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(try_from = "VerificationKeyBytes"))]
#[cfg_attr(feature = "serde", serde(into = "VerificationKeyBytes"))]
#[allow(non_snake_case)]
pub struct VerificationKey {
    pub(crate) A_bytes: VerificationKeyBytes,
    pub(crate) minus_A: EdwardsPoint,
}

impl From<VerificationKey> for VerificationKeyBytes {
    fn from(vk: VerificationKey) -> VerificationKeyBytes {
        vk.A_bytes
    }
}

impl AsRef<[u8]> for VerificationKey {
    fn as_ref(&self) -> &[u8] {
        &self.A_bytes.0[..]
    }
}

impl From<VerificationKey> for [u8; 32] {
    fn from(vk: VerificationKey) -> [u8; 32] {
        vk.A_bytes.0
    }
}

impl TryFrom<VerificationKeyBytes> for VerificationKey {
    type Error = Error;
    #[allow(non_snake_case)]
    fn try_from(bytes: VerificationKeyBytes) -> Result<Self, Self::Error> {
        // * `A_bytes` and `R_bytes` MUST be encodings of points `A` and `R` respectively on the
        //   twisted Edwards form of Curve25519, and non-canonical encodings MUST be accepted;
        let A = CompressedEdwardsY(bytes.0)
            .decompress()
            .ok_or(Error::MalformedPublicKey)?;

        Ok(VerificationKey {
            A_bytes: bytes,
            minus_A: -A,
        })
    }
}

impl TryFrom<&[u8]> for VerificationKey {
    type Error = Error;
    fn try_from(slice: &[u8]) -> Result<VerificationKey, Error> {
        VerificationKeyBytes::try_from(slice).and_then(|vkb| vkb.try_into())
    }
}

impl TryFrom<[u8; 32]> for VerificationKey {
    type Error = Error;
    fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
        VerificationKeyBytes::from(bytes).try_into()
    }
}

impl VerificationKey {
    /// Verify a purported `signature` on the given `msg`.
    ///
    /// ## Zcash-specific consensus properties
    ///
    /// Ed25519 checks are described in [§5.4.5][ps] of the Zcash protocol specification and in
    /// [ZIP215].  The verification criteria for an (encoded) signature `(R_bytes, s_bytes)` with
    /// (encoded) verification key `A_bytes` are:
    ///
    /// * `A_bytes` and `R_bytes` MUST be encodings of points `A` and `R` respectively on the
    ///   twisted Edwards form of Curve25519, and non-canonical encodings MUST be accepted;
    ///
    /// * `s_bytes` MUST represent an integer `s` less than `l`, the order of the prime-order
    ///   subgroup of Curve25519;
    ///
    /// * the verification equation `[8][s]B = [8]R + [8][k]A` MUST be satisfied;
    ///
    /// * the alternate verification equation `[s]B = R + [k]A`, allowed by RFC 8032, MUST NOT be
    ///   used.
    ///
    /// [ps]: https://zips.z.cash/protocol/protocol.pdf#concreteed25519
    /// [ZIP215]: https://github.com/zcash/zips/blob/master/zip-0215.rst
    pub fn verify(&self, signature: &Signature, msg: &[u8]) -> Result<(), Error> {
        let k = Scalar::from_hash(
            Sha512::default()
                .chain(&signature.R_bytes[..])
                .chain(&self.A_bytes.0[..])
                .chain(msg),
        );
        self.verify_prehashed(signature, k)
    }

    /// Verify a signature with a prehashed `k` value. Note that this is not the
    /// same as "prehashing" in RFC8032.
    #[allow(non_snake_case)]
    pub(crate) fn verify_prehashed(&self, signature: &Signature, k: Scalar) -> Result<(), Error> {
        // `s_bytes` MUST represent an integer less than the prime `l`.
        let s = Scalar::from_canonical_bytes(signature.s_bytes).ok_or(Error::InvalidSignature)?;
        // `R_bytes` MUST be an encoding of a point on the twisted Edwards form of Curve25519.
        let R = CompressedEdwardsY(signature.R_bytes)
            .decompress()
            .ok_or(Error::InvalidSignature)?;
        // We checked the encoding of A_bytes when constructing `self`.

        //       [8][s]B = [8]R + [8][k]A
        // <=>   [8]R = [8][s]B - [8][k]A
        // <=>   0 = [8](R - ([s]B - [k]A))
        // <=>   0 = [8](R - R')  where R' = [s]B - [k]A
        let R_prime = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &self.minus_A, &s);

        if (R - R_prime).mul_by_cofactor().is_identity() {
            Ok(())
        } else {
            Err(Error::InvalidSignature)
        }
    }
}