1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
use core::convert::{TryFrom, TryInto};
use curve25519_dalek::{
edwards::{CompressedEdwardsY, EdwardsPoint},
scalar::Scalar,
traits::IsIdentity,
};
use sha2::{Digest, Sha512};
use crate::{Error, Signature};
/// A refinement type for `[u8; 32]` indicating that the bytes represent an
/// encoding of an Ed25519 verification key.
///
/// This is useful for representing an encoded verification key, while the
/// [`VerificationKey`] type in this library caches other decoded state used in
/// signature verification.
///
/// A `VerificationKeyBytes` can be used to verify a single signature using the
/// following idiom:
/// ```
/// use core::convert::TryFrom;
/// # use rand::thread_rng;
/// # use ed25519_zebra::*;
/// # let msg = b"Zcash";
/// # let sk = SigningKey::new(thread_rng());
/// # let sig = sk.sign(msg);
/// # let vk_bytes = VerificationKeyBytes::from(&sk);
/// VerificationKey::try_from(vk_bytes)
/// .and_then(|vk| vk.verify(&sig, msg));
/// ```
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct VerificationKeyBytes(pub(crate) [u8; 32]);
impl core::fmt::Debug for VerificationKeyBytes {
fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
fmt.debug_tuple("VerificationKeyBytes")
.field(&hex::encode(&self.0))
.finish()
}
}
impl AsRef<[u8]> for VerificationKeyBytes {
fn as_ref(&self) -> &[u8] {
&self.0[..]
}
}
impl TryFrom<&[u8]> for VerificationKeyBytes {
type Error = Error;
fn try_from(slice: &[u8]) -> Result<VerificationKeyBytes, Error> {
if slice.len() == 32 {
let mut bytes = [0u8; 32];
bytes[..].copy_from_slice(slice);
Ok(bytes.into())
} else {
Err(Error::InvalidSliceLength)
}
}
}
impl From<[u8; 32]> for VerificationKeyBytes {
fn from(bytes: [u8; 32]) -> VerificationKeyBytes {
VerificationKeyBytes(bytes)
}
}
impl From<VerificationKeyBytes> for [u8; 32] {
fn from(refined: VerificationKeyBytes) -> [u8; 32] {
refined.0
}
}
/// A valid Ed25519 verification key.
///
/// This is also called a public key by other implementations.
///
/// This type holds decompressed state used in signature verification; if the
/// verification key may not be used immediately, it is probably better to use
/// [`VerificationKeyBytes`], which is a refinement type for `[u8; 32]`.
///
/// ## Zcash-specific consensus properties
///
/// Ed25519 checks are described in [§5.4.5][ps] of the Zcash protocol specification and in
/// [ZIP 215]. The verification criteria for an (encoded) verification key `A_bytes` are:
///
/// * `A_bytes` MUST be an encoding of a point `A` on the twisted Edwards form of
/// Curve25519, and non-canonical encodings MUST be accepted;
///
/// [ps]: https://zips.z.cash/protocol/protocol.pdf#concreteed25519
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(try_from = "VerificationKeyBytes"))]
#[cfg_attr(feature = "serde", serde(into = "VerificationKeyBytes"))]
#[allow(non_snake_case)]
pub struct VerificationKey {
pub(crate) A_bytes: VerificationKeyBytes,
pub(crate) minus_A: EdwardsPoint,
}
impl From<VerificationKey> for VerificationKeyBytes {
fn from(vk: VerificationKey) -> VerificationKeyBytes {
vk.A_bytes
}
}
impl AsRef<[u8]> for VerificationKey {
fn as_ref(&self) -> &[u8] {
&self.A_bytes.0[..]
}
}
impl From<VerificationKey> for [u8; 32] {
fn from(vk: VerificationKey) -> [u8; 32] {
vk.A_bytes.0
}
}
impl TryFrom<VerificationKeyBytes> for VerificationKey {
type Error = Error;
#[allow(non_snake_case)]
fn try_from(bytes: VerificationKeyBytes) -> Result<Self, Self::Error> {
// * `A_bytes` and `R_bytes` MUST be encodings of points `A` and `R` respectively on the
// twisted Edwards form of Curve25519, and non-canonical encodings MUST be accepted;
let A = CompressedEdwardsY(bytes.0)
.decompress()
.ok_or(Error::MalformedPublicKey)?;
Ok(VerificationKey {
A_bytes: bytes,
minus_A: -A,
})
}
}
impl TryFrom<&[u8]> for VerificationKey {
type Error = Error;
fn try_from(slice: &[u8]) -> Result<VerificationKey, Error> {
VerificationKeyBytes::try_from(slice).and_then(|vkb| vkb.try_into())
}
}
impl TryFrom<[u8; 32]> for VerificationKey {
type Error = Error;
fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
VerificationKeyBytes::from(bytes).try_into()
}
}
impl VerificationKey {
/// Verify a purported `signature` on the given `msg`.
///
/// ## Zcash-specific consensus properties
///
/// Ed25519 checks are described in [§5.4.5][ps] of the Zcash protocol specification and in
/// [ZIP215]. The verification criteria for an (encoded) signature `(R_bytes, s_bytes)` with
/// (encoded) verification key `A_bytes` are:
///
/// * `A_bytes` and `R_bytes` MUST be encodings of points `A` and `R` respectively on the
/// twisted Edwards form of Curve25519, and non-canonical encodings MUST be accepted;
///
/// * `s_bytes` MUST represent an integer `s` less than `l`, the order of the prime-order
/// subgroup of Curve25519;
///
/// * the verification equation `[8][s]B = [8]R + [8][k]A` MUST be satisfied;
///
/// * the alternate verification equation `[s]B = R + [k]A`, allowed by RFC 8032, MUST NOT be
/// used.
///
/// [ps]: https://zips.z.cash/protocol/protocol.pdf#concreteed25519
/// [ZIP215]: https://github.com/zcash/zips/blob/master/zip-0215.rst
pub fn verify(&self, signature: &Signature, msg: &[u8]) -> Result<(), Error> {
let k = Scalar::from_hash(
Sha512::default()
.chain(&signature.R_bytes[..])
.chain(&self.A_bytes.0[..])
.chain(msg),
);
self.verify_prehashed(signature, k)
}
/// Verify a signature with a prehashed `k` value. Note that this is not the
/// same as "prehashing" in RFC8032.
#[allow(non_snake_case)]
pub(crate) fn verify_prehashed(&self, signature: &Signature, k: Scalar) -> Result<(), Error> {
// `s_bytes` MUST represent an integer less than the prime `l`.
let s = Scalar::from_canonical_bytes(signature.s_bytes).ok_or(Error::InvalidSignature)?;
// `R_bytes` MUST be an encoding of a point on the twisted Edwards form of Curve25519.
let R = CompressedEdwardsY(signature.R_bytes)
.decompress()
.ok_or(Error::InvalidSignature)?;
// We checked the encoding of A_bytes when constructing `self`.
// [8][s]B = [8]R + [8][k]A
// <=> [8]R = [8][s]B - [8][k]A
// <=> 0 = [8](R - ([s]B - [k]A))
// <=> 0 = [8](R - R') where R' = [s]B - [k]A
let R_prime = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &self.minus_A, &s);
if (R - R_prime).mul_by_cofactor().is_identity() {
Ok(())
} else {
Err(Error::InvalidSignature)
}
}
}