1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
// pest. The Elegant Parser
// Copyright (c) 2018 Dragoș Tiselice
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.
//! Constructs useful in prefix, postfix, and infix operator parsing with the
//! Pratt parsing method.
use core::iter::Peekable;
use core::marker::PhantomData;
use core::ops::BitOr;
use alloc::boxed::Box;
use alloc::collections::BTreeMap;
use crate::iterators::Pair;
use crate::RuleType;
/// Associativity of an infix binary operator, used by [`Op::infix(Assoc)`].
///
/// [`Op::infix(Assoc)`]: struct.Op.html
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Assoc {
/// Left operator associativity. Evaluate expressions from left-to-right.
Left,
/// Right operator associativity. Evaluate expressions from right-to-left.
Right,
}
type Prec = u32;
const PREC_STEP: Prec = 10;
/// An operator that corresponds to a rule.
pub struct Op<R: RuleType> {
rule: R,
affix: Affix,
next: Option<Box<Op<R>>>,
}
enum Affix {
Prefix,
Postfix,
Infix(Assoc),
}
impl<R: RuleType> Op<R> {
/// Defines `rule` as a prefix unary operator.
pub fn prefix(rule: R) -> Self {
Self {
rule,
affix: Affix::Prefix,
next: None,
}
}
/// Defines `rule` as a postfix unary operator.
pub fn postfix(rule: R) -> Self {
Self {
rule,
affix: Affix::Postfix,
next: None,
}
}
/// Defines `rule` as an infix binary operator with associativity `assoc`.
pub fn infix(rule: R, assoc: Assoc) -> Self {
Self {
rule,
affix: Affix::Infix(assoc),
next: None,
}
}
}
impl<R: RuleType> BitOr for Op<R> {
type Output = Self;
fn bitor(mut self, rhs: Self) -> Self {
fn assign_next<R: RuleType>(op: &mut Op<R>, next: Op<R>) {
if let Some(ref mut child) = op.next {
assign_next(child, next);
} else {
op.next = Some(Box::new(next));
}
}
assign_next(&mut self, rhs);
self
}
}
/// Struct containing operators and precedences, which can perform [Pratt parsing][1] on
/// primary, prefix, postfix and infix expressions over [`Pairs`]. The tokens in [`Pairs`]
/// should alternate in the order:
/// `prefix* ~ primary ~ postfix* ~ (infix ~ prefix* ~ primary ~ postfix*)*`
///
/// # Panics
///
/// Panics will occur when:
/// * `pairs` is empty
/// * The tokens in `pairs` does not alternate in the expected order.
/// * No `map_*` function is specified for a certain kind of operator encountered in `pairs`.
///
/// # Example
///
/// The following pest grammar defines a calculator which can be used for Pratt parsing.
///
/// ```pest
/// WHITESPACE = _{ " " | "\t" | NEWLINE }
///
/// program = { SOI ~ expr ~ EOI }
/// expr = { prefix* ~ primary ~ postfix* ~ (infix ~ prefix* ~ primary ~ postfix* )* }
/// infix = _{ add | sub | mul | div | pow }
/// add = { "+" } // Addition
/// sub = { "-" } // Subtraction
/// mul = { "*" } // Multiplication
/// div = { "/" } // Division
/// pow = { "^" } // Exponentiation
/// prefix = _{ neg }
/// neg = { "-" } // Negation
/// postfix = _{ fac }
/// fac = { "!" } // Factorial
/// primary = _{ int | "(" ~ expr ~ ")" }
/// int = @{ (ASCII_NONZERO_DIGIT ~ ASCII_DIGIT+ | ASCII_DIGIT) }
/// ```
///
/// Below is a [`PrattParser`] that is able to parse an `expr` in the above grammar. The order
/// of precedence corresponds to the order in which [`op`] is called. Thus, `mul` will
/// have higher precedence than `add`. Operators can also be chained with `|` to give them equal
/// precedence.
///
/// ```
/// # use pest::pratt_parser::{Assoc, Op, PrattParser};
/// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// # enum Rule { program, expr, int, add, mul, sub, div, pow, fac, neg }
/// let pratt =
/// PrattParser::new()
/// .op(Op::infix(Rule::add, Assoc::Left) | Op::infix(Rule::sub, Assoc::Left))
/// .op(Op::infix(Rule::mul, Assoc::Left) | Op::infix(Rule::div, Assoc::Left))
/// .op(Op::infix(Rule::pow, Assoc::Right))
/// .op(Op::postfix(Rule::fac))
/// .op(Op::prefix(Rule::neg));
/// ```
///
/// To parse an expression, call the [`map_primary`], [`map_prefix`], [`map_postfix`],
/// [`map_infix`] and [`parse`] methods as follows:
///
/// ```
/// # use pest::{iterators::Pairs, pratt_parser::PrattParser};
/// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// # enum Rule { program, expr, int, add, mul, sub, div, pow, fac, neg }
/// fn parse_expr(pairs: Pairs<Rule>, pratt: &PrattParser<Rule>) -> i32 {
/// pratt
/// .map_primary(|primary| match primary.as_rule() {
/// Rule::int => primary.as_str().parse().unwrap(),
/// Rule::expr => parse_expr(primary.into_inner(), pratt), // from "(" ~ expr ~ ")"
/// _ => unreachable!(),
/// })
/// .map_prefix(|op, rhs| match op.as_rule() {
/// Rule::neg => -rhs,
/// _ => unreachable!(),
/// })
/// .map_postfix(|lhs, op| match op.as_rule() {
/// Rule::fac => (1..lhs+1).product(),
/// _ => unreachable!(),
/// })
/// .map_infix(|lhs, op, rhs| match op.as_rule() {
/// Rule::add => lhs + rhs,
/// Rule::sub => lhs - rhs,
/// Rule::mul => lhs * rhs,
/// Rule::div => lhs / rhs,
/// Rule::pow => (1..rhs+1).map(|_| lhs).product(),
/// _ => unreachable!(),
/// })
/// .parse(pairs)
/// }
/// ```
///
/// Note that [`map_prefix`], [`map_postfix`] and [`map_infix`] only need to be specified if the
/// grammar contains the corresponding operators.
///
/// [1]: https://en.wikipedia.org/wiki/Pratt_parser
/// [`Pairs`]: ../iterators/struct.Pairs.html
/// [`PrattParser`]: struct.PrattParser.html
/// [`map_primary`]: struct.PrattParser.html#method.map_primary
/// [`map_prefix`]: struct.PrattParserMap.html#method.map_prefix
/// [`map_postfix`]: struct.PrattParserMap.html#method.map_postfix
/// [`map_infix`]: struct.PrattParserMap.html#method.map_infix
/// [`parse`]: struct.PrattParserMap.html#method.parse
/// [`op`]: struct.PrattParserMap.html#method.op
pub struct PrattParser<R: RuleType> {
prec: Prec,
ops: BTreeMap<R, (Affix, Prec)>,
has_prefix: bool,
has_postfix: bool,
has_infix: bool,
}
impl<R: RuleType> Default for PrattParser<R> {
fn default() -> Self {
Self::new()
}
}
impl<R: RuleType> PrattParser<R> {
/// Instantiate a new `PrattParser`.
pub fn new() -> Self {
Self {
prec: PREC_STEP,
ops: BTreeMap::new(),
has_prefix: false,
has_postfix: false,
has_infix: false,
}
}
/// Add `op` to `PrattParser`.
pub fn op(mut self, op: Op<R>) -> Self {
self.prec += PREC_STEP;
let mut iter = Some(op);
while let Some(Op { rule, affix, next }) = iter.take() {
match affix {
Affix::Prefix => self.has_prefix = true,
Affix::Postfix => self.has_postfix = true,
Affix::Infix(_) => self.has_infix = true,
}
self.ops.insert(rule, (affix, self.prec));
iter = next.map(|op| *op);
}
self
}
/// Maps primary expressions with a closure `primary`.
pub fn map_primary<'pratt, 'i, X, T>(
&'pratt self,
primary: X,
) -> PrattParserMap<'pratt, 'i, R, X, T>
where
X: FnMut(Pair<'i, R>) -> T,
R: 'pratt,
{
PrattParserMap {
pratt: self,
primary,
prefix: None,
postfix: None,
infix: None,
phantom: PhantomData,
}
}
}
type PrefixFn<'i, R, T> = Box<dyn FnMut(Pair<'i, R>, T) -> T + 'i>;
type PostfixFn<'i, R, T> = Box<dyn FnMut(T, Pair<'i, R>) -> T + 'i>;
type InfixFn<'i, R, T> = Box<dyn FnMut(T, Pair<'i, R>, T) -> T + 'i>;
/// Product of calling [`map_primary`] on [`PrattParser`], defines how expressions should
/// be mapped.
///
/// [`map_primary`]: struct.PrattParser.html#method.map_primary
/// [`PrattParser`]: struct.PrattParser.html
pub struct PrattParserMap<'pratt, 'i, R, F, T>
where
R: RuleType,
F: FnMut(Pair<'i, R>) -> T,
{
pratt: &'pratt PrattParser<R>,
primary: F,
prefix: Option<PrefixFn<'i, R, T>>,
postfix: Option<PostfixFn<'i, R, T>>,
infix: Option<InfixFn<'i, R, T>>,
phantom: PhantomData<T>,
}
impl<'pratt, 'i, R, F, T> PrattParserMap<'pratt, 'i, R, F, T>
where
R: RuleType + 'pratt,
F: FnMut(Pair<'i, R>) -> T,
{
/// Maps prefix operators with closure `prefix`.
pub fn map_prefix<X>(mut self, prefix: X) -> Self
where
X: FnMut(Pair<'i, R>, T) -> T + 'i,
{
self.prefix = Some(Box::new(prefix));
self
}
/// Maps postfix operators with closure `postfix`.
pub fn map_postfix<X>(mut self, postfix: X) -> Self
where
X: FnMut(T, Pair<'i, R>) -> T + 'i,
{
self.postfix = Some(Box::new(postfix));
self
}
/// Maps infix operators with a closure `infix`.
pub fn map_infix<X>(mut self, infix: X) -> Self
where
X: FnMut(T, Pair<'i, R>, T) -> T + 'i,
{
self.infix = Some(Box::new(infix));
self
}
/// The last method to call on the provided pairs to execute the Pratt
/// parser (previously defined using [`map_primary`], [`map_prefix`], [`map_postfix`],
/// and [`map_infix`] methods).
///
/// [`map_primary`]: struct.PrattParser.html#method.map_primary
/// [`map_prefix`]: struct.PrattParserMap.html#method.map_prefix
/// [`map_postfix`]: struct.PrattParserMap.html#method.map_postfix
/// [`map_infix`]: struct.PrattParserMap.html#method.map_infix
pub fn parse<P: Iterator<Item = Pair<'i, R>>>(&mut self, pairs: P) -> T {
self.expr(&mut pairs.peekable(), 0)
}
fn expr<P: Iterator<Item = Pair<'i, R>>>(&mut self, pairs: &mut Peekable<P>, rbp: Prec) -> T {
let mut lhs = self.nud(pairs);
while rbp < self.lbp(pairs) {
lhs = self.led(pairs, lhs);
}
lhs
}
/// Null-Denotation
///
/// "the action that should happen when the symbol is encountered
/// as start of an expression (most notably, prefix operators)
fn nud<P: Iterator<Item = Pair<'i, R>>>(&mut self, pairs: &mut Peekable<P>) -> T {
let pair = pairs.next().expect("Pratt parsing expects non-empty Pairs");
match self.pratt.ops.get(&pair.as_rule()) {
Some((Affix::Prefix, prec)) => {
let rhs = self.expr(pairs, *prec - 1);
match self.prefix.as_mut() {
Some(prefix) => prefix(pair, rhs),
None => panic!("Could not map {}, no `.map_prefix(...)` specified", pair),
}
}
None => (self.primary)(pair),
_ => panic!("Expected prefix or primary expression, found {}", pair),
}
}
/// Left-Denotation
///
/// "the action that should happen when the symbol is encountered
/// after the start of an expression (most notably, infix and postfix operators)"
fn led<P: Iterator<Item = Pair<'i, R>>>(&mut self, pairs: &mut Peekable<P>, lhs: T) -> T {
let pair = pairs.next().unwrap();
match self.pratt.ops.get(&pair.as_rule()) {
Some((Affix::Infix(assoc), prec)) => {
let rhs = match *assoc {
Assoc::Left => self.expr(pairs, *prec),
Assoc::Right => self.expr(pairs, *prec - 1),
};
match self.infix.as_mut() {
Some(infix) => infix(lhs, pair, rhs),
None => panic!("Could not map {}, no `.map_infix(...)` specified", pair),
}
}
Some((Affix::Postfix, _)) => match self.postfix.as_mut() {
Some(postfix) => postfix(lhs, pair),
None => panic!("Could not map {}, no `.map_postfix(...)` specified", pair),
},
_ => panic!("Expected postfix or infix expression, found {}", pair),
}
}
/// Left-Binding-Power
///
/// "describes the symbol's precedence in infix form (most notably, operator precedence)"
fn lbp<P: Iterator<Item = Pair<'i, R>>>(&mut self, pairs: &mut Peekable<P>) -> Prec {
match pairs.peek() {
Some(pair) => match self.pratt.ops.get(&pair.as_rule()) {
Some((_, prec)) => *prec,
None => panic!("Expected operator, found {}", pair),
},
None => 0,
}
}
}