1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
//! Densely numbered entity references as mapping keys.
use crate::boxed_slice::BoxedSlice;
use crate::iter::{IntoIter, Iter, IterMut};
use crate::keys::Keys;
use crate::EntityRef;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::ops::{Index, IndexMut};
use core::slice;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
/// A primary mapping `K -> V` allocating dense entity references.
///
/// The `PrimaryMap` data structure uses the dense index space to implement a map with a vector.
///
/// A primary map contains the main definition of an entity, and it can be used to allocate new
/// entity references with the `push` method.
///
/// There should only be a single `PrimaryMap` instance for a given `EntityRef` type, otherwise
/// conflicting references will be created. Using unknown keys for indexing will cause a panic.
///
/// Note that `PrimaryMap` doesn't implement `Deref` or `DerefMut`, which would allow
/// `&PrimaryMap<K, V>` to convert to `&[V]`. One of the main advantages of `PrimaryMap` is
/// that it only allows indexing with the distinct `EntityRef` key type, so converting to a
/// plain slice would make it easier to use incorrectly. To make a slice of a `PrimaryMap`, use
/// `into_boxed_slice`.
#[derive(Debug, Clone, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct PrimaryMap<K, V>
where
K: EntityRef,
{
elems: Vec<V>,
unused: PhantomData<K>,
}
impl<K, V> PrimaryMap<K, V>
where
K: EntityRef,
{
/// Create a new empty map.
pub fn new() -> Self {
Self {
elems: Vec::new(),
unused: PhantomData,
}
}
/// Create a new empty map with the given capacity.
pub fn with_capacity(capacity: usize) -> Self {
Self {
elems: Vec::with_capacity(capacity),
unused: PhantomData,
}
}
/// Check if `k` is a valid key in the map.
pub fn is_valid(&self, k: K) -> bool {
k.index() < self.elems.len()
}
/// Get the element at `k` if it exists.
pub fn get(&self, k: K) -> Option<&V> {
self.elems.get(k.index())
}
/// Get the element at `k` if it exists, mutable version.
pub fn get_mut(&mut self, k: K) -> Option<&mut V> {
self.elems.get_mut(k.index())
}
/// Is this map completely empty?
pub fn is_empty(&self) -> bool {
self.elems.is_empty()
}
/// Get the total number of entity references created.
pub fn len(&self) -> usize {
self.elems.len()
}
/// Iterate over all the keys in this map.
pub fn keys(&self) -> Keys<K> {
Keys::with_len(self.elems.len())
}
/// Iterate over all the values in this map.
pub fn values(&self) -> slice::Iter<V> {
self.elems.iter()
}
/// Iterate over all the values in this map, mutable edition.
pub fn values_mut(&mut self) -> slice::IterMut<V> {
self.elems.iter_mut()
}
/// Iterate over all the keys and values in this map.
pub fn iter(&self) -> Iter<K, V> {
Iter::new(self.elems.iter())
}
/// Iterate over all the keys and values in this map, mutable edition.
pub fn iter_mut(&mut self) -> IterMut<K, V> {
IterMut::new(self.elems.iter_mut())
}
/// Remove all entries from this map.
pub fn clear(&mut self) {
self.elems.clear()
}
/// Get the key that will be assigned to the next pushed value.
pub fn next_key(&self) -> K {
K::new(self.elems.len())
}
/// Append `v` to the mapping, assigning a new key which is returned.
pub fn push(&mut self, v: V) -> K {
let k = self.next_key();
self.elems.push(v);
k
}
/// Returns the last element that was inserted in the map.
pub fn last(&self) -> Option<(K, &V)> {
let len = self.elems.len();
let last = self.elems.last()?;
Some((K::new(len - 1), last))
}
/// Returns the last element that was inserted in the map.
pub fn last_mut(&mut self) -> Option<(K, &mut V)> {
let len = self.elems.len();
let last = self.elems.last_mut()?;
Some((K::new(len - 1), last))
}
/// Reserves capacity for at least `additional` more elements to be inserted.
pub fn reserve(&mut self, additional: usize) {
self.elems.reserve(additional)
}
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted.
pub fn reserve_exact(&mut self, additional: usize) {
self.elems.reserve_exact(additional)
}
/// Shrinks the capacity of the `PrimaryMap` as much as possible.
pub fn shrink_to_fit(&mut self) {
self.elems.shrink_to_fit()
}
/// Consumes this `PrimaryMap` and produces a `BoxedSlice`.
pub fn into_boxed_slice(self) -> BoxedSlice<K, V> {
unsafe { BoxedSlice::<K, V>::from_raw(Box::<[V]>::into_raw(self.elems.into_boxed_slice())) }
}
/// Performs a binary search on the values with a key extraction function.
///
/// Assumes that the values are sorted by the key extracted by the function.
///
/// If the value is found then `Ok(K)` is returned, containing the entity key
/// of the matching value.
///
/// If there are multiple matches, then any one of the matches could be returned.
///
/// If the value is not found then Err(K) is returned, containing the entity key
/// where a matching element could be inserted while maintaining sorted order.
pub fn binary_search_values_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<K, K>
where
F: FnMut(&'a V) -> B,
B: Ord,
{
self.elems
.binary_search_by_key(b, f)
.map(|i| K::new(i))
.map_err(|i| K::new(i))
}
}
impl<K, V> Default for PrimaryMap<K, V>
where
K: EntityRef,
{
fn default() -> PrimaryMap<K, V> {
PrimaryMap::new()
}
}
/// Immutable indexing into an `PrimaryMap`.
/// The indexed value must be in the map.
impl<K, V> Index<K> for PrimaryMap<K, V>
where
K: EntityRef,
{
type Output = V;
fn index(&self, k: K) -> &V {
&self.elems[k.index()]
}
}
/// Mutable indexing into an `PrimaryMap`.
impl<K, V> IndexMut<K> for PrimaryMap<K, V>
where
K: EntityRef,
{
fn index_mut(&mut self, k: K) -> &mut V {
&mut self.elems[k.index()]
}
}
impl<K, V> IntoIterator for PrimaryMap<K, V>
where
K: EntityRef,
{
type Item = (K, V);
type IntoIter = IntoIter<K, V>;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self.elems.into_iter())
}
}
impl<'a, K, V> IntoIterator for &'a PrimaryMap<K, V>
where
K: EntityRef,
{
type Item = (K, &'a V);
type IntoIter = Iter<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
Iter::new(self.elems.iter())
}
}
impl<'a, K, V> IntoIterator for &'a mut PrimaryMap<K, V>
where
K: EntityRef,
{
type Item = (K, &'a mut V);
type IntoIter = IterMut<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
IterMut::new(self.elems.iter_mut())
}
}
impl<K, V> FromIterator<V> for PrimaryMap<K, V>
where
K: EntityRef,
{
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = V>,
{
Self {
elems: Vec::from_iter(iter),
unused: PhantomData,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
// `EntityRef` impl for testing.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct E(u32);
impl EntityRef for E {
fn new(i: usize) -> Self {
E(i as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
#[test]
fn basic() {
let r0 = E(0);
let r1 = E(1);
let m = PrimaryMap::<E, isize>::new();
let v: Vec<E> = m.keys().collect();
assert_eq!(v, []);
assert!(!m.is_valid(r0));
assert!(!m.is_valid(r1));
}
#[test]
fn push() {
let mut m = PrimaryMap::new();
let k0: E = m.push(12);
let k1 = m.push(33);
assert_eq!(m[k0], 12);
assert_eq!(m[k1], 33);
let v: Vec<E> = m.keys().collect();
assert_eq!(v, [k0, k1]);
}
#[test]
fn iter() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let mut i = 0;
for (key, value) in &m {
assert_eq!(key.index(), i);
match i {
0 => assert_eq!(*value, 12),
1 => assert_eq!(*value, 33),
_ => panic!(),
}
i += 1;
}
i = 0;
for (key_mut, value_mut) in m.iter_mut() {
assert_eq!(key_mut.index(), i);
match i {
0 => assert_eq!(*value_mut, 12),
1 => assert_eq!(*value_mut, 33),
_ => panic!(),
}
i += 1;
}
}
#[test]
fn iter_rev() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let mut i = 2;
for (key, value) in m.iter().rev() {
i -= 1;
assert_eq!(key.index(), i);
match i {
0 => assert_eq!(*value, 12),
1 => assert_eq!(*value, 33),
_ => panic!(),
}
}
i = 2;
for (key, value) in m.iter_mut().rev() {
i -= 1;
assert_eq!(key.index(), i);
match i {
0 => assert_eq!(*value, 12),
1 => assert_eq!(*value, 33),
_ => panic!(),
}
}
}
#[test]
fn keys() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let mut i = 0;
for key in m.keys() {
assert_eq!(key.index(), i);
i += 1;
}
}
#[test]
fn keys_rev() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let mut i = 2;
for key in m.keys().rev() {
i -= 1;
assert_eq!(key.index(), i);
}
}
#[test]
fn values() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let mut i = 0;
for value in m.values() {
match i {
0 => assert_eq!(*value, 12),
1 => assert_eq!(*value, 33),
_ => panic!(),
}
i += 1;
}
i = 0;
for value_mut in m.values_mut() {
match i {
0 => assert_eq!(*value_mut, 12),
1 => assert_eq!(*value_mut, 33),
_ => panic!(),
}
i += 1;
}
}
#[test]
fn values_rev() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let mut i = 2;
for value in m.values().rev() {
i -= 1;
match i {
0 => assert_eq!(*value, 12),
1 => assert_eq!(*value, 33),
_ => panic!(),
}
}
i = 2;
for value_mut in m.values_mut().rev() {
i -= 1;
match i {
0 => assert_eq!(*value_mut, 12),
1 => assert_eq!(*value_mut, 33),
_ => panic!(),
}
}
}
#[test]
fn from_iter() {
let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
m.push(12);
m.push(33);
let n = m.values().collect::<PrimaryMap<E, _>>();
assert!(m.len() == n.len());
for (me, ne) in m.values().zip(n.values()) {
assert!(*me == **ne);
}
}
}