1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
//! Densely numbered entity references as mapping keys.
use crate::boxed_slice::BoxedSlice;
use crate::iter::{IntoIter, Iter, IterMut};
use crate::keys::Keys;
use crate::EntityRef;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::ops::{Index, IndexMut};
use core::slice;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};

/// A primary mapping `K -> V` allocating dense entity references.
///
/// The `PrimaryMap` data structure uses the dense index space to implement a map with a vector.
///
/// A primary map contains the main definition of an entity, and it can be used to allocate new
/// entity references with the `push` method.
///
/// There should only be a single `PrimaryMap` instance for a given `EntityRef` type, otherwise
/// conflicting references will be created. Using unknown keys for indexing will cause a panic.
///
/// Note that `PrimaryMap` doesn't implement `Deref` or `DerefMut`, which would allow
/// `&PrimaryMap<K, V>` to convert to `&[V]`. One of the main advantages of `PrimaryMap` is
/// that it only allows indexing with the distinct `EntityRef` key type, so converting to a
/// plain slice would make it easier to use incorrectly. To make a slice of a `PrimaryMap`, use
/// `into_boxed_slice`.
#[derive(Debug, Clone, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct PrimaryMap<K, V>
where
    K: EntityRef,
{
    elems: Vec<V>,
    unused: PhantomData<K>,
}

impl<K, V> PrimaryMap<K, V>
where
    K: EntityRef,
{
    /// Create a new empty map.
    pub fn new() -> Self {
        Self {
            elems: Vec::new(),
            unused: PhantomData,
        }
    }

    /// Create a new empty map with the given capacity.
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            elems: Vec::with_capacity(capacity),
            unused: PhantomData,
        }
    }

    /// Check if `k` is a valid key in the map.
    pub fn is_valid(&self, k: K) -> bool {
        k.index() < self.elems.len()
    }

    /// Get the element at `k` if it exists.
    pub fn get(&self, k: K) -> Option<&V> {
        self.elems.get(k.index())
    }

    /// Get the element at `k` if it exists, mutable version.
    pub fn get_mut(&mut self, k: K) -> Option<&mut V> {
        self.elems.get_mut(k.index())
    }

    /// Is this map completely empty?
    pub fn is_empty(&self) -> bool {
        self.elems.is_empty()
    }

    /// Get the total number of entity references created.
    pub fn len(&self) -> usize {
        self.elems.len()
    }

    /// Iterate over all the keys in this map.
    pub fn keys(&self) -> Keys<K> {
        Keys::with_len(self.elems.len())
    }

    /// Iterate over all the values in this map.
    pub fn values(&self) -> slice::Iter<V> {
        self.elems.iter()
    }

    /// Iterate over all the values in this map, mutable edition.
    pub fn values_mut(&mut self) -> slice::IterMut<V> {
        self.elems.iter_mut()
    }

    /// Iterate over all the keys and values in this map.
    pub fn iter(&self) -> Iter<K, V> {
        Iter::new(self.elems.iter())
    }

    /// Iterate over all the keys and values in this map, mutable edition.
    pub fn iter_mut(&mut self) -> IterMut<K, V> {
        IterMut::new(self.elems.iter_mut())
    }

    /// Remove all entries from this map.
    pub fn clear(&mut self) {
        self.elems.clear()
    }

    /// Get the key that will be assigned to the next pushed value.
    pub fn next_key(&self) -> K {
        K::new(self.elems.len())
    }

    /// Append `v` to the mapping, assigning a new key which is returned.
    pub fn push(&mut self, v: V) -> K {
        let k = self.next_key();
        self.elems.push(v);
        k
    }

    /// Returns the last element that was inserted in the map.
    pub fn last(&self) -> Option<(K, &V)> {
        let len = self.elems.len();
        let last = self.elems.last()?;
        Some((K::new(len - 1), last))
    }

    /// Returns the last element that was inserted in the map.
    pub fn last_mut(&mut self) -> Option<(K, &mut V)> {
        let len = self.elems.len();
        let last = self.elems.last_mut()?;
        Some((K::new(len - 1), last))
    }

    /// Reserves capacity for at least `additional` more elements to be inserted.
    pub fn reserve(&mut self, additional: usize) {
        self.elems.reserve(additional)
    }

    /// Reserves the minimum capacity for exactly `additional` more elements to be inserted.
    pub fn reserve_exact(&mut self, additional: usize) {
        self.elems.reserve_exact(additional)
    }

    /// Shrinks the capacity of the `PrimaryMap` as much as possible.
    pub fn shrink_to_fit(&mut self) {
        self.elems.shrink_to_fit()
    }

    /// Consumes this `PrimaryMap` and produces a `BoxedSlice`.
    pub fn into_boxed_slice(self) -> BoxedSlice<K, V> {
        unsafe { BoxedSlice::<K, V>::from_raw(Box::<[V]>::into_raw(self.elems.into_boxed_slice())) }
    }

    /// Performs a binary search on the values with a key extraction function.
    ///
    /// Assumes that the values are sorted by the key extracted by the function.
    ///
    /// If the value is found then `Ok(K)` is returned, containing the entity key
    /// of the matching value.
    ///
    /// If there are multiple matches, then any one of the matches could be returned.
    ///
    /// If the value is not found then Err(K) is returned, containing the entity key
    /// where a matching element could be inserted while maintaining sorted order.
    pub fn binary_search_values_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<K, K>
    where
        F: FnMut(&'a V) -> B,
        B: Ord,
    {
        self.elems
            .binary_search_by_key(b, f)
            .map(|i| K::new(i))
            .map_err(|i| K::new(i))
    }
}

impl<K, V> Default for PrimaryMap<K, V>
where
    K: EntityRef,
{
    fn default() -> PrimaryMap<K, V> {
        PrimaryMap::new()
    }
}

/// Immutable indexing into an `PrimaryMap`.
/// The indexed value must be in the map.
impl<K, V> Index<K> for PrimaryMap<K, V>
where
    K: EntityRef,
{
    type Output = V;

    fn index(&self, k: K) -> &V {
        &self.elems[k.index()]
    }
}

/// Mutable indexing into an `PrimaryMap`.
impl<K, V> IndexMut<K> for PrimaryMap<K, V>
where
    K: EntityRef,
{
    fn index_mut(&mut self, k: K) -> &mut V {
        &mut self.elems[k.index()]
    }
}

impl<K, V> IntoIterator for PrimaryMap<K, V>
where
    K: EntityRef,
{
    type Item = (K, V);
    type IntoIter = IntoIter<K, V>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter::new(self.elems.into_iter())
    }
}

impl<'a, K, V> IntoIterator for &'a PrimaryMap<K, V>
where
    K: EntityRef,
{
    type Item = (K, &'a V);
    type IntoIter = Iter<'a, K, V>;

    fn into_iter(self) -> Self::IntoIter {
        Iter::new(self.elems.iter())
    }
}

impl<'a, K, V> IntoIterator for &'a mut PrimaryMap<K, V>
where
    K: EntityRef,
{
    type Item = (K, &'a mut V);
    type IntoIter = IterMut<'a, K, V>;

    fn into_iter(self) -> Self::IntoIter {
        IterMut::new(self.elems.iter_mut())
    }
}

impl<K, V> FromIterator<V> for PrimaryMap<K, V>
where
    K: EntityRef,
{
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = V>,
    {
        Self {
            elems: Vec::from_iter(iter),
            unused: PhantomData,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // `EntityRef` impl for testing.
    #[derive(Clone, Copy, Debug, PartialEq, Eq)]
    struct E(u32);

    impl EntityRef for E {
        fn new(i: usize) -> Self {
            E(i as u32)
        }
        fn index(self) -> usize {
            self.0 as usize
        }
    }

    #[test]
    fn basic() {
        let r0 = E(0);
        let r1 = E(1);
        let m = PrimaryMap::<E, isize>::new();

        let v: Vec<E> = m.keys().collect();
        assert_eq!(v, []);

        assert!(!m.is_valid(r0));
        assert!(!m.is_valid(r1));
    }

    #[test]
    fn push() {
        let mut m = PrimaryMap::new();
        let k0: E = m.push(12);
        let k1 = m.push(33);

        assert_eq!(m[k0], 12);
        assert_eq!(m[k1], 33);

        let v: Vec<E> = m.keys().collect();
        assert_eq!(v, [k0, k1]);
    }

    #[test]
    fn iter() {
        let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
        m.push(12);
        m.push(33);

        let mut i = 0;
        for (key, value) in &m {
            assert_eq!(key.index(), i);
            match i {
                0 => assert_eq!(*value, 12),
                1 => assert_eq!(*value, 33),
                _ => panic!(),
            }
            i += 1;
        }
        i = 0;
        for (key_mut, value_mut) in m.iter_mut() {
            assert_eq!(key_mut.index(), i);
            match i {
                0 => assert_eq!(*value_mut, 12),
                1 => assert_eq!(*value_mut, 33),
                _ => panic!(),
            }
            i += 1;
        }
    }

    #[test]
    fn iter_rev() {
        let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
        m.push(12);
        m.push(33);

        let mut i = 2;
        for (key, value) in m.iter().rev() {
            i -= 1;
            assert_eq!(key.index(), i);
            match i {
                0 => assert_eq!(*value, 12),
                1 => assert_eq!(*value, 33),
                _ => panic!(),
            }
        }

        i = 2;
        for (key, value) in m.iter_mut().rev() {
            i -= 1;
            assert_eq!(key.index(), i);
            match i {
                0 => assert_eq!(*value, 12),
                1 => assert_eq!(*value, 33),
                _ => panic!(),
            }
        }
    }
    #[test]
    fn keys() {
        let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
        m.push(12);
        m.push(33);

        let mut i = 0;
        for key in m.keys() {
            assert_eq!(key.index(), i);
            i += 1;
        }
    }

    #[test]
    fn keys_rev() {
        let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
        m.push(12);
        m.push(33);

        let mut i = 2;
        for key in m.keys().rev() {
            i -= 1;
            assert_eq!(key.index(), i);
        }
    }

    #[test]
    fn values() {
        let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
        m.push(12);
        m.push(33);

        let mut i = 0;
        for value in m.values() {
            match i {
                0 => assert_eq!(*value, 12),
                1 => assert_eq!(*value, 33),
                _ => panic!(),
            }
            i += 1;
        }
        i = 0;
        for value_mut in m.values_mut() {
            match i {
                0 => assert_eq!(*value_mut, 12),
                1 => assert_eq!(*value_mut, 33),
                _ => panic!(),
            }
            i += 1;
        }
    }

    #[test]
    fn values_rev() {
        let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
        m.push(12);
        m.push(33);

        let mut i = 2;
        for value in m.values().rev() {
            i -= 1;
            match i {
                0 => assert_eq!(*value, 12),
                1 => assert_eq!(*value, 33),
                _ => panic!(),
            }
        }
        i = 2;
        for value_mut in m.values_mut().rev() {
            i -= 1;
            match i {
                0 => assert_eq!(*value_mut, 12),
                1 => assert_eq!(*value_mut, 33),
                _ => panic!(),
            }
        }
    }

    #[test]
    fn from_iter() {
        let mut m: PrimaryMap<E, usize> = PrimaryMap::new();
        m.push(12);
        m.push(33);

        let n = m.values().collect::<PrimaryMap<E, _>>();
        assert!(m.len() == n.len());
        for (me, ne) in m.values().zip(n.values()) {
            assert!(*me == **ne);
        }
    }
}