1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! Contains some helper futures for creating upgrades.

use futures::prelude::*;
use std::io;

// TODO: these methods could be on an Ext trait to AsyncWrite

/// Writes a message to the given socket with a length prefix appended to it. Also flushes the socket.
///
/// > **Note**: Prepends a variable-length prefix indicate the length of the message. This is
/// >           compatible with what [`read_length_prefixed`] expects.
pub async fn write_length_prefixed(
    socket: &mut (impl AsyncWrite + Unpin),
    data: impl AsRef<[u8]>,
) -> Result<(), io::Error> {
    write_varint(socket, data.as_ref().len()).await?;
    socket.write_all(data.as_ref()).await?;
    socket.flush().await?;

    Ok(())
}

/// Writes a variable-length integer to the `socket`.
///
/// > **Note**: Does **NOT** flush the socket.
pub async fn write_varint(
    socket: &mut (impl AsyncWrite + Unpin),
    len: usize,
) -> Result<(), io::Error> {
    let mut len_data = unsigned_varint::encode::usize_buffer();
    let encoded_len = unsigned_varint::encode::usize(len, &mut len_data).len();
    socket.write_all(&len_data[..encoded_len]).await?;

    Ok(())
}

/// Reads a variable-length integer from the `socket`.
///
/// As a special exception, if the `socket` is empty and EOFs right at the beginning, then we
/// return `Ok(0)`.
///
/// > **Note**: This function reads bytes one by one from the `socket`. It is therefore encouraged
/// >           to use some sort of buffering mechanism.
pub async fn read_varint(socket: &mut (impl AsyncRead + Unpin)) -> Result<usize, io::Error> {
    let mut buffer = unsigned_varint::encode::usize_buffer();
    let mut buffer_len = 0;

    loop {
        match socket.read(&mut buffer[buffer_len..buffer_len + 1]).await? {
            0 => {
                // Reaching EOF before finishing to read the length is an error, unless the EOF is
                // at the very beginning of the substream, in which case we assume that the data is
                // empty.
                if buffer_len == 0 {
                    return Ok(0);
                } else {
                    return Err(io::ErrorKind::UnexpectedEof.into());
                }
            }
            n => debug_assert_eq!(n, 1),
        }

        buffer_len += 1;

        match unsigned_varint::decode::usize(&buffer[..buffer_len]) {
            Ok((len, _)) => return Ok(len),
            Err(unsigned_varint::decode::Error::Overflow) => {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidData,
                    "overflow in variable-length integer",
                ));
            }
            // TODO: why do we have a `__Nonexhaustive` variant in the error? I don't know how to process it
            // Err(unsigned_varint::decode::Error::Insufficient) => {}
            Err(_) => {}
        }
    }
}

/// Reads a length-prefixed message from the given socket.
///
/// The `max_size` parameter is the maximum size in bytes of the message that we accept. This is
/// necessary in order to avoid DoS attacks where the remote sends us a message of several
/// gigabytes.
///
/// > **Note**: Assumes that a variable-length prefix indicates the length of the message. This is
/// >           compatible with what [`write_length_prefixed`] does.
pub async fn read_length_prefixed(
    socket: &mut (impl AsyncRead + Unpin),
    max_size: usize,
) -> io::Result<Vec<u8>> {
    let len = read_varint(socket).await?;
    if len > max_size {
        return Err(io::Error::new(
            io::ErrorKind::InvalidData,
            format!(
                "Received data size ({} bytes) exceeds maximum ({} bytes)",
                len, max_size
            ),
        ));
    }

    let mut buf = vec![0; len];
    socket.read_exact(&mut buf).await?;

    Ok(buf)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn write_length_prefixed_works() {
        let data = (0..rand::random::<usize>() % 10_000)
            .map(|_| rand::random::<u8>())
            .collect::<Vec<_>>();
        let mut out = vec![0; 10_000];

        futures::executor::block_on(async {
            let mut socket = futures::io::Cursor::new(&mut out[..]);

            write_length_prefixed(&mut socket, &data).await.unwrap();
            socket.close().await.unwrap();
        });

        let (out_len, out_data) = unsigned_varint::decode::usize(&out).unwrap();
        assert_eq!(out_len, data.len());
        assert_eq!(&out_data[..out_len], &data[..]);
    }

    // TODO: rewrite these tests
    /*
    #[test]
    fn read_one_works() {
        let original_data = (0..rand::random::<usize>() % 10_000)
            .map(|_| rand::random::<u8>())
            .collect::<Vec<_>>();

        let mut len_buf = unsigned_varint::encode::usize_buffer();
        let len_buf = unsigned_varint::encode::usize(original_data.len(), &mut len_buf);

        let mut in_buffer = len_buf.to_vec();
        in_buffer.extend_from_slice(&original_data);

        let future = read_one_then(Cursor::new(in_buffer), 10_000, (), move |out, ()| -> Result<_, ReadOneError> {
            assert_eq!(out, original_data);
            Ok(())
        });

        futures::executor::block_on(future).unwrap();
    }

    #[test]
    fn read_one_zero_len() {
        let future = read_one_then(Cursor::new(vec![0]), 10_000, (), move |out, ()| -> Result<_, ReadOneError> {
            assert!(out.is_empty());
            Ok(())
        });

        futures::executor::block_on(future).unwrap();
    }

    #[test]
    fn read_checks_length() {
        let mut len_buf = unsigned_varint::encode::u64_buffer();
        let len_buf = unsigned_varint::encode::u64(5_000, &mut len_buf);

        let mut in_buffer = len_buf.to_vec();
        in_buffer.extend((0..5000).map(|_| 0));

        let future = read_one_then(Cursor::new(in_buffer), 100, (), move |_, ()| -> Result<_, ReadOneError> {
            Ok(())
        });

        match futures::executor::block_on(future) {
            Err(ReadOneError::TooLarge { .. }) => (),
            _ => panic!(),
        }
    }

    #[test]
    fn read_one_accepts_empty() {
        let future = read_one_then(Cursor::new([]), 10_000, (), move |out, ()| -> Result<_, ReadOneError> {
            assert!(out.is_empty());
            Ok(())
        });

        futures::executor::block_on(future).unwrap();
    }

    #[test]
    fn read_one_eof_before_len() {
        let future = read_one_then(Cursor::new([0x80]), 10_000, (), move |_, ()| -> Result<(), ReadOneError> {
            unreachable!()
        });

        match futures::executor::block_on(future) {
            Err(ReadOneError::Io(ref err)) if err.kind() == io::ErrorKind::UnexpectedEof => (),
            _ => panic!()
        }
    }*/
}