1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
//! Defines common interfaces for interacting with statistical distributions
//! and provides
//! concrete implementations for a variety of distributions.
use super::statistics::{Max, Min};
use ::num_traits::{float::Float, Bounded, Num};

pub use self::bernoulli::Bernoulli;
pub use self::beta::Beta;
pub use self::binomial::Binomial;
pub use self::categorical::Categorical;
pub use self::cauchy::Cauchy;
pub use self::chi::Chi;
pub use self::chi_squared::ChiSquared;
pub use self::dirac::Dirac;
pub use self::dirichlet::Dirichlet;
pub use self::discrete_uniform::DiscreteUniform;
pub use self::empirical::Empirical;
pub use self::erlang::Erlang;
pub use self::exponential::Exp;
pub use self::fisher_snedecor::FisherSnedecor;
pub use self::gamma::Gamma;
pub use self::geometric::Geometric;
pub use self::hypergeometric::Hypergeometric;
pub use self::inverse_gamma::InverseGamma;
pub use self::laplace::Laplace;
pub use self::log_normal::LogNormal;
pub use self::multinomial::Multinomial;
pub use self::multivariate_normal::MultivariateNormal;
pub use self::negative_binomial::NegativeBinomial;
pub use self::normal::Normal;
pub use self::pareto::Pareto;
pub use self::poisson::Poisson;
pub use self::students_t::StudentsT;
pub use self::triangular::Triangular;
pub use self::uniform::Uniform;
pub use self::weibull::Weibull;

mod bernoulli;
mod beta;
mod binomial;
mod categorical;
mod cauchy;
mod chi;
mod chi_squared;
mod dirac;
mod dirichlet;
mod discrete_uniform;
mod empirical;
mod erlang;
mod exponential;
mod fisher_snedecor;
mod gamma;
mod geometric;
mod hypergeometric;
mod internal;
mod inverse_gamma;
mod laplace;
mod log_normal;
mod multinomial;
mod multivariate_normal;
mod negative_binomial;
mod normal;
mod pareto;
mod poisson;
mod students_t;
mod triangular;
mod uniform;
mod weibull;
mod ziggurat;
mod ziggurat_tables;

use crate::Result;

/// The `ContinuousCDF` trait is used to specify an interface for univariate
/// distributions for which cdf float arguments are sensible.
pub trait ContinuousCDF<K: Float, T: Float>: Min<K> + Max<K> {
    /// Returns the cumulative distribution function calculated
    /// at `x` for a given distribution. May panic depending
    /// on the implementor.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::{ContinuousCDF, Uniform};
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(0.5, n.cdf(0.5));
    /// ```
    fn cdf(&self, x: K) -> T;
    /// Due to issues with rounding and floating-point accuracy the default
    /// implementation may be ill-behaved.
    /// Specialized inverse cdfs should be used whenever possible.
    /// Performs a binary search on the domain of `cdf` to obtain an approximation
    /// of `F^-1(p) := inf { x | F(x) >= p }`. Needless to say, performance may
    /// may be lacking.
    fn inverse_cdf(&self, p: T) -> K {
        if p == T::zero() {
            return self.min();
        };
        if p == T::one() {
            return self.max();
        };
        let two = K::one() + K::one();
        let mut high = two;
        let mut low = -high;
        while self.cdf(low) > p {
            low = low + low;
        }
        while self.cdf(high) < p {
            high = high + high;
        }
        let mut i = 16;
        while i != 0 {
            let mid = (high + low) / two;
            if self.cdf(mid) >= p {
                high = mid;
            } else {
                low = mid;
            }
            i -= 1;
        }
        (high + low) / two
    }
}

/// The `DiscreteCDF` trait is used to specify an interface for univariate
/// discrete distributions.
pub trait DiscreteCDF<K: Bounded + Clone + Num, T: Float>: Min<K> + Max<K> {
    /// Returns the cumulative distribution function calculated
    /// at `x` for a given distribution. May panic depending
    /// on the implementor.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::{ContinuousCDF, Uniform};
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(0.5, n.cdf(0.5));
    /// ```
    fn cdf(&self, x: K) -> T;
    /// Due to issues with rounding and floating-point accuracy the default implementation may be ill-behaved
    /// Specialized inverse cdfs should be used whenever possible.
    fn inverse_cdf(&self, p: T) -> K {
        // TODO: fix integer implementation
        if p == T::zero() {
            return self.min();
        };
        if p == T::one() {
            return self.max();
        };
        let two = K::one() + K::one();
        let mut high = two.clone();
        let mut low = K::min_value();
        while self.cdf(high.clone()) < p {
            high = high.clone() + high.clone();
        }
        while high != low {
            let mid = (high.clone() + low.clone()) / two.clone();
            if self.cdf(mid.clone()) >= p {
                high = mid;
            } else {
                low = mid;
            }
        }
        high
    }
}

/// The `Continuous` trait  provides an interface for interacting with
/// continuous statistical distributions
///
/// # Remarks
///
/// All methods provided by the `Continuous` trait are unchecked, meaning
/// they can panic if in an invalid state or encountering invalid input
/// depending on the implementing distribution.
pub trait Continuous<K, T> {
    /// Returns the probability density function calculated at `x` for a given
    /// distribution.
    /// May panic depending on the implementor.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::{Continuous, Uniform};
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(1.0, n.pdf(0.5));
    /// ```
    fn pdf(&self, x: K) -> T;

    /// Returns the log of the probability density function calculated at `x`
    /// for a given distribution.
    /// May panic depending on the implementor.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::{Continuous, Uniform};
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(0.0, n.ln_pdf(0.5));
    /// ```
    fn ln_pdf(&self, x: K) -> T;
}

/// The `Discrete` trait provides an interface for interacting with discrete
/// statistical distributions
///
/// # Remarks
///
/// All methods provided by the `Discrete` trait are unchecked, meaning
/// they can panic if in an invalid state or encountering invalid input
/// depending on the implementing distribution.
pub trait Discrete<K, T> {
    /// Returns the probability mass function calculated at `x` for a given
    /// distribution.
    /// May panic depending on the implementor.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::{Discrete, Binomial};
    /// use statrs::prec;
    ///
    /// let n = Binomial::new(0.5, 10).unwrap();
    /// assert!(prec::almost_eq(n.pmf(5), 0.24609375, 1e-15));
    /// ```
    fn pmf(&self, x: K) -> T;

    /// Returns the log of the probability mass function calculated at `x` for
    /// a given distribution.
    /// May panic depending on the implementor.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::{Discrete, Binomial};
    /// use statrs::prec;
    ///
    /// let n = Binomial::new(0.5, 10).unwrap();
    /// assert!(prec::almost_eq(n.ln_pmf(5), (0.24609375f64).ln(), 1e-15));
    /// ```
    fn ln_pmf(&self, x: K) -> T;
}