1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
// Copyright (c) 2013-2014 The Rust Project Developers.
// Copyright (c) 2015-2020 The rust-hex Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Encoding and decoding hex strings.
//!
//! For most cases, you can simply use the [`decode`], [`encode`] and
//! [`encode_upper`] functions. If you need a bit more control, use the traits
//! [`ToHex`] and [`FromHex`] instead.
//!
//! # Example
//!
//! ```
//! # #[cfg(not(feature = "alloc"))]
//! # let mut output = [0; 0x18];
//! #
//! # #[cfg(not(feature = "alloc"))]
//! # hex::encode_to_slice(b"Hello world!", &mut output).unwrap();
//! #
//! # #[cfg(not(feature = "alloc"))]
//! # let hex_string = ::core::str::from_utf8(&output).unwrap();
//! #
//! # #[cfg(feature = "alloc")]
//! let hex_string = hex::encode("Hello world!");
//!
//! println!("{}", hex_string); // Prints "48656c6c6f20776f726c6421"
//!
//! # assert_eq!(hex_string, "48656c6c6f20776f726c6421");
//! ```
#![doc(html_root_url = "https://docs.rs/hex/0.4.3")]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![allow(clippy::unreadable_literal)]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use alloc::{string::String, vec::Vec};
use core::iter;
mod error;
pub use crate::error::FromHexError;
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
pub mod serde;
#[cfg(feature = "serde")]
pub use crate::serde::deserialize;
#[cfg(all(feature = "alloc", feature = "serde"))]
pub use crate::serde::{serialize, serialize_upper};
/// Encoding values as hex string.
///
/// This trait is implemented for all `T` which implement `AsRef<[u8]>`. This
/// includes `String`, `str`, `Vec<u8>` and `[u8]`.
///
/// # Example
///
/// ```
/// use hex::ToHex;
///
/// println!("{}", "Hello world!".encode_hex::<String>());
/// # assert_eq!("Hello world!".encode_hex::<String>(), "48656c6c6f20776f726c6421".to_string());
/// ```
///
/// *Note*: instead of using this trait, you might want to use [`encode()`].
pub trait ToHex {
/// Encode the hex strict representing `self` into the result. Lower case
/// letters are used (e.g. `f9b4ca`)
fn encode_hex<T: iter::FromIterator<char>>(&self) -> T;
/// Encode the hex strict representing `self` into the result. Upper case
/// letters are used (e.g. `F9B4CA`)
fn encode_hex_upper<T: iter::FromIterator<char>>(&self) -> T;
}
const HEX_CHARS_LOWER: &[u8; 16] = b"0123456789abcdef";
const HEX_CHARS_UPPER: &[u8; 16] = b"0123456789ABCDEF";
struct BytesToHexChars<'a> {
inner: ::core::slice::Iter<'a, u8>,
table: &'static [u8; 16],
next: Option<char>,
}
impl<'a> BytesToHexChars<'a> {
fn new(inner: &'a [u8], table: &'static [u8; 16]) -> BytesToHexChars<'a> {
BytesToHexChars {
inner: inner.iter(),
table,
next: None,
}
}
}
impl<'a> Iterator for BytesToHexChars<'a> {
type Item = char;
fn next(&mut self) -> Option<Self::Item> {
match self.next.take() {
Some(current) => Some(current),
None => self.inner.next().map(|byte| {
let current = self.table[(byte >> 4) as usize] as char;
self.next = Some(self.table[(byte & 0x0F) as usize] as char);
current
}),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let length = self.len();
(length, Some(length))
}
}
impl<'a> iter::ExactSizeIterator for BytesToHexChars<'a> {
fn len(&self) -> usize {
let mut length = self.inner.len() * 2;
if self.next.is_some() {
length += 1;
}
length
}
}
#[inline]
fn encode_to_iter<T: iter::FromIterator<char>>(table: &'static [u8; 16], source: &[u8]) -> T {
BytesToHexChars::new(source, table).collect()
}
impl<T: AsRef<[u8]>> ToHex for T {
fn encode_hex<U: iter::FromIterator<char>>(&self) -> U {
encode_to_iter(HEX_CHARS_LOWER, self.as_ref())
}
fn encode_hex_upper<U: iter::FromIterator<char>>(&self) -> U {
encode_to_iter(HEX_CHARS_UPPER, self.as_ref())
}
}
/// Types that can be decoded from a hex string.
///
/// This trait is implemented for `Vec<u8>` and small `u8`-arrays.
///
/// # Example
///
/// ```
/// use core::str;
/// use hex::FromHex;
///
/// let buffer = <[u8; 12]>::from_hex("48656c6c6f20776f726c6421")?;
/// let string = str::from_utf8(&buffer).expect("invalid buffer length");
///
/// println!("{}", string); // prints "Hello world!"
/// # assert_eq!("Hello world!", string);
/// # Ok::<(), hex::FromHexError>(())
/// ```
pub trait FromHex: Sized {
type Error;
/// Creates an instance of type `Self` from the given hex string, or fails
/// with a custom error type.
///
/// Both, upper and lower case characters are valid and can even be
/// mixed (e.g. `f9b4ca`, `F9B4CA` and `f9B4Ca` are all valid strings).
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error>;
}
fn val(c: u8, idx: usize) -> Result<u8, FromHexError> {
match c {
b'A'..=b'F' => Ok(c - b'A' + 10),
b'a'..=b'f' => Ok(c - b'a' + 10),
b'0'..=b'9' => Ok(c - b'0'),
_ => Err(FromHexError::InvalidHexCharacter {
c: c as char,
index: idx,
}),
}
}
#[cfg(feature = "alloc")]
impl FromHex for Vec<u8> {
type Error = FromHexError;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let hex = hex.as_ref();
if hex.len() % 2 != 0 {
return Err(FromHexError::OddLength);
}
hex.chunks(2)
.enumerate()
.map(|(i, pair)| Ok(val(pair[0], 2 * i)? << 4 | val(pair[1], 2 * i + 1)?))
.collect()
}
}
// Helper macro to implement the trait for a few fixed sized arrays. Once Rust
// has type level integers, this should be removed.
macro_rules! from_hex_array_impl {
($($len:expr)+) => {$(
impl FromHex for [u8; $len] {
type Error = FromHexError;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let mut out = [0_u8; $len];
decode_to_slice(hex, &mut out as &mut [u8])?;
Ok(out)
}
}
)+}
}
from_hex_array_impl! {
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
160 192 200 224 256 384 512 768 1024 2048 4096 8192 16384 32768
}
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
from_hex_array_impl! {
65536 131072 262144 524288 1048576 2097152 4194304 8388608
16777216 33554432 67108864 134217728 268435456 536870912
1073741824 2147483648
}
#[cfg(target_pointer_width = "64")]
from_hex_array_impl! {
4294967296
}
/// Encodes `data` as hex string using lowercase characters.
///
/// Lowercase characters are used (e.g. `f9b4ca`). The resulting string's
/// length is always even, each byte in `data` is always encoded using two hex
/// digits. Thus, the resulting string contains exactly twice as many bytes as
/// the input data.
///
/// # Example
///
/// ```
/// assert_eq!(hex::encode("Hello world!"), "48656c6c6f20776f726c6421");
/// assert_eq!(hex::encode(vec![1, 2, 3, 15, 16]), "0102030f10");
/// ```
#[must_use]
#[cfg(feature = "alloc")]
pub fn encode<T: AsRef<[u8]>>(data: T) -> String {
data.encode_hex()
}
/// Encodes `data` as hex string using uppercase characters.
///
/// Apart from the characters' casing, this works exactly like `encode()`.
///
/// # Example
///
/// ```
/// assert_eq!(hex::encode_upper("Hello world!"), "48656C6C6F20776F726C6421");
/// assert_eq!(hex::encode_upper(vec![1, 2, 3, 15, 16]), "0102030F10");
/// ```
#[must_use]
#[cfg(feature = "alloc")]
pub fn encode_upper<T: AsRef<[u8]>>(data: T) -> String {
data.encode_hex_upper()
}
/// Decodes a hex string into raw bytes.
///
/// Both, upper and lower case characters are valid in the input string and can
/// even be mixed (e.g. `f9b4ca`, `F9B4CA` and `f9B4Ca` are all valid strings).
///
/// # Example
///
/// ```
/// assert_eq!(
/// hex::decode("48656c6c6f20776f726c6421"),
/// Ok("Hello world!".to_owned().into_bytes())
/// );
///
/// assert_eq!(hex::decode("123"), Err(hex::FromHexError::OddLength));
/// assert!(hex::decode("foo").is_err());
/// ```
#[cfg(feature = "alloc")]
pub fn decode<T: AsRef<[u8]>>(data: T) -> Result<Vec<u8>, FromHexError> {
FromHex::from_hex(data)
}
/// Decode a hex string into a mutable bytes slice.
///
/// Both, upper and lower case characters are valid in the input string and can
/// even be mixed (e.g. `f9b4ca`, `F9B4CA` and `f9B4Ca` are all valid strings).
///
/// # Example
///
/// ```
/// let mut bytes = [0u8; 4];
/// assert_eq!(hex::decode_to_slice("6b697769", &mut bytes as &mut [u8]), Ok(()));
/// assert_eq!(&bytes, b"kiwi");
/// ```
pub fn decode_to_slice<T: AsRef<[u8]>>(data: T, out: &mut [u8]) -> Result<(), FromHexError> {
let data = data.as_ref();
if data.len() % 2 != 0 {
return Err(FromHexError::OddLength);
}
if data.len() / 2 != out.len() {
return Err(FromHexError::InvalidStringLength);
}
for (i, byte) in out.iter_mut().enumerate() {
*byte = val(data[2 * i], 2 * i)? << 4 | val(data[2 * i + 1], 2 * i + 1)?;
}
Ok(())
}
// generates an iterator like this
// (0, 1)
// (2, 3)
// (4, 5)
// (6, 7)
// ...
#[inline]
fn generate_iter(len: usize) -> impl Iterator<Item = (usize, usize)> {
(0..len).step_by(2).zip((0..len).skip(1).step_by(2))
}
// the inverse of `val`.
#[inline]
#[must_use]
fn byte2hex(byte: u8, table: &[u8; 16]) -> (u8, u8) {
let high = table[((byte & 0xf0) >> 4) as usize];
let low = table[(byte & 0x0f) as usize];
(high, low)
}
/// Encodes some bytes into a mutable slice of bytes.
///
/// The output buffer, has to be able to hold at least `input.len() * 2` bytes,
/// otherwise this function will return an error.
///
/// # Example
///
/// ```
/// # use hex::FromHexError;
/// # fn main() -> Result<(), FromHexError> {
/// let mut bytes = [0u8; 4 * 2];
///
/// hex::encode_to_slice(b"kiwi", &mut bytes)?;
/// assert_eq!(&bytes, b"6b697769");
/// # Ok(())
/// # }
/// ```
pub fn encode_to_slice<T: AsRef<[u8]>>(input: T, output: &mut [u8]) -> Result<(), FromHexError> {
if input.as_ref().len() * 2 != output.len() {
return Err(FromHexError::InvalidStringLength);
}
for (byte, (i, j)) in input
.as_ref()
.iter()
.zip(generate_iter(input.as_ref().len() * 2))
{
let (high, low) = byte2hex(*byte, HEX_CHARS_LOWER);
output[i] = high;
output[j] = low;
}
Ok(())
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(feature = "alloc")]
use alloc::string::ToString;
use pretty_assertions::assert_eq;
#[test]
#[cfg(feature = "alloc")]
fn test_gen_iter() {
let result = vec![(0, 1), (2, 3)];
assert_eq!(generate_iter(5).collect::<Vec<_>>(), result);
}
#[test]
fn test_encode_to_slice() {
let mut output_1 = [0; 4 * 2];
encode_to_slice(b"kiwi", &mut output_1).unwrap();
assert_eq!(&output_1, b"6b697769");
let mut output_2 = [0; 5 * 2];
encode_to_slice(b"kiwis", &mut output_2).unwrap();
assert_eq!(&output_2, b"6b69776973");
let mut output_3 = [0; 100];
assert_eq!(
encode_to_slice(b"kiwis", &mut output_3),
Err(FromHexError::InvalidStringLength)
);
}
#[test]
fn test_decode_to_slice() {
let mut output_1 = [0; 4];
decode_to_slice(b"6b697769", &mut output_1).unwrap();
assert_eq!(&output_1, b"kiwi");
let mut output_2 = [0; 5];
decode_to_slice(b"6b69776973", &mut output_2).unwrap();
assert_eq!(&output_2, b"kiwis");
let mut output_3 = [0; 4];
assert_eq!(
decode_to_slice(b"6", &mut output_3),
Err(FromHexError::OddLength)
);
}
#[test]
#[cfg(feature = "alloc")]
fn test_encode() {
assert_eq!(encode("foobar"), "666f6f626172");
}
#[test]
#[cfg(feature = "alloc")]
fn test_decode() {
assert_eq!(
decode("666f6f626172"),
Ok(String::from("foobar").into_bytes())
);
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_from_hex_okay_str() {
assert_eq!(Vec::from_hex("666f6f626172").unwrap(), b"foobar");
assert_eq!(Vec::from_hex("666F6F626172").unwrap(), b"foobar");
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_from_hex_okay_bytes() {
assert_eq!(Vec::from_hex(b"666f6f626172").unwrap(), b"foobar");
assert_eq!(Vec::from_hex(b"666F6F626172").unwrap(), b"foobar");
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_invalid_length() {
assert_eq!(Vec::from_hex("1").unwrap_err(), FromHexError::OddLength);
assert_eq!(
Vec::from_hex("666f6f6261721").unwrap_err(),
FromHexError::OddLength
);
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_invalid_char() {
assert_eq!(
Vec::from_hex("66ag").unwrap_err(),
FromHexError::InvalidHexCharacter { c: 'g', index: 3 }
);
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_empty() {
assert_eq!(Vec::from_hex("").unwrap(), b"");
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_from_hex_whitespace() {
assert_eq!(
Vec::from_hex("666f 6f62617").unwrap_err(),
FromHexError::InvalidHexCharacter { c: ' ', index: 4 }
);
}
#[test]
pub fn test_from_hex_array() {
assert_eq!(
<[u8; 6] as FromHex>::from_hex("666f6f626172"),
Ok([0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72])
);
assert_eq!(
<[u8; 5] as FromHex>::from_hex("666f6f626172"),
Err(FromHexError::InvalidStringLength)
);
}
#[test]
#[cfg(feature = "alloc")]
fn test_to_hex() {
assert_eq!(
[0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72].encode_hex::<String>(),
"666f6f626172".to_string(),
);
assert_eq!(
[0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72].encode_hex_upper::<String>(),
"666F6F626172".to_string(),
);
}
}