use std::ops::{Div, DivAssign, Mul, MulAssign};
use crate::base::storage::Storage;
use crate::base::{Const, Unit, Vector, Vector2};
use crate::geometry::{Isometry, Point2, Rotation, Similarity, Translation, UnitComplex};
use simba::simd::SimdRealField;
impl<T: SimdRealField> Mul<Self> for UnitComplex<T> {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Unit::new_unchecked(self.into_inner() * rhs.into_inner())
}
}
impl<'a, T: SimdRealField> Mul<UnitComplex<T>> for &'a UnitComplex<T>
where
T::Element: SimdRealField,
{
type Output = UnitComplex<T>;
#[inline]
fn mul(self, rhs: UnitComplex<T>) -> Self::Output {
Unit::new_unchecked(self.complex() * rhs.into_inner())
}
}
impl<'b, T: SimdRealField> Mul<&'b UnitComplex<T>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
type Output = Self;
#[inline]
fn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output {
Unit::new_unchecked(self.into_inner() * rhs.as_ref())
}
}
impl<'a, 'b, T: SimdRealField> Mul<&'b UnitComplex<T>> for &'a UnitComplex<T>
where
T::Element: SimdRealField,
{
type Output = UnitComplex<T>;
#[inline]
fn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output {
Unit::new_unchecked(self.complex() * rhs.as_ref())
}
}
impl<T: SimdRealField> Div<Self> for UnitComplex<T>
where
T::Element: SimdRealField,
{
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self::Output {
#[allow(clippy::suspicious_arithmetic_impl)]
Unit::new_unchecked(self.into_inner() * rhs.conjugate().into_inner())
}
}
impl<'a, T: SimdRealField> Div<UnitComplex<T>> for &'a UnitComplex<T>
where
T::Element: SimdRealField,
{
type Output = UnitComplex<T>;
#[inline]
fn div(self, rhs: UnitComplex<T>) -> Self::Output {
#[allow(clippy::suspicious_arithmetic_impl)]
Unit::new_unchecked(self.complex() * rhs.conjugate().into_inner())
}
}
impl<'b, T: SimdRealField> Div<&'b UnitComplex<T>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
type Output = Self;
#[inline]
fn div(self, rhs: &'b UnitComplex<T>) -> Self::Output {
#[allow(clippy::suspicious_arithmetic_impl)]
Unit::new_unchecked(self.into_inner() * rhs.conjugate().into_inner())
}
}
impl<'a, 'b, T: SimdRealField> Div<&'b UnitComplex<T>> for &'a UnitComplex<T>
where
T::Element: SimdRealField,
{
type Output = UnitComplex<T>;
#[inline]
fn div(self, rhs: &'b UnitComplex<T>) -> Self::Output {
#[allow(clippy::suspicious_arithmetic_impl)]
Unit::new_unchecked(self.complex() * rhs.conjugate().into_inner())
}
}
macro_rules! complex_op_impl(
($Op: ident, $op: ident;
$($Storage: ident: $StoragesBound: ident $(<$($BoundParam: ty),*>)*),*;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* T: SimdRealField $(, $Storage: $StoragesBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs
where T::Element: SimdRealField {
type Output = $Result;
#[inline]
fn $op($lhs, $rhs: $Rhs) -> Self::Output {
$action
}
}
}
);
macro_rules! complex_op_impl_all(
($Op: ident, $op: ident;
$($Storage: ident: $StoragesBound: ident $(<$($BoundParam: ty),*>)*),*;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty;
[val val] => $action_val_val: expr;
[ref val] => $action_ref_val: expr;
[val ref] => $action_val_ref: expr;
[ref ref] => $action_ref_ref: expr;) => {
complex_op_impl!($Op, $op;
$($Storage: $StoragesBound $(<$($BoundParam),*>)*),*;
$lhs: $Lhs, $rhs: $Rhs, Output = $Result;
$action_val_val; );
complex_op_impl!($Op, $op;
$($Storage: $StoragesBound $(<$($BoundParam),*>)*),*;
$lhs: &'a $Lhs, $rhs: $Rhs, Output = $Result;
$action_ref_val; 'a);
complex_op_impl!($Op, $op;
$($Storage: $StoragesBound $(<$($BoundParam),*>)*),*;
$lhs: $Lhs, $rhs: &'b $Rhs, Output = $Result;
$action_val_ref; 'b);
complex_op_impl!($Op, $op;
$($Storage: $StoragesBound $(<$($BoundParam),*>)*),*;
$lhs: &'a $Lhs, $rhs: &'b $Rhs, Output = $Result;
$action_ref_ref; 'a, 'b);
}
);
complex_op_impl_all!(
Mul, mul;
;
self: UnitComplex<T>, rhs: Rotation<T, 2>, Output = UnitComplex<T>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => self * UnitComplex::from_rotation_matrix(rhs);
);
complex_op_impl_all!(
Div, div;
;
self: UnitComplex<T>, rhs: Rotation<T, 2>, Output = UnitComplex<T>;
[val val] => &self / &rhs;
[ref val] => self / &rhs;
[val ref] => &self / rhs;
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * UnitComplex::from_rotation_matrix(rhs).inverse() };
);
complex_op_impl_all!(
Mul, mul;
;
self: Rotation<T, 2>, rhs: UnitComplex<T>, Output = UnitComplex<T>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => UnitComplex::from_rotation_matrix(self) * rhs;
);
complex_op_impl_all!(
Div, div;
;
self: Rotation<T, 2>, rhs: UnitComplex<T>, Output = UnitComplex<T>;
[val val] => &self / &rhs;
[ref val] => self / &rhs;
[val ref] => &self / rhs;
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { UnitComplex::from_rotation_matrix(self) * rhs.inverse() };
);
complex_op_impl_all!(
Mul, mul;
;
self: UnitComplex<T>, rhs: Point2<T>, Output = Point2<T>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => Point2::from(self * &rhs.coords);
);
complex_op_impl_all!(
Mul, mul;
S: Storage<T, Const<2>>;
self: UnitComplex<T>, rhs: Vector<T, Const<2>, S>, Output = Vector2<T>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => {
let i = self.as_ref().im;
let r = self.as_ref().re;
Vector2::new(r * rhs[0] - i * rhs[1], i * rhs[0] + r * rhs[1])
};
);
complex_op_impl_all!(
Mul, mul;
S: Storage<T, Const<2>>;
self: UnitComplex<T>, rhs: Unit<Vector<T, Const<2>, S>>, Output = Unit<Vector2<T>>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => Unit::new_unchecked(self * rhs.as_ref());
);
complex_op_impl_all!(
Mul, mul;
;
self: UnitComplex<T>, rhs: Isometry<T, UnitComplex<T>, 2>,
Output = Isometry<T, UnitComplex<T>, 2>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => {
let shift = self * &rhs.translation.vector;
Isometry::from_parts(Translation::from(shift), self * &rhs.rotation)
};
);
complex_op_impl_all!(
Mul, mul;
;
self: UnitComplex<T>, rhs: Similarity<T, UnitComplex<T>, 2>,
Output = Similarity<T, UnitComplex<T>, 2>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => Similarity::from_isometry(self * &rhs.isometry, rhs.scaling());
);
complex_op_impl_all!(
Mul, mul;
;
self: UnitComplex<T>, rhs: Translation<T, 2>,
Output = Isometry<T, UnitComplex<T>, 2>;
[val val] => Isometry::from_parts(Translation::from(&self * rhs.vector), self);
[ref val] => Isometry::from_parts(Translation::from( self * rhs.vector), *self);
[val ref] => Isometry::from_parts(Translation::from(&self * &rhs.vector), self);
[ref ref] => Isometry::from_parts(Translation::from( self * &rhs.vector), *self);
);
complex_op_impl_all!(
Mul, mul;
;
self: Translation<T, 2>, right: UnitComplex<T>,
Output = Isometry<T, UnitComplex<T>, 2>;
[val val] => Isometry::from_parts(self, right);
[ref val] => Isometry::from_parts(self.clone(), right);
[val ref] => Isometry::from_parts(self, *right);
[ref ref] => Isometry::from_parts(self.clone(), *right);
);
impl<T: SimdRealField> MulAssign<UnitComplex<T>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn mul_assign(&mut self, rhs: UnitComplex<T>) {
*self = &*self * rhs
}
}
impl<'b, T: SimdRealField> MulAssign<&'b UnitComplex<T>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn mul_assign(&mut self, rhs: &'b UnitComplex<T>) {
*self = &*self * rhs
}
}
impl<T: SimdRealField> DivAssign<UnitComplex<T>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn div_assign(&mut self, rhs: UnitComplex<T>) {
*self = &*self / rhs
}
}
impl<'b, T: SimdRealField> DivAssign<&'b UnitComplex<T>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn div_assign(&mut self, rhs: &'b UnitComplex<T>) {
*self = &*self / rhs
}
}
impl<T: SimdRealField> MulAssign<Rotation<T, 2>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn mul_assign(&mut self, rhs: Rotation<T, 2>) {
*self = &*self * rhs
}
}
impl<'b, T: SimdRealField> MulAssign<&'b Rotation<T, 2>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn mul_assign(&mut self, rhs: &'b Rotation<T, 2>) {
*self = &*self * rhs
}
}
impl<T: SimdRealField> DivAssign<Rotation<T, 2>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn div_assign(&mut self, rhs: Rotation<T, 2>) {
*self = &*self / rhs
}
}
impl<'b, T: SimdRealField> DivAssign<&'b Rotation<T, 2>> for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn div_assign(&mut self, rhs: &'b Rotation<T, 2>) {
*self = &*self / rhs
}
}
impl<T: SimdRealField> MulAssign<UnitComplex<T>> for Rotation<T, 2>
where
T::Element: SimdRealField,
{
#[inline]
fn mul_assign(&mut self, rhs: UnitComplex<T>) {
self.mul_assign(rhs.to_rotation_matrix())
}
}
impl<'b, T: SimdRealField> MulAssign<&'b UnitComplex<T>> for Rotation<T, 2>
where
T::Element: SimdRealField,
{
#[inline]
fn mul_assign(&mut self, rhs: &'b UnitComplex<T>) {
self.mul_assign(rhs.to_rotation_matrix())
}
}
impl<T: SimdRealField> DivAssign<UnitComplex<T>> for Rotation<T, 2>
where
T::Element: SimdRealField,
{
#[inline]
fn div_assign(&mut self, rhs: UnitComplex<T>) {
self.div_assign(rhs.to_rotation_matrix())
}
}
impl<'b, T: SimdRealField> DivAssign<&'b UnitComplex<T>> for Rotation<T, 2>
where
T::Element: SimdRealField,
{
#[inline]
fn div_assign(&mut self, rhs: &'b UnitComplex<T>) {
self.div_assign(rhs.to_rotation_matrix())
}
}