1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
// This file is part of Substrate.
// Copyright (C) 2021-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Multi phase, offchain election provider pallet.
//!
//! Currently, this election-provider has two distinct phases (see [`Phase`]), **signed** and
//! **unsigned**.
//!
//! ## Phases
//!
//! The timeline of pallet is as follows. At each block,
//! [`frame_election_provider_support::ElectionDataProvider::next_election_prediction`] is used to
//! estimate the time remaining to the next call to
//! [`frame_election_provider_support::ElectionProvider::elect`]. Based on this, a phase is chosen.
//! The timeline is as follows.
//!
//! ```ignore
//! elect()
//! + <--T::SignedPhase--> + <--T::UnsignedPhase--> +
//! +-------------------------------------------------------------------+
//! Phase::Off + Phase::Signed + Phase::Unsigned +
//! ```
//!
//! Note that the unsigned phase starts [`pallet::Config::UnsignedPhase`] blocks before the
//! `next_election_prediction`, but only ends when a call to [`ElectionProvider::elect`] happens. If
//! no `elect` happens, the signed phase is extended.
//!
//! > Given this, it is rather important for the user of this pallet to ensure it always terminates
//! election via `elect` before requesting a new one.
//!
//! Each of the phases can be disabled by essentially setting their length to zero. If both phases
//! have length zero, then the pallet essentially runs only the fallback strategy, denoted by
//! [`Config::Fallback`].
//!
//! ### Signed Phase
//!
//! In the signed phase, solutions (of type [`RawSolution`]) are submitted and queued on chain. A
//! deposit is reserved, based on the size of the solution, for the cost of keeping this solution
//! on-chain for a number of blocks, and the potential weight of the solution upon being checked. A
//! maximum of `pallet::Config::SignedMaxSubmissions` solutions are stored. The queue is always
//! sorted based on score (worse to best).
//!
//! Upon arrival of a new solution:
//!
//! 1. If the queue is not full, it is stored in the appropriate sorted index.
//! 2. If the queue is full but the submitted solution is better than one of the queued ones, the
//! worse solution is discarded, the bond of the outgoing solution is returned, and the new
//! solution is stored in the correct index.
//! 3. If the queue is full and the solution is not an improvement compared to any of the queued
//! ones, it is instantly rejected and no additional bond is reserved.
//!
//! A signed solution cannot be reversed, taken back, updated, or retracted. In other words, the
//! origin can not bail out in any way, if their solution is queued.
//!
//! Upon the end of the signed phase, the solutions are examined from best to worse (i.e. `pop()`ed
//! until drained). Each solution undergoes an expensive `Pallet::feasibility_check`, which ensures
//! the score claimed by this score was correct, and it is valid based on the election data (i.e.
//! votes and targets). At each step, if the current best solution passes the feasibility check,
//! it is considered to be the best one. The sender of the origin is rewarded, and the rest of the
//! queued solutions get their deposit back and are discarded, without being checked.
//!
//! The following example covers all of the cases at the end of the signed phase:
//!
//! ```ignore
//! Queue
//! +-------------------------------+
//! |Solution(score=20, valid=false)| +--> Slashed
//! +-------------------------------+
//! |Solution(score=15, valid=true )| +--> Rewarded, Saved
//! +-------------------------------+
//! |Solution(score=10, valid=true )| +--> Discarded
//! +-------------------------------+
//! |Solution(score=05, valid=false)| +--> Discarded
//! +-------------------------------+
//! | None |
//! +-------------------------------+
//! ```
//!
//! Note that both of the bottom solutions end up being discarded and get their deposit back,
//! despite one of them being *invalid*.
//!
//! ## Unsigned Phase
//!
//! The unsigned phase will always follow the signed phase, with the specified duration. In this
//! phase, only validator nodes can submit solutions. A validator node who has offchain workers
//! enabled will start to mine a solution in this phase and submits it back to the chain as an
//! unsigned transaction, thus the name _unsigned_ phase. This unsigned transaction can never be
//! valid if propagated, and it acts similar to an inherent.
//!
//! Validators will only submit solutions if the one that they have computed is sufficiently better
//! than the best queued one (see [`pallet::Config::BetterUnsignedThreshold`]) and will limit the
//! weight of the solution to [`MinerConfig::MaxWeight`].
//!
//! The unsigned phase can be made passive depending on how the previous signed phase went, by
//! setting the first inner value of [`Phase`] to `false`. For now, the signed phase is always
//! active.
//!
//! ### Fallback
//!
//! If we reach the end of both phases (i.e. call to [`ElectionProvider::elect`] happens) and no
//! good solution is queued, then the fallback strategy [`pallet::Config::Fallback`] is used to
//! determine what needs to be done. The on-chain election is slow, and contains no balancing or
//! reduction post-processing. If [`pallet::Config::Fallback`] fails, the next phase
//! [`Phase::Emergency`] is enabled, which is a more *fail-safe* approach.
//!
//! ### Emergency Phase
//!
//! If, for any of the below reasons:
//!
//! 1. No **signed** or **unsigned** solution submitted, and no successful [`Config::Fallback`] is
//! provided
//! 2. Any other unforeseen internal error
//!
//! A call to `T::ElectionProvider::elect` is made, and `Ok(_)` cannot be returned, then the pallet
//! proceeds to the [`Phase::Emergency`]. During this phase, any solution can be submitted from
//! [`Config::ForceOrigin`], without any checking, via [`Pallet::set_emergency_election_result`]
//! transaction. Hence, `[`Config::ForceOrigin`]` should only be set to a trusted origin, such as
//! the council or root. Once submitted, the forced solution is kept in [`QueuedSolution`] until the
//! next call to `T::ElectionProvider::elect`, where it is returned and [`Phase`] goes back to
//! `Off`.
//!
//! This implies that the user of this pallet (i.e. a staking pallet) should re-try calling
//! `T::ElectionProvider::elect` in case of error, until `OK(_)` is returned.
//!
//! To generate an emergency solution, one must only provide one argument: [`Supports`]. This is
//! essentially a collection of elected winners for the election, and voters who support them. The
//! supports can be generated by any means. In the simplest case, it could be manual. For example,
//! in the case of massive network failure or misbehavior, [`Config::ForceOrigin`] might decide to
//! select only a small number of emergency winners (which would greatly restrict the next validator
//! set, if this pallet is used with `pallet-staking`). If the failure is for other technical
//! reasons, then a simple and safe way to generate supports is using the staking-miner binary
//! provided in the Polkadot repository. This binary has a subcommand named `emergency-solution`
//! which is capable of connecting to a live network, and generating appropriate `supports` using a
//! standard algorithm, and outputting the `supports` in hex format, ready for submission. Note that
//! while this binary lives in the Polkadot repository, this particular subcommand of it can work
//! against any substrate-based chain.
//!
//! See the `staking-miner` documentation in the Polkadot repository for more information.
//!
//! ## Feasible Solution (correct solution)
//!
//! All submissions must undergo a feasibility check. Signed solutions are checked one by one at the
//! end of the signed phase, and the unsigned solutions are checked on the spot. A feasible solution
//! is as follows:
//!
//! 0. **all** of the used indices must be correct.
//! 1. present *exactly* correct number of winners.
//! 2. any assignment is checked to match with [`RoundSnapshot::voters`].
//! 3. the claimed score is valid, based on the fixed point arithmetic accuracy.
//!
//! ## Accuracy
//!
//! The accuracy of the election is configured via [`SolutionAccuracyOf`] which is the accuracy that
//! the submitted solutions must adhere to.
//!
//! Note that the accuracy is of great importance. The offchain solution should be as small as
//! possible, reducing solutions size/weight.
//!
//! ## Error types
//!
//! This pallet provides a verbose error system to ease future debugging and debugging. The overall
//! hierarchy of errors is as follows:
//!
//! 1. [`pallet::Error`]: These are the errors that can be returned in the dispatchables of the
//! pallet, either signed or unsigned. Since decomposition with nested enums is not possible
//! here, they are prefixed with the logical sub-system to which they belong.
//! 2. [`ElectionError`]: These are the errors that can be generated while the pallet is doing
//! something in automatic scenarios, such as `offchain_worker` or `on_initialize`. These errors
//! are helpful for logging and are thus nested as:
//! - [`ElectionError::Miner`]: wraps a [`unsigned::MinerError`].
//! - [`ElectionError::Feasibility`]: wraps a [`FeasibilityError`].
//! - [`ElectionError::Fallback`]: wraps a fallback error.
//! - [`ElectionError::DataProvider`]: wraps a static str.
//!
//! Note that there could be an overlap between these sub-errors. For example, A
//! `SnapshotUnavailable` can happen in both miner and feasibility check phase.
//!
//! ## Future Plans
//!
//! **Emergency-phase recovery script**: This script should be taken out of staking-miner in
//! polkadot and ideally live in `substrate/utils/frame/elections`.
//!
//! **Challenge Phase**. We plan on adding a third phase to the pallet, called the challenge phase.
//! This is a phase in which no further solutions are processed, and the current best solution might
//! be challenged by anyone (signed or unsigned). The main plan here is to enforce the solution to
//! be PJR. Checking PJR on-chain is quite expensive, yet proving that a solution is **not** PJR is
//! rather cheap. If a queued solution is successfully proven bad:
//!
//! 1. We must surely slash whoever submitted that solution (might be a challenge for unsigned
//! solutions).
//! 2. We will fallback to the emergency strategy (likely extending the current era).
//!
//! **Bailing out**. The functionality of bailing out of a queued solution is nice. A miner can
//! submit a solution as soon as they _think_ it is high probability feasible, and do the checks
//! afterwards, and remove their solution (for a small cost of probably just transaction fees, or a
//! portion of the bond).
//!
//! **Conditionally open unsigned phase**: Currently, the unsigned phase is always opened. This is
//! useful because an honest validator will run substrate OCW code, which should be good enough to
//! trump a mediocre or malicious signed submission (assuming in the absence of honest signed bots).
//! If there are signed submissions, they can be checked against an absolute measure (e.g. PJR),
//! then we can only open the unsigned phase in extreme conditions (i.e. "no good signed solution
//! received") to spare some work for the active validators.
//!
//! **Allow smaller solutions and build up**: For now we only allow solutions that are exactly
//! [`DesiredTargets`], no more, no less. Over time, we can change this to a [min, max] where any
//! solution within this range is acceptable, where bigger solutions are prioritized.
//!
//! **Score based on (byte) size**: We should always prioritize small solutions over bigger ones, if
//! there is a tie. Even more harsh should be to enforce the bound of the `reduce` algorithm.
//!
//! **Take into account the encode/decode weight in benchmarks.** Currently, we only take into
//! account the weight of encode/decode in the `submit_unsigned` given its priority. Nonetheless,
//! all operations on the solution and the snapshot are worthy of taking this into account.
#![cfg_attr(not(feature = "std"), no_std)]
use codec::{Decode, Encode};
use frame_election_provider_support::{
BoundedSupportsOf, ElectionDataProvider, ElectionProvider, ElectionProviderBase,
InstantElectionProvider, NposSolution,
};
use frame_support::{
dispatch::DispatchClass,
ensure,
traits::{Currency, DefensiveResult, Get, OnUnbalanced, ReservableCurrency},
weights::Weight,
DefaultNoBound, EqNoBound, PartialEqNoBound,
};
use frame_system::{ensure_none, offchain::SendTransactionTypes};
use scale_info::TypeInfo;
use sp_arithmetic::{
traits::{CheckedAdd, Zero},
UpperOf,
};
use sp_npos_elections::{
assignment_ratio_to_staked_normalized, BoundedSupports, ElectionScore, EvaluateSupport,
Supports, VoteWeight,
};
use sp_runtime::{
transaction_validity::{
InvalidTransaction, TransactionPriority, TransactionSource, TransactionValidity,
TransactionValidityError, ValidTransaction,
},
DispatchError, ModuleError, PerThing, Perbill, RuntimeDebug, SaturatedConversion,
};
use sp_std::prelude::*;
#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;
#[cfg(test)]
mod mock;
#[macro_use]
pub mod helpers;
const LOG_TARGET: &str = "runtime::election-provider";
pub mod migrations;
pub mod signed;
pub mod unsigned;
pub mod weights;
use unsigned::VoterOf;
pub use weights::WeightInfo;
pub use signed::{
BalanceOf, NegativeImbalanceOf, PositiveImbalanceOf, SignedSubmission, SignedSubmissionOf,
SignedSubmissions, SubmissionIndicesOf,
};
pub use unsigned::{Miner, MinerConfig};
/// The solution type used by this crate.
pub type SolutionOf<T> = <T as MinerConfig>::Solution;
/// The voter index. Derived from [`SolutionOf`].
pub type SolutionVoterIndexOf<T> = <SolutionOf<T> as NposSolution>::VoterIndex;
/// The target index. Derived from [`SolutionOf`].
pub type SolutionTargetIndexOf<T> = <SolutionOf<T> as NposSolution>::TargetIndex;
/// The accuracy of the election, when submitted from offchain. Derived from [`SolutionOf`].
pub type SolutionAccuracyOf<T> =
<SolutionOf<<T as crate::Config>::MinerConfig> as NposSolution>::Accuracy;
/// The fallback election type.
pub type FallbackErrorOf<T> = <<T as crate::Config>::Fallback as ElectionProviderBase>::Error;
/// Configuration for the benchmarks of the pallet.
pub trait BenchmarkingConfig {
/// Range of voters.
const VOTERS: [u32; 2];
/// Range of targets.
const TARGETS: [u32; 2];
/// Range of active voters.
const ACTIVE_VOTERS: [u32; 2];
/// Range of desired targets.
const DESIRED_TARGETS: [u32; 2];
/// Maximum number of voters expected. This is used only for memory-benchmarking of snapshot.
const SNAPSHOT_MAXIMUM_VOTERS: u32;
/// Maximum number of voters expected. This is used only for memory-benchmarking of miner.
const MINER_MAXIMUM_VOTERS: u32;
/// Maximum number of targets expected. This is used only for memory-benchmarking.
const MAXIMUM_TARGETS: u32;
}
/// Current phase of the pallet.
#[derive(PartialEq, Eq, Clone, Copy, Encode, Decode, Debug, TypeInfo)]
pub enum Phase<Bn> {
/// Nothing, the election is not happening.
Off,
/// Signed phase is open.
Signed,
/// Unsigned phase. First element is whether it is active or not, second the starting block
/// number.
///
/// We do not yet check whether the unsigned phase is active or passive. The intent is for the
/// blockchain to be able to declare: "I believe that there exists an adequate signed
/// solution," advising validators not to bother running the unsigned offchain worker.
///
/// As validator nodes are free to edit their OCW code, they could simply ignore this advisory
/// and always compute their own solution. However, by default, when the unsigned phase is
/// passive, the offchain workers will not bother running.
Unsigned((bool, Bn)),
/// The emergency phase. This is enabled upon a failing call to `T::ElectionProvider::elect`.
/// After that, the only way to leave this phase is through a successful
/// `T::ElectionProvider::elect`.
Emergency,
}
impl<Bn> Default for Phase<Bn> {
fn default() -> Self {
Phase::Off
}
}
impl<Bn: PartialEq + Eq> Phase<Bn> {
/// Whether the phase is emergency or not.
pub fn is_emergency(&self) -> bool {
matches!(self, Phase::Emergency)
}
/// Whether the phase is signed or not.
pub fn is_signed(&self) -> bool {
matches!(self, Phase::Signed)
}
/// Whether the phase is unsigned or not.
pub fn is_unsigned(&self) -> bool {
matches!(self, Phase::Unsigned(_))
}
/// Whether the phase is unsigned and open or not, with specific start.
pub fn is_unsigned_open_at(&self, at: Bn) -> bool {
matches!(self, Phase::Unsigned((true, real)) if *real == at)
}
/// Whether the phase is unsigned and open or not.
pub fn is_unsigned_open(&self) -> bool {
matches!(self, Phase::Unsigned((true, _)))
}
/// Whether the phase is off or not.
pub fn is_off(&self) -> bool {
matches!(self, Phase::Off)
}
}
/// The type of `Computation` that provided this election data.
#[derive(PartialEq, Eq, Clone, Copy, Encode, Decode, Debug, TypeInfo)]
pub enum ElectionCompute {
/// Election was computed on-chain.
OnChain,
/// Election was computed with a signed submission.
Signed,
/// Election was computed with an unsigned submission.
Unsigned,
/// Election was computed using the fallback
Fallback,
/// Election was computed with emergency status.
Emergency,
}
impl Default for ElectionCompute {
fn default() -> Self {
ElectionCompute::OnChain
}
}
/// A raw, unchecked solution.
///
/// This is what will get submitted to the chain.
///
/// Such a solution should never become effective in anyway before being checked by the
/// `Pallet::feasibility_check`.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, PartialOrd, Ord, TypeInfo)]
pub struct RawSolution<S> {
/// the solution itself.
pub solution: S,
/// The _claimed_ score of the solution.
pub score: ElectionScore,
/// The round at which this solution should be submitted.
pub round: u32,
}
impl<C: Default> Default for RawSolution<C> {
fn default() -> Self {
// Round 0 is always invalid, only set this to 1.
Self { round: 1, solution: Default::default(), score: Default::default() }
}
}
/// A checked solution, ready to be enacted.
#[derive(
PartialEqNoBound,
EqNoBound,
Clone,
Encode,
Decode,
RuntimeDebug,
DefaultNoBound,
scale_info::TypeInfo,
)]
#[scale_info(skip_type_params(T))]
pub struct ReadySolution<T: Config> {
/// The final supports of the solution.
///
/// This is target-major vector, storing each winners, total backing, and each individual
/// backer.
pub supports: BoundedSupports<T::AccountId, T::MaxWinners>,
/// The score of the solution.
///
/// This is needed to potentially challenge the solution.
pub score: ElectionScore,
/// How this election was computed.
pub compute: ElectionCompute,
}
/// A snapshot of all the data that is needed for en entire round. They are provided by
/// [`ElectionDataProvider`] and are kept around until the round is finished.
///
/// These are stored together because they are often accessed together.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, Default, TypeInfo)]
#[scale_info(skip_type_params(T))]
pub struct RoundSnapshot<T: Config> {
/// All of the voters.
pub voters: Vec<VoterOf<T>>,
/// All of the targets.
pub targets: Vec<T::AccountId>,
}
/// Encodes the length of a solution or a snapshot.
///
/// This is stored automatically on-chain, and it contains the **size of the entire snapshot**.
/// This is also used in dispatchables as weight witness data and should **only contain the size of
/// the presented solution**, not the entire snapshot.
#[derive(PartialEq, Eq, Clone, Copy, Encode, Decode, Debug, Default, TypeInfo)]
pub struct SolutionOrSnapshotSize {
/// The length of voters.
#[codec(compact)]
pub voters: u32,
/// The length of targets.
#[codec(compact)]
pub targets: u32,
}
/// Internal errors of the pallet.
///
/// Note that this is different from [`pallet::Error`].
#[derive(frame_support::DebugNoBound)]
#[cfg_attr(feature = "runtime-benchmarks", derive(strum::IntoStaticStr))]
pub enum ElectionError<T: Config> {
/// An error happened in the feasibility check sub-system.
Feasibility(FeasibilityError),
/// An error in the miner (offchain) sub-system.
Miner(unsigned::MinerError),
/// An error happened in the data provider.
DataProvider(&'static str),
/// An error nested in the fallback.
Fallback(FallbackErrorOf<T>),
/// No solution has been queued.
NothingQueued,
}
// NOTE: we have to do this manually because of the additional where clause needed on
// `FallbackErrorOf<T>`.
#[cfg(test)]
impl<T: Config> PartialEq for ElectionError<T>
where
FallbackErrorOf<T>: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
use ElectionError::*;
match (self, other) {
(&Feasibility(ref x), &Feasibility(ref y)) if x == y => true,
(&Miner(ref x), &Miner(ref y)) if x == y => true,
(&DataProvider(ref x), &DataProvider(ref y)) if x == y => true,
(&Fallback(ref x), &Fallback(ref y)) if x == y => true,
_ => false,
}
}
}
impl<T: Config> From<FeasibilityError> for ElectionError<T> {
fn from(e: FeasibilityError) -> Self {
ElectionError::Feasibility(e)
}
}
impl<T: Config> From<unsigned::MinerError> for ElectionError<T> {
fn from(e: unsigned::MinerError) -> Self {
ElectionError::Miner(e)
}
}
/// Errors that can happen in the feasibility check.
#[derive(Debug, Eq, PartialEq)]
#[cfg_attr(feature = "runtime-benchmarks", derive(strum::IntoStaticStr))]
pub enum FeasibilityError {
/// Wrong number of winners presented.
WrongWinnerCount,
/// The snapshot is not available.
///
/// Kinda defensive: The pallet should technically never attempt to do a feasibility check when
/// no snapshot is present.
SnapshotUnavailable,
/// Internal error from the election crate.
NposElection(sp_npos_elections::Error),
/// A vote is invalid.
InvalidVote,
/// A voter is invalid.
InvalidVoter,
/// The given score was invalid.
InvalidScore,
/// The provided round is incorrect.
InvalidRound,
/// Comparison against `MinimumUntrustedScore` failed.
UntrustedScoreTooLow,
/// Data Provider returned too many desired targets
TooManyDesiredTargets,
/// Conversion into bounded types failed.
///
/// Should never happen under correct configurations.
BoundedConversionFailed,
}
impl From<sp_npos_elections::Error> for FeasibilityError {
fn from(e: sp_npos_elections::Error) -> Self {
FeasibilityError::NposElection(e)
}
}
pub use pallet::*;
#[frame_support::pallet]
pub mod pallet {
use super::*;
use frame_election_provider_support::{InstantElectionProvider, NposSolver};
use frame_support::{pallet_prelude::*, traits::EstimateCallFee};
use frame_system::pallet_prelude::*;
#[pallet::config]
pub trait Config: frame_system::Config + SendTransactionTypes<Call<Self>> {
type RuntimeEvent: From<Event<Self>>
+ IsType<<Self as frame_system::Config>::RuntimeEvent>
+ TryInto<Event<Self>>;
/// Currency type.
type Currency: ReservableCurrency<Self::AccountId> + Currency<Self::AccountId>;
/// Something that can predict the fee of a call. Used to sensibly distribute rewards.
type EstimateCallFee: EstimateCallFee<Call<Self>, BalanceOf<Self>>;
/// Duration of the unsigned phase.
#[pallet::constant]
type UnsignedPhase: Get<Self::BlockNumber>;
/// Duration of the signed phase.
#[pallet::constant]
type SignedPhase: Get<Self::BlockNumber>;
/// The minimum amount of improvement to the solution score that defines a solution as
/// "better" in the Signed phase.
#[pallet::constant]
type BetterSignedThreshold: Get<Perbill>;
/// The minimum amount of improvement to the solution score that defines a solution as
/// "better" in the Unsigned phase.
#[pallet::constant]
type BetterUnsignedThreshold: Get<Perbill>;
/// The repeat threshold of the offchain worker.
///
/// For example, if it is 5, that means that at least 5 blocks will elapse between attempts
/// to submit the worker's solution.
#[pallet::constant]
type OffchainRepeat: Get<Self::BlockNumber>;
/// The priority of the unsigned transaction submitted in the unsigned-phase
#[pallet::constant]
type MinerTxPriority: Get<TransactionPriority>;
/// Configurations of the embedded miner.
///
/// Any external software implementing this can use the [`unsigned::Miner`] type provided,
/// which can mine new solutions and trim them accordingly.
type MinerConfig: crate::unsigned::MinerConfig<
AccountId = Self::AccountId,
MaxVotesPerVoter = <Self::DataProvider as ElectionDataProvider>::MaxVotesPerVoter,
>;
/// Maximum number of signed submissions that can be queued.
///
/// It is best to avoid adjusting this during an election, as it impacts downstream data
/// structures. In particular, `SignedSubmissionIndices<T>` is bounded on this value. If you
/// update this value during an election, you _must_ ensure that
/// `SignedSubmissionIndices.len()` is less than or equal to the new value. Otherwise,
/// attempts to submit new solutions may cause a runtime panic.
#[pallet::constant]
type SignedMaxSubmissions: Get<u32>;
/// Maximum weight of a signed solution.
///
/// If [`Config::MinerConfig`] is being implemented to submit signed solutions (outside of
/// this pallet), then [`MinerConfig::solution_weight`] is used to compare against
/// this value.
#[pallet::constant]
type SignedMaxWeight: Get<Weight>;
/// The maximum amount of unchecked solutions to refund the call fee for.
#[pallet::constant]
type SignedMaxRefunds: Get<u32>;
/// Base reward for a signed solution
#[pallet::constant]
type SignedRewardBase: Get<BalanceOf<Self>>;
/// Base deposit for a signed solution.
#[pallet::constant]
type SignedDepositBase: Get<BalanceOf<Self>>;
/// Per-byte deposit for a signed solution.
#[pallet::constant]
type SignedDepositByte: Get<BalanceOf<Self>>;
/// Per-weight deposit for a signed solution.
#[pallet::constant]
type SignedDepositWeight: Get<BalanceOf<Self>>;
/// The maximum number of electing voters to put in the snapshot. At the moment, snapshots
/// are only over a single block, but once multi-block elections are introduced they will
/// take place over multiple blocks.
#[pallet::constant]
type MaxElectingVoters: Get<SolutionVoterIndexOf<Self::MinerConfig>>;
/// The maximum number of electable targets to put in the snapshot.
#[pallet::constant]
type MaxElectableTargets: Get<SolutionTargetIndexOf<Self::MinerConfig>>;
/// The maximum number of winners that can be elected by this `ElectionProvider`
/// implementation.
///
/// Note: This must always be greater or equal to `T::DataProvider::desired_targets()`.
#[pallet::constant]
type MaxWinners: Get<u32>;
/// Handler for the slashed deposits.
type SlashHandler: OnUnbalanced<NegativeImbalanceOf<Self>>;
/// Handler for the rewards.
type RewardHandler: OnUnbalanced<PositiveImbalanceOf<Self>>;
/// Something that will provide the election data.
type DataProvider: ElectionDataProvider<
AccountId = Self::AccountId,
BlockNumber = Self::BlockNumber,
>;
/// Configuration for the fallback.
type Fallback: InstantElectionProvider<
AccountId = Self::AccountId,
BlockNumber = Self::BlockNumber,
DataProvider = Self::DataProvider,
MaxWinners = Self::MaxWinners,
>;
/// Configuration of the governance-only fallback.
///
/// As a side-note, it is recommend for test-nets to use `type ElectionProvider =
/// BoundedExecution<_>` if the test-net is not expected to have thousands of nominators.
type GovernanceFallback: InstantElectionProvider<
AccountId = Self::AccountId,
BlockNumber = Self::BlockNumber,
DataProvider = Self::DataProvider,
MaxWinners = Self::MaxWinners,
>;
/// OCW election solution miner algorithm implementation.
type Solver: NposSolver<AccountId = Self::AccountId>;
/// Origin that can control this pallet. Note that any action taken by this origin (such)
/// as providing an emergency solution is not checked. Thus, it must be a trusted origin.
type ForceOrigin: EnsureOrigin<Self::RuntimeOrigin>;
/// The configuration of benchmarking.
type BenchmarkingConfig: BenchmarkingConfig;
/// The weight of the pallet.
type WeightInfo: WeightInfo;
}
// Expose miner configs over the metadata such that they can be re-implemented.
#[pallet::extra_constants]
impl<T: Config> Pallet<T> {
#[pallet::constant_name(MinerMaxLength)]
fn max_length() -> u32 {
<T::MinerConfig as MinerConfig>::MaxLength::get()
}
#[pallet::constant_name(MinerMaxWeight)]
fn max_weight() -> Weight {
<T::MinerConfig as MinerConfig>::MaxWeight::get()
}
#[pallet::constant_name(MinerMaxVotesPerVoter)]
fn max_votes_per_voter() -> u32 {
<T::MinerConfig as MinerConfig>::MaxVotesPerVoter::get()
}
}
#[pallet::hooks]
impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
fn on_initialize(now: T::BlockNumber) -> Weight {
let next_election = T::DataProvider::next_election_prediction(now).max(now);
let signed_deadline = T::SignedPhase::get() + T::UnsignedPhase::get();
let unsigned_deadline = T::UnsignedPhase::get();
let remaining = next_election - now;
let current_phase = Self::current_phase();
log!(
trace,
"current phase {:?}, next election {:?}, metadata: {:?}",
current_phase,
next_election,
Self::snapshot_metadata()
);
match current_phase {
Phase::Off if remaining <= signed_deadline && remaining > unsigned_deadline => {
// NOTE: if signed-phase length is zero, second part of the if-condition fails.
match Self::create_snapshot() {
Ok(_) => {
Self::phase_transition(Phase::Signed);
T::WeightInfo::on_initialize_open_signed()
},
Err(why) => {
// Not much we can do about this at this point.
log!(warn, "failed to open signed phase due to {:?}", why);
T::WeightInfo::on_initialize_nothing()
},
}
},
Phase::Signed | Phase::Off
if remaining <= unsigned_deadline && remaining > Zero::zero() =>
{
// our needs vary according to whether or not the unsigned phase follows a
// signed phase
let (need_snapshot, enabled) = if current_phase == Phase::Signed {
// there was previously a signed phase: close the signed phase, no need for
// snapshot.
//
// Notes:
//
// - `Self::finalize_signed_phase()` also appears in `fn do_elect`. This
// is a guard against the case that `elect` is called prematurely. This
// adds a small amount of overhead, but that is unfortunately
// unavoidable.
let _ = Self::finalize_signed_phase();
// In the future we can consider disabling the unsigned phase if the signed
// phase completes successfully, but for now we're enabling it
// unconditionally as a defensive measure.
(false, true)
} else {
// No signed phase: create a new snapshot, definitely `enable` the unsigned
// phase.
(true, true)
};
if need_snapshot {
match Self::create_snapshot() {
Ok(_) => {
Self::phase_transition(Phase::Unsigned((enabled, now)));
T::WeightInfo::on_initialize_open_unsigned()
},
Err(why) => {
log!(warn, "failed to open unsigned phase due to {:?}", why);
T::WeightInfo::on_initialize_nothing()
},
}
} else {
Self::phase_transition(Phase::Unsigned((enabled, now)));
T::WeightInfo::on_initialize_open_unsigned()
}
},
_ => T::WeightInfo::on_initialize_nothing(),
}
}
fn offchain_worker(now: T::BlockNumber) {
use sp_runtime::offchain::storage_lock::{BlockAndTime, StorageLock};
// Create a lock with the maximum deadline of number of blocks in the unsigned phase.
// This should only come useful in an **abrupt** termination of execution, otherwise the
// guard will be dropped upon successful execution.
let mut lock =
StorageLock::<BlockAndTime<frame_system::Pallet<T>>>::with_block_deadline(
unsigned::OFFCHAIN_LOCK,
T::UnsignedPhase::get().saturated_into(),
);
match lock.try_lock() {
Ok(_guard) => {
Self::do_synchronized_offchain_worker(now);
},
Err(deadline) => {
log!(debug, "offchain worker lock not released, deadline is {:?}", deadline);
},
};
}
fn integrity_test() {
use sp_std::mem::size_of;
// The index type of both voters and targets need to be smaller than that of usize (very
// unlikely to be the case, but anyhow)..
assert!(size_of::<SolutionVoterIndexOf<T::MinerConfig>>() <= size_of::<usize>());
assert!(size_of::<SolutionTargetIndexOf<T::MinerConfig>>() <= size_of::<usize>());
// ----------------------------
// Based on the requirements of [`sp_npos_elections::Assignment::try_normalize`].
let max_vote: usize = <SolutionOf<T::MinerConfig> as NposSolution>::LIMIT;
// 2. Maximum sum of [SolutionAccuracy; 16] must fit into `UpperOf<OffchainAccuracy>`.
let maximum_chain_accuracy: Vec<UpperOf<SolutionAccuracyOf<T>>> = (0..max_vote)
.map(|_| {
<UpperOf<SolutionAccuracyOf<T>>>::from(
<SolutionAccuracyOf<T>>::one().deconstruct(),
)
})
.collect();
let _: UpperOf<SolutionAccuracyOf<T>> = maximum_chain_accuracy
.iter()
.fold(Zero::zero(), |acc, x| acc.checked_add(x).unwrap());
// We only accept data provider who's maximum votes per voter matches our
// `T::Solution`'s `LIMIT`.
//
// NOTE that this pallet does not really need to enforce this in runtime. The
// solution cannot represent any voters more than `LIMIT` anyhow.
assert_eq!(
<T::DataProvider as ElectionDataProvider>::MaxVotesPerVoter::get(),
<SolutionOf<T::MinerConfig> as NposSolution>::LIMIT as u32,
);
// While it won't cause any failures, setting `SignedMaxRefunds` gt
// `SignedMaxSubmissions` is a red flag that the developer does not understand how to
// configure this pallet.
assert!(T::SignedMaxSubmissions::get() >= T::SignedMaxRefunds::get());
}
}
#[pallet::call]
impl<T: Config> Pallet<T> {
/// Submit a solution for the unsigned phase.
///
/// The dispatch origin fo this call must be __none__.
///
/// This submission is checked on the fly. Moreover, this unsigned solution is only
/// validated when submitted to the pool from the **local** node. Effectively, this means
/// that only active validators can submit this transaction when authoring a block (similar
/// to an inherent).
///
/// To prevent any incorrect solution (and thus wasted time/weight), this transaction will
/// panic if the solution submitted by the validator is invalid in any way, effectively
/// putting their authoring reward at risk.
///
/// No deposit or reward is associated with this submission.
#[pallet::call_index(0)]
#[pallet::weight((
T::WeightInfo::submit_unsigned(
witness.voters,
witness.targets,
raw_solution.solution.voter_count() as u32,
raw_solution.solution.unique_targets().len() as u32
),
DispatchClass::Operational,
))]
pub fn submit_unsigned(
origin: OriginFor<T>,
raw_solution: Box<RawSolution<SolutionOf<T::MinerConfig>>>,
witness: SolutionOrSnapshotSize,
) -> DispatchResult {
ensure_none(origin)?;
let error_message = "Invalid unsigned submission must produce invalid block and \
deprive validator from their authoring reward.";
// Check score being an improvement, phase, and desired targets.
Self::unsigned_pre_dispatch_checks(&raw_solution).expect(error_message);
// Ensure witness was correct.
let SolutionOrSnapshotSize { voters, targets } =
Self::snapshot_metadata().expect(error_message);
// NOTE: we are asserting, not `ensure`ing -- we want to panic here.
assert!(voters as u32 == witness.voters, "{}", error_message);
assert!(targets as u32 == witness.targets, "{}", error_message);
let ready = Self::feasibility_check(*raw_solution, ElectionCompute::Unsigned)
.expect(error_message);
// Store the newly received solution.
log!(info, "queued unsigned solution with score {:?}", ready.score);
let ejected_a_solution = <QueuedSolution<T>>::exists();
<QueuedSolution<T>>::put(ready);
Self::deposit_event(Event::SolutionStored {
compute: ElectionCompute::Unsigned,
origin: None,
prev_ejected: ejected_a_solution,
});
Ok(())
}
/// Set a new value for `MinimumUntrustedScore`.
///
/// Dispatch origin must be aligned with `T::ForceOrigin`.
///
/// This check can be turned off by setting the value to `None`.
#[pallet::call_index(1)]
#[pallet::weight(T::DbWeight::get().writes(1))]
pub fn set_minimum_untrusted_score(
origin: OriginFor<T>,
maybe_next_score: Option<ElectionScore>,
) -> DispatchResult {
T::ForceOrigin::ensure_origin(origin)?;
<MinimumUntrustedScore<T>>::set(maybe_next_score);
Ok(())
}
/// Set a solution in the queue, to be handed out to the client of this pallet in the next
/// call to `ElectionProvider::elect`.
///
/// This can only be set by `T::ForceOrigin`, and only when the phase is `Emergency`.
///
/// The solution is not checked for any feasibility and is assumed to be trustworthy, as any
/// feasibility check itself can in principle cause the election process to fail (due to
/// memory/weight constrains).
#[pallet::call_index(2)]
#[pallet::weight(T::DbWeight::get().reads_writes(1, 1))]
pub fn set_emergency_election_result(
origin: OriginFor<T>,
supports: Supports<T::AccountId>,
) -> DispatchResult {
T::ForceOrigin::ensure_origin(origin)?;
ensure!(Self::current_phase().is_emergency(), <Error<T>>::CallNotAllowed);
// bound supports with T::MaxWinners
let supports = supports.try_into().map_err(|_| Error::<T>::TooManyWinners)?;
// Note: we don't `rotate_round` at this point; the next call to
// `ElectionProvider::elect` will succeed and take care of that.
let solution = ReadySolution {
supports,
score: Default::default(),
compute: ElectionCompute::Emergency,
};
Self::deposit_event(Event::SolutionStored {
compute: ElectionCompute::Emergency,
origin: None,
prev_ejected: QueuedSolution::<T>::exists(),
});
<QueuedSolution<T>>::put(solution);
Ok(())
}
/// Submit a solution for the signed phase.
///
/// The dispatch origin fo this call must be __signed__.
///
/// The solution is potentially queued, based on the claimed score and processed at the end
/// of the signed phase.
///
/// A deposit is reserved and recorded for the solution. Based on the outcome, the solution
/// might be rewarded, slashed, or get all or a part of the deposit back.
#[pallet::call_index(3)]
#[pallet::weight(T::WeightInfo::submit())]
pub fn submit(
origin: OriginFor<T>,
raw_solution: Box<RawSolution<SolutionOf<T::MinerConfig>>>,
) -> DispatchResult {
let who = ensure_signed(origin)?;
// ensure solution is timely.
ensure!(Self::current_phase().is_signed(), Error::<T>::PreDispatchEarlySubmission);
// NOTE: this is the only case where having separate snapshot would have been better
// because could do just decode_len. But we can create abstractions to do this.
// build size. Note: this is not needed for weight calc, thus not input.
// unlikely to ever return an error: if phase is signed, snapshot will exist.
let size = Self::snapshot_metadata().ok_or(Error::<T>::MissingSnapshotMetadata)?;
ensure!(
Self::solution_weight_of(&raw_solution, size).all_lt(T::SignedMaxWeight::get()),
Error::<T>::SignedTooMuchWeight,
);
// create the submission
let deposit = Self::deposit_for(&raw_solution, size);
let call_fee = {
let call = Call::submit { raw_solution: raw_solution.clone() };
T::EstimateCallFee::estimate_call_fee(&call, None::<Weight>.into())
};
let submission = SignedSubmission {
who: who.clone(),
deposit,
raw_solution: *raw_solution,
call_fee,
};
// insert the submission if the queue has space or it's better than the weakest
// eject the weakest if the queue was full
let mut signed_submissions = Self::signed_submissions();
let maybe_removed = match signed_submissions.insert(submission) {
// it's an error if we failed to insert a submission: this indicates the queue was
// full but our solution had insufficient score to eject any solution
signed::InsertResult::NotInserted => return Err(Error::<T>::SignedQueueFull.into()),
signed::InsertResult::Inserted => None,
signed::InsertResult::InsertedEjecting(weakest) => Some(weakest),
};
// collect deposit. Thereafter, the function cannot fail.
T::Currency::reserve(&who, deposit).map_err(|_| Error::<T>::SignedCannotPayDeposit)?;
let ejected_a_solution = maybe_removed.is_some();
// if we had to remove the weakest solution, unreserve its deposit
if let Some(removed) = maybe_removed {
let _remainder = T::Currency::unreserve(&removed.who, removed.deposit);
debug_assert!(_remainder.is_zero());
}
signed_submissions.put();
Self::deposit_event(Event::SolutionStored {
compute: ElectionCompute::Signed,
origin: Some(who),
prev_ejected: ejected_a_solution,
});
Ok(())
}
/// Trigger the governance fallback.
///
/// This can only be called when [`Phase::Emergency`] is enabled, as an alternative to
/// calling [`Call::set_emergency_election_result`].
#[pallet::call_index(4)]
#[pallet::weight(T::DbWeight::get().reads_writes(1, 1))]
pub fn governance_fallback(
origin: OriginFor<T>,
maybe_max_voters: Option<u32>,
maybe_max_targets: Option<u32>,
) -> DispatchResult {
T::ForceOrigin::ensure_origin(origin)?;
ensure!(Self::current_phase().is_emergency(), <Error<T>>::CallNotAllowed);
let supports =
T::GovernanceFallback::instant_elect(maybe_max_voters, maybe_max_targets).map_err(
|e| {
log!(error, "GovernanceFallback failed: {:?}", e);
Error::<T>::FallbackFailed
},
)?;
// transform BoundedVec<_, T::GovernanceFallback::MaxWinners> into
// `BoundedVec<_, T::MaxWinners>`
let supports: BoundedVec<_, T::MaxWinners> = supports
.into_inner()
.try_into()
.defensive_map_err(|_| Error::<T>::BoundNotMet)?;
let solution = ReadySolution {
supports,
score: Default::default(),
compute: ElectionCompute::Fallback,
};
Self::deposit_event(Event::SolutionStored {
compute: ElectionCompute::Fallback,
origin: None,
prev_ejected: QueuedSolution::<T>::exists(),
});
<QueuedSolution<T>>::put(solution);
Ok(())
}
}
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event<T: Config> {
/// A solution was stored with the given compute.
///
/// The `origin` indicates the origin of the solution. If `origin` is `Some(AccountId)`,
/// the stored solution was submited in the signed phase by a miner with the `AccountId`.
/// Otherwise, the solution was stored either during the unsigned phase or by
/// `T::ForceOrigin`. The `bool` is `true` when a previous solution was ejected to make
/// room for this one.
SolutionStored {
compute: ElectionCompute,
origin: Option<T::AccountId>,
prev_ejected: bool,
},
/// The election has been finalized, with the given computation and score.
ElectionFinalized { compute: ElectionCompute, score: ElectionScore },
/// An election failed.
///
/// Not much can be said about which computes failed in the process.
ElectionFailed,
/// An account has been rewarded for their signed submission being finalized.
Rewarded { account: <T as frame_system::Config>::AccountId, value: BalanceOf<T> },
/// An account has been slashed for submitting an invalid signed submission.
Slashed { account: <T as frame_system::Config>::AccountId, value: BalanceOf<T> },
/// There was a phase transition in a given round.
PhaseTransitioned { from: Phase<T::BlockNumber>, to: Phase<T::BlockNumber>, round: u32 },
}
/// Error of the pallet that can be returned in response to dispatches.
#[pallet::error]
pub enum Error<T> {
/// Submission was too early.
PreDispatchEarlySubmission,
/// Wrong number of winners presented.
PreDispatchWrongWinnerCount,
/// Submission was too weak, score-wise.
PreDispatchWeakSubmission,
/// The queue was full, and the solution was not better than any of the existing ones.
SignedQueueFull,
/// The origin failed to pay the deposit.
SignedCannotPayDeposit,
/// Witness data to dispatchable is invalid.
SignedInvalidWitness,
/// The signed submission consumes too much weight
SignedTooMuchWeight,
/// OCW submitted solution for wrong round
OcwCallWrongEra,
/// Snapshot metadata should exist but didn't.
MissingSnapshotMetadata,
/// `Self::insert_submission` returned an invalid index.
InvalidSubmissionIndex,
/// The call is not allowed at this point.
CallNotAllowed,
/// The fallback failed
FallbackFailed,
/// Some bound not met
BoundNotMet,
/// Submitted solution has too many winners
TooManyWinners,
}
#[pallet::validate_unsigned]
impl<T: Config> ValidateUnsigned for Pallet<T> {
type Call = Call<T>;
fn validate_unsigned(source: TransactionSource, call: &Self::Call) -> TransactionValidity {
if let Call::submit_unsigned { raw_solution, .. } = call {
// Discard solution not coming from the local OCW.
match source {
TransactionSource::Local | TransactionSource::InBlock => { /* allowed */ },
_ => return InvalidTransaction::Call.into(),
}
let _ = Self::unsigned_pre_dispatch_checks(raw_solution)
.map_err(|err| {
log!(debug, "unsigned transaction validation failed due to {:?}", err);
err
})
.map_err(dispatch_error_to_invalid)?;
ValidTransaction::with_tag_prefix("OffchainElection")
// The higher the score.minimal_stake, the better a solution is.
.priority(
T::MinerTxPriority::get()
.saturating_add(raw_solution.score.minimal_stake.saturated_into()),
)
// Used to deduplicate unsigned solutions: each validator should produce one
// solution per round at most, and solutions are not propagate.
.and_provides(raw_solution.round)
// Transaction should stay in the pool for the duration of the unsigned phase.
.longevity(T::UnsignedPhase::get().saturated_into::<u64>())
// We don't propagate this. This can never be validated at a remote node.
.propagate(false)
.build()
} else {
InvalidTransaction::Call.into()
}
}
fn pre_dispatch(call: &Self::Call) -> Result<(), TransactionValidityError> {
if let Call::submit_unsigned { raw_solution, .. } = call {
Self::unsigned_pre_dispatch_checks(raw_solution)
.map_err(dispatch_error_to_invalid)
.map_err(Into::into)
} else {
Err(InvalidTransaction::Call.into())
}
}
}
#[pallet::type_value]
pub fn DefaultForRound() -> u32 {
1
}
/// Internal counter for the number of rounds.
///
/// This is useful for de-duplication of transactions submitted to the pool, and general
/// diagnostics of the pallet.
///
/// This is merely incremented once per every time that an upstream `elect` is called.
#[pallet::storage]
#[pallet::getter(fn round)]
pub type Round<T: Config> = StorageValue<_, u32, ValueQuery, DefaultForRound>;
/// Current phase.
#[pallet::storage]
#[pallet::getter(fn current_phase)]
pub type CurrentPhase<T: Config> = StorageValue<_, Phase<T::BlockNumber>, ValueQuery>;
/// Current best solution, signed or unsigned, queued to be returned upon `elect`.
#[pallet::storage]
#[pallet::getter(fn queued_solution)]
pub type QueuedSolution<T: Config> = StorageValue<_, ReadySolution<T>>;
/// Snapshot data of the round.
///
/// This is created at the beginning of the signed phase and cleared upon calling `elect`.
#[pallet::storage]
#[pallet::getter(fn snapshot)]
pub type Snapshot<T: Config> = StorageValue<_, RoundSnapshot<T>>;
/// Desired number of targets to elect for this round.
///
/// Only exists when [`Snapshot`] is present.
#[pallet::storage]
#[pallet::getter(fn desired_targets)]
pub type DesiredTargets<T> = StorageValue<_, u32>;
/// The metadata of the [`RoundSnapshot`]
///
/// Only exists when [`Snapshot`] is present.
#[pallet::storage]
#[pallet::getter(fn snapshot_metadata)]
pub type SnapshotMetadata<T: Config> = StorageValue<_, SolutionOrSnapshotSize>;
// The following storage items collectively comprise `SignedSubmissions<T>`, and should never be
// accessed independently. Instead, get `Self::signed_submissions()`, modify it as desired, and
// then do `signed_submissions.put()` when you're done with it.
/// The next index to be assigned to an incoming signed submission.
///
/// Every accepted submission is assigned a unique index; that index is bound to that particular
/// submission for the duration of the election. On election finalization, the next index is
/// reset to 0.
///
/// We can't just use `SignedSubmissionIndices.len()`, because that's a bounded set; past its
/// capacity, it will simply saturate. We can't just iterate over `SignedSubmissionsMap`,
/// because iteration is slow. Instead, we store the value here.
#[pallet::storage]
pub type SignedSubmissionNextIndex<T: Config> = StorageValue<_, u32, ValueQuery>;
/// A sorted, bounded vector of `(score, block_number, index)`, where each `index` points to a
/// value in `SignedSubmissions`.
///
/// We never need to process more than a single signed submission at a time. Signed submissions
/// can be quite large, so we're willing to pay the cost of multiple database accesses to access
/// them one at a time instead of reading and decoding all of them at once.
#[pallet::storage]
pub type SignedSubmissionIndices<T: Config> =
StorageValue<_, SubmissionIndicesOf<T>, ValueQuery>;
/// Unchecked, signed solutions.
///
/// Together with `SubmissionIndices`, this stores a bounded set of `SignedSubmissions` while
/// allowing us to keep only a single one in memory at a time.
///
/// Twox note: the key of the map is an auto-incrementing index which users cannot inspect or
/// affect; we shouldn't need a cryptographically secure hasher.
#[pallet::storage]
pub type SignedSubmissionsMap<T: Config> =
StorageMap<_, Twox64Concat, u32, SignedSubmissionOf<T>, OptionQuery>;
// `SignedSubmissions` items end here.
/// The minimum score that each 'untrusted' solution must attain in order to be considered
/// feasible.
///
/// Can be set via `set_minimum_untrusted_score`.
#[pallet::storage]
#[pallet::getter(fn minimum_untrusted_score)]
pub type MinimumUntrustedScore<T: Config> = StorageValue<_, ElectionScore>;
/// The current storage version.
///
/// v1: https://github.com/paritytech/substrate/pull/12237/
const STORAGE_VERSION: StorageVersion = StorageVersion::new(1);
#[pallet::pallet]
#[pallet::without_storage_info]
#[pallet::storage_version(STORAGE_VERSION)]
pub struct Pallet<T>(PhantomData<T>);
}
impl<T: Config> Pallet<T> {
/// Internal logic of the offchain worker, to be executed only when the offchain lock is
/// acquired with success.
fn do_synchronized_offchain_worker(now: T::BlockNumber) {
let current_phase = Self::current_phase();
log!(trace, "lock for offchain worker acquired. Phase = {:?}", current_phase);
match current_phase {
Phase::Unsigned((true, opened)) if opened == now => {
// Mine a new solution, cache it, and attempt to submit it
let initial_output = Self::ensure_offchain_repeat_frequency(now).and_then(|_| {
// This is executed at the beginning of each round. Any cache is now invalid.
// Clear it.
unsigned::kill_ocw_solution::<T>();
Self::mine_check_save_submit()
});
log!(debug, "initial offchain thread output: {:?}", initial_output);
},
Phase::Unsigned((true, opened)) if opened < now => {
// Try and resubmit the cached solution, and recompute ONLY if it is not
// feasible.
let resubmit_output = Self::ensure_offchain_repeat_frequency(now)
.and_then(|_| Self::restore_or_compute_then_maybe_submit());
log!(debug, "resubmit offchain thread output: {:?}", resubmit_output);
},
_ => {},
}
}
/// Phase transition helper.
pub(crate) fn phase_transition(to: Phase<T::BlockNumber>) {
log!(info, "Starting phase {:?}, round {}.", to, Self::round());
Self::deposit_event(Event::PhaseTransitioned {
from: <CurrentPhase<T>>::get(),
to,
round: Self::round(),
});
<CurrentPhase<T>>::put(to);
}
/// Parts of [`create_snapshot`] that happen inside of this pallet.
///
/// Extracted for easier weight calculation.
fn create_snapshot_internal(
targets: Vec<T::AccountId>,
voters: Vec<VoterOf<T>>,
desired_targets: u32,
) {
let metadata =
SolutionOrSnapshotSize { voters: voters.len() as u32, targets: targets.len() as u32 };
log!(info, "creating a snapshot with metadata {:?}", metadata);
<SnapshotMetadata<T>>::put(metadata);
<DesiredTargets<T>>::put(desired_targets);
// instead of using storage APIs, we do a manual encoding into a fixed-size buffer.
// `encoded_size` encodes it without storing it anywhere, this should not cause any
// allocation.
let snapshot = RoundSnapshot::<T> { voters, targets };
let size = snapshot.encoded_size();
log!(debug, "snapshot pre-calculated size {:?}", size);
let mut buffer = Vec::with_capacity(size);
snapshot.encode_to(&mut buffer);
// do some checks.
debug_assert_eq!(buffer, snapshot.encode());
// buffer should have not re-allocated since.
debug_assert!(buffer.len() == size && size == buffer.capacity());
sp_io::storage::set(&<Snapshot<T>>::hashed_key(), &buffer);
}
/// Parts of [`create_snapshot`] that happen outside of this pallet.
///
/// Extracted for easier weight calculation.
fn create_snapshot_external(
) -> Result<(Vec<T::AccountId>, Vec<VoterOf<T>>, u32), ElectionError<T>> {
let target_limit = T::MaxElectableTargets::get().saturated_into::<usize>();
let voter_limit = T::MaxElectingVoters::get().saturated_into::<usize>();
let targets = T::DataProvider::electable_targets(Some(target_limit))
.map_err(ElectionError::DataProvider)?;
let voters = T::DataProvider::electing_voters(Some(voter_limit))
.map_err(ElectionError::DataProvider)?;
if targets.len() > target_limit || voters.len() > voter_limit {
return Err(ElectionError::DataProvider("Snapshot too big for submission."))
}
let mut desired_targets = <Pallet<T> as ElectionProviderBase>::desired_targets_checked()
.map_err(|e| ElectionError::DataProvider(e))?;
// If `desired_targets` > `targets.len()`, cap `desired_targets` to that level and emit a
// warning
let max_desired_targets: u32 = targets.len() as u32;
if desired_targets > max_desired_targets {
log!(
warn,
"desired_targets: {} > targets.len(): {}, capping desired_targets",
desired_targets,
max_desired_targets
);
desired_targets = max_desired_targets;
}
Ok((targets, voters, desired_targets))
}
/// Creates the snapshot. Writes new data to:
///
/// 1. [`SnapshotMetadata`]
/// 2. [`RoundSnapshot`]
/// 3. [`DesiredTargets`]
///
/// Returns `Ok(())` if operation is okay.
///
/// This is a *self-weighing* function, it will register its own extra weight as
/// [`DispatchClass::Mandatory`] with the system pallet.
pub fn create_snapshot() -> Result<(), ElectionError<T>> {
// this is self-weighing itself..
let (targets, voters, desired_targets) = Self::create_snapshot_external()?;
// ..therefore we only measure the weight of this and add it.
let internal_weight =
T::WeightInfo::create_snapshot_internal(voters.len() as u32, targets.len() as u32);
Self::create_snapshot_internal(targets, voters, desired_targets);
Self::register_weight(internal_weight);
Ok(())
}
/// Register some amount of weight directly with the system pallet.
///
/// This is always mandatory weight.
fn register_weight(weight: Weight) {
<frame_system::Pallet<T>>::register_extra_weight_unchecked(
weight,
DispatchClass::Mandatory,
);
}
/// Kill everything created by [`Pallet::create_snapshot`].
pub fn kill_snapshot() {
<Snapshot<T>>::kill();
<SnapshotMetadata<T>>::kill();
<DesiredTargets<T>>::kill();
}
/// Checks the feasibility of a solution.
pub fn feasibility_check(
raw_solution: RawSolution<SolutionOf<T::MinerConfig>>,
compute: ElectionCompute,
) -> Result<ReadySolution<T>, FeasibilityError> {
let RawSolution { solution, score, round } = raw_solution;
// First, check round.
ensure!(Self::round() == round, FeasibilityError::InvalidRound);
// Winners are not directly encoded in the solution.
let winners = solution.unique_targets();
let desired_targets =
Self::desired_targets().ok_or(FeasibilityError::SnapshotUnavailable)?;
ensure!(winners.len() as u32 == desired_targets, FeasibilityError::WrongWinnerCount);
// Fail early if targets requested by data provider exceed maximum winners supported.
ensure!(
desired_targets <= <T as pallet::Config>::MaxWinners::get(),
FeasibilityError::TooManyDesiredTargets
);
// Ensure that the solution's score can pass absolute min-score.
let submitted_score = raw_solution.score;
ensure!(
Self::minimum_untrusted_score().map_or(true, |min_score| {
submitted_score.strict_threshold_better(min_score, Perbill::zero())
}),
FeasibilityError::UntrustedScoreTooLow
);
// Read the entire snapshot.
let RoundSnapshot { voters: snapshot_voters, targets: snapshot_targets } =
Self::snapshot().ok_or(FeasibilityError::SnapshotUnavailable)?;
// ----- Start building. First, we need some closures.
let cache = helpers::generate_voter_cache::<T::MinerConfig>(&snapshot_voters);
let voter_at = helpers::voter_at_fn::<T::MinerConfig>(&snapshot_voters);
let target_at = helpers::target_at_fn::<T::MinerConfig>(&snapshot_targets);
let voter_index = helpers::voter_index_fn_usize::<T::MinerConfig>(&cache);
// Then convert solution -> assignment. This will fail if any of the indices are gibberish,
// namely any of the voters or targets.
let assignments = solution
.into_assignment(voter_at, target_at)
.map_err::<FeasibilityError, _>(Into::into)?;
// Ensure that assignments is correct.
let _ = assignments.iter().try_for_each(|assignment| {
// Check that assignment.who is actually a voter (defensive-only).
// NOTE: while using the index map from `voter_index` is better than a blind linear
// search, this *still* has room for optimization. Note that we had the index when
// we did `solution -> assignment` and we lost it. Ideal is to keep the index
// around.
// Defensive-only: must exist in the snapshot.
let snapshot_index =
voter_index(&assignment.who).ok_or(FeasibilityError::InvalidVoter)?;
// Defensive-only: index comes from the snapshot, must exist.
let (_voter, _stake, targets) =
snapshot_voters.get(snapshot_index).ok_or(FeasibilityError::InvalidVoter)?;
// Check that all of the targets are valid based on the snapshot.
if assignment.distribution.iter().any(|(d, _)| !targets.contains(d)) {
return Err(FeasibilityError::InvalidVote)
}
Ok(())
})?;
// ----- Start building support. First, we need one more closure.
let stake_of = helpers::stake_of_fn::<T::MinerConfig>(&snapshot_voters, &cache);
// This might fail if the normalization fails. Very unlikely. See `integrity_test`.
let staked_assignments = assignment_ratio_to_staked_normalized(assignments, stake_of)
.map_err::<FeasibilityError, _>(Into::into)?;
let supports = sp_npos_elections::to_supports(&staked_assignments);
// Finally, check that the claimed score was indeed correct.
let known_score = supports.evaluate();
ensure!(known_score == score, FeasibilityError::InvalidScore);
// Size of winners in miner solution is equal to `desired_targets` <= `MaxWinners`.
let supports = supports
.try_into()
.defensive_map_err(|_| FeasibilityError::BoundedConversionFailed)?;
Ok(ReadySolution { supports, compute, score })
}
/// Perform the tasks to be done after a new `elect` has been triggered:
///
/// 1. Increment round.
/// 2. Change phase to [`Phase::Off`]
/// 3. Clear all snapshot data.
fn rotate_round() {
// Inc round.
<Round<T>>::mutate(|r| *r += 1);
// Phase is off now.
Self::phase_transition(Phase::Off);
// Kill snapshots.
Self::kill_snapshot();
}
fn do_elect() -> Result<BoundedSupportsOf<Self>, ElectionError<T>> {
// We have to unconditionally try finalizing the signed phase here. There are only two
// possibilities:
//
// - signed phase was open, in which case this is essential for correct functioning of the
// system
// - signed phase was complete or not started, in which case finalization is idempotent and
// inexpensive (1 read of an empty vector).
let _ = Self::finalize_signed_phase();
<QueuedSolution<T>>::take()
.ok_or(ElectionError::<T>::NothingQueued)
.or_else(|_| {
T::Fallback::instant_elect(None, None)
.map_err(|fe| ElectionError::Fallback(fe))
.and_then(|supports| {
Ok(ReadySolution {
supports,
score: Default::default(),
compute: ElectionCompute::Fallback,
})
})
})
.map(|ReadySolution { compute, score, supports }| {
Self::deposit_event(Event::ElectionFinalized { compute, score });
if Self::round() != 1 {
log!(info, "Finalized election round with compute {:?}.", compute);
}
supports
})
.map_err(|err| {
Self::deposit_event(Event::ElectionFailed);
if Self::round() != 1 {
log!(warn, "Failed to finalize election round. reason {:?}", err);
}
err
})
}
/// record the weight of the given `supports`.
fn weigh_supports(supports: &Supports<T::AccountId>) {
let active_voters = supports
.iter()
.map(|(_, x)| x)
.fold(Zero::zero(), |acc, next| acc + next.voters.len() as u32);
let desired_targets = supports.len() as u32;
Self::register_weight(T::WeightInfo::elect_queued(active_voters, desired_targets));
}
}
impl<T: Config> ElectionProviderBase for Pallet<T> {
type AccountId = T::AccountId;
type BlockNumber = T::BlockNumber;
type Error = ElectionError<T>;
type MaxWinners = T::MaxWinners;
type DataProvider = T::DataProvider;
}
impl<T: Config> ElectionProvider for Pallet<T> {
fn ongoing() -> bool {
match Self::current_phase() {
Phase::Off => false,
_ => true,
}
}
fn elect() -> Result<BoundedSupportsOf<Self>, Self::Error> {
match Self::do_elect() {
Ok(supports) => {
// All went okay, record the weight, put sign to be Off, clean snapshot, etc.
Self::weigh_supports(&supports);
Self::rotate_round();
Ok(supports)
},
Err(why) => {
log!(error, "Entering emergency mode: {:?}", why);
Self::phase_transition(Phase::Emergency);
Err(why)
},
}
}
}
/// convert a DispatchError to a custom InvalidTransaction with the inner code being the error
/// number.
pub fn dispatch_error_to_invalid(error: DispatchError) -> InvalidTransaction {
let error_number = match error {
DispatchError::Module(ModuleError { error, .. }) => error[0],
_ => 0,
};
InvalidTransaction::Custom(error_number)
}
#[cfg(test)]
mod feasibility_check {
//! All of the tests here should be dedicated to only testing the feasibility check and nothing
//! more. The best way to audit and review these tests is to try and come up with a solution
//! that is invalid, but gets through the system as valid.
use super::*;
use crate::mock::{
raw_solution, roll_to, EpochLength, ExtBuilder, MultiPhase, Runtime, SignedPhase,
TargetIndex, UnsignedPhase, VoterIndex,
};
use frame_support::{assert_noop, assert_ok};
const COMPUTE: ElectionCompute = ElectionCompute::OnChain;
#[test]
fn snapshot_is_there() {
ExtBuilder::default().build_and_execute(|| {
roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
assert!(MultiPhase::current_phase().is_signed());
let solution = raw_solution();
// For whatever reason it might be:
<Snapshot<Runtime>>::kill();
assert_noop!(
MultiPhase::feasibility_check(solution, COMPUTE),
FeasibilityError::SnapshotUnavailable
);
})
}
#[test]
fn round() {
ExtBuilder::default().build_and_execute(|| {
roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
assert!(MultiPhase::current_phase().is_signed());
let mut solution = raw_solution();
solution.round += 1;
assert_noop!(
MultiPhase::feasibility_check(solution, COMPUTE),
FeasibilityError::InvalidRound
);
})
}
#[test]
fn desired_targets_gets_capped() {
ExtBuilder::default().desired_targets(8).build_and_execute(|| {
roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
assert!(MultiPhase::current_phase().is_signed());
let raw = raw_solution();
assert_eq!(raw.solution.unique_targets().len(), 4);
// desired_targets is capped to the number of targets which is 4
assert_eq!(MultiPhase::desired_targets().unwrap(), 4);
// It should succeed
assert_ok!(MultiPhase::feasibility_check(raw, COMPUTE));
})
}
#[test]
fn less_than_desired_targets_fails() {
ExtBuilder::default().desired_targets(8).build_and_execute(|| {
roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
assert!(MultiPhase::current_phase().is_signed());
let mut raw = raw_solution();
assert_eq!(raw.solution.unique_targets().len(), 4);
// desired_targets is capped to the number of targets which is 4
assert_eq!(MultiPhase::desired_targets().unwrap(), 4);
// Force the number of winners to be bigger to fail
raw.solution.votes1[0].1 = 4;
// It should succeed
assert_noop!(
MultiPhase::feasibility_check(raw, COMPUTE),
FeasibilityError::WrongWinnerCount,
);
})
}
#[test]
fn winner_indices() {
ExtBuilder::default().desired_targets(2).build_and_execute(|| {
roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
assert!(MultiPhase::current_phase().is_signed());
let mut raw = raw_solution();
assert_eq!(MultiPhase::snapshot().unwrap().targets.len(), 4);
// ----------------------------------------------------^^ valid range is [0..3].
// Swap all votes from 3 to 4. This will ensure that the number of unique winners will
// still be 4, but one of the indices will be gibberish. Requirement is to make sure 3 a
// winner, which we don't do here.
raw.solution
.votes1
.iter_mut()
.filter(|(_, t)| *t == TargetIndex::from(3u16))
.for_each(|(_, t)| *t += 1);
raw.solution.votes2.iter_mut().for_each(|(_, [(t0, _)], t1)| {
if *t0 == TargetIndex::from(3u16) {
*t0 += 1
};
if *t1 == TargetIndex::from(3u16) {
*t1 += 1
};
});
assert_noop!(
MultiPhase::feasibility_check(raw, COMPUTE),
FeasibilityError::NposElection(sp_npos_elections::Error::SolutionInvalidIndex)
);
})
}
#[test]
fn voter_indices() {
// Should be caught in `solution.into_assignment`.
ExtBuilder::default().desired_targets(2).build_and_execute(|| {
roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
assert!(MultiPhase::current_phase().is_signed());
let mut solution = raw_solution();
assert_eq!(MultiPhase::snapshot().unwrap().voters.len(), 8);
// ----------------------------------------------------^^ valid range is [0..7].
// Check that there is an index 7 in votes1, and flip to 8.
assert!(
solution
.solution
.votes1
.iter_mut()
.filter(|(v, _)| *v == VoterIndex::from(7u32))
.map(|(v, _)| *v = 8)
.count() > 0
);
assert_noop!(
MultiPhase::feasibility_check(solution, COMPUTE),
FeasibilityError::NposElection(sp_npos_elections::Error::SolutionInvalidIndex),
);
})
}
#[test]
fn voter_votes() {
ExtBuilder::default().desired_targets(2).build_and_execute(|| {
roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
assert!(MultiPhase::current_phase().is_signed());
let mut solution = raw_solution();
assert_eq!(MultiPhase::snapshot().unwrap().voters.len(), 8);
// ----------------------------------------------------^^ valid range is [0..7].
// First, check that voter at index 7 (40) actually voted for 3 (40) -- this is self
// vote. Then, change the vote to 2 (30).
assert_eq!(
solution
.solution
.votes1
.iter_mut()
.filter(|(v, t)| *v == 7 && *t == 3)
.map(|(_, t)| *t = 2)
.count(),
1,
);
assert_noop!(
MultiPhase::feasibility_check(solution, COMPUTE),
FeasibilityError::InvalidVote,
);
})
}
#[test]
fn score() {
ExtBuilder::default().desired_targets(2).build_and_execute(|| {
roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
assert!(MultiPhase::current_phase().is_signed());
let mut solution = raw_solution();
assert_eq!(MultiPhase::snapshot().unwrap().voters.len(), 8);
// Simply faff with the score.
solution.score.minimal_stake += 1;
assert_noop!(
MultiPhase::feasibility_check(solution, COMPUTE),
FeasibilityError::InvalidScore,
);
})
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
mock::{
multi_phase_events, raw_solution, roll_to, roll_to_signed, roll_to_unsigned, AccountId,
ExtBuilder, MockWeightInfo, MockedWeightInfo, MultiPhase, Runtime, RuntimeOrigin,
SignedMaxSubmissions, System, TargetIndex, Targets,
},
Phase,
};
use frame_support::{assert_noop, assert_ok};
use sp_npos_elections::{BalancingConfig, Support};
#[test]
fn phase_rotation_works() {
ExtBuilder::default().build_and_execute(|| {
// 0 ------- 15 ------- 25 ------- 30 ------- ------- 45 ------- 55 ------- 60
// | | | | | |
// Signed Unsigned Elect Signed Unsigned Elect
assert_eq!(System::block_number(), 0);
assert_eq!(MultiPhase::current_phase(), Phase::Off);
assert_eq!(MultiPhase::round(), 1);
roll_to(4);
assert_eq!(MultiPhase::current_phase(), Phase::Off);
assert!(MultiPhase::snapshot().is_none());
assert_eq!(MultiPhase::round(), 1);
roll_to_signed();
assert_eq!(MultiPhase::current_phase(), Phase::Signed);
assert_eq!(
multi_phase_events(),
vec![Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 }]
);
assert!(MultiPhase::snapshot().is_some());
assert_eq!(MultiPhase::round(), 1);
roll_to(24);
assert_eq!(MultiPhase::current_phase(), Phase::Signed);
assert!(MultiPhase::snapshot().is_some());
assert_eq!(MultiPhase::round(), 1);
roll_to_unsigned();
assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::PhaseTransitioned {
from: Phase::Signed,
to: Phase::Unsigned((true, 25)),
round: 1
},
],
);
assert!(MultiPhase::snapshot().is_some());
roll_to(29);
assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
assert!(MultiPhase::snapshot().is_some());
roll_to(30);
assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
assert!(MultiPhase::snapshot().is_some());
// We close when upstream tells us to elect.
roll_to(32);
assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
assert!(MultiPhase::snapshot().is_some());
assert_ok!(MultiPhase::elect());
assert!(MultiPhase::current_phase().is_off());
assert!(MultiPhase::snapshot().is_none());
assert_eq!(MultiPhase::round(), 2);
roll_to(44);
assert!(MultiPhase::current_phase().is_off());
roll_to_signed();
assert!(MultiPhase::current_phase().is_signed());
roll_to(55);
assert!(MultiPhase::current_phase().is_unsigned_open_at(55));
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::PhaseTransitioned {
from: Phase::Signed,
to: Phase::Unsigned((true, 25)),
round: 1
},
Event::ElectionFinalized {
compute: ElectionCompute::Fallback,
score: ElectionScore {
minimal_stake: 0,
sum_stake: 0,
sum_stake_squared: 0
}
},
Event::PhaseTransitioned {
from: Phase::Unsigned((true, 25)),
to: Phase::Off,
round: 2
},
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 2 },
Event::PhaseTransitioned {
from: Phase::Signed,
to: Phase::Unsigned((true, 55)),
round: 2
},
]
);
})
}
#[test]
fn signed_phase_void() {
ExtBuilder::default().phases(0, 10).build_and_execute(|| {
roll_to(15);
assert!(MultiPhase::current_phase().is_off());
roll_to(19);
assert!(MultiPhase::current_phase().is_off());
roll_to(20);
assert!(MultiPhase::current_phase().is_unsigned_open_at(20));
assert!(MultiPhase::snapshot().is_some());
roll_to(30);
assert!(MultiPhase::current_phase().is_unsigned_open_at(20));
assert_ok!(MultiPhase::elect());
assert!(MultiPhase::current_phase().is_off());
assert!(MultiPhase::snapshot().is_none());
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned {
from: Phase::Off,
to: Phase::Unsigned((true, 20)),
round: 1
},
Event::ElectionFinalized {
compute: ElectionCompute::Fallback,
score: ElectionScore {
minimal_stake: 0,
sum_stake: 0,
sum_stake_squared: 0
}
},
Event::PhaseTransitioned {
from: Phase::Unsigned((true, 20)),
to: Phase::Off,
round: 2
},
]
);
});
}
#[test]
fn unsigned_phase_void() {
ExtBuilder::default().phases(10, 0).build_and_execute(|| {
roll_to(15);
assert!(MultiPhase::current_phase().is_off());
roll_to(19);
assert!(MultiPhase::current_phase().is_off());
roll_to_signed();
assert!(MultiPhase::current_phase().is_signed());
assert!(MultiPhase::snapshot().is_some());
roll_to(30);
assert!(MultiPhase::current_phase().is_signed());
assert_ok!(MultiPhase::elect());
assert!(MultiPhase::current_phase().is_off());
assert!(MultiPhase::snapshot().is_none());
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::ElectionFinalized {
compute: ElectionCompute::Fallback,
score: ElectionScore {
minimal_stake: 0,
sum_stake: 0,
sum_stake_squared: 0
}
},
Event::PhaseTransitioned { from: Phase::Signed, to: Phase::Off, round: 2 },
]
)
});
}
#[test]
fn both_phases_void() {
ExtBuilder::default().phases(0, 0).build_and_execute(|| {
roll_to(15);
assert!(MultiPhase::current_phase().is_off());
roll_to(19);
assert!(MultiPhase::current_phase().is_off());
roll_to(20);
assert!(MultiPhase::current_phase().is_off());
roll_to(30);
assert!(MultiPhase::current_phase().is_off());
// This module is now only capable of doing on-chain backup.
assert_ok!(MultiPhase::elect());
assert!(MultiPhase::current_phase().is_off());
assert_eq!(
multi_phase_events(),
vec![
Event::ElectionFinalized {
compute: ElectionCompute::Fallback,
score: ElectionScore {
minimal_stake: 0,
sum_stake: 0,
sum_stake_squared: 0
}
},
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Off, round: 2 },
]
);
});
}
#[test]
fn early_termination() {
// An early termination in the signed phase, with no queued solution.
ExtBuilder::default().build_and_execute(|| {
// Signed phase started at block 15 and will end at 25.
roll_to_signed();
assert_eq!(
multi_phase_events(),
vec![Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 }]
);
assert_eq!(MultiPhase::current_phase(), Phase::Signed);
assert_eq!(MultiPhase::round(), 1);
// An unexpected call to elect.
assert_ok!(MultiPhase::elect());
// We surely can't have any feasible solutions. This will cause an on-chain election.
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::ElectionFinalized {
compute: ElectionCompute::Fallback,
score: Default::default()
},
Event::PhaseTransitioned { from: Phase::Signed, to: Phase::Off, round: 2 },
],
);
// All storage items must be cleared.
assert_eq!(MultiPhase::round(), 2);
assert!(MultiPhase::snapshot().is_none());
assert!(MultiPhase::snapshot_metadata().is_none());
assert!(MultiPhase::desired_targets().is_none());
assert!(MultiPhase::queued_solution().is_none());
assert!(MultiPhase::signed_submissions().is_empty());
})
}
#[test]
fn early_termination_with_submissions() {
// an early termination in the signed phase, with no queued solution.
ExtBuilder::default().build_and_execute(|| {
// signed phase started at block 15 and will end at 25.
roll_to_signed();
assert_eq!(
multi_phase_events(),
vec![Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 }]
);
assert_eq!(MultiPhase::current_phase(), Phase::Signed);
assert_eq!(MultiPhase::round(), 1);
// fill the queue with signed submissions
for s in 0..SignedMaxSubmissions::get() {
let solution = RawSolution {
score: ElectionScore { minimal_stake: (5 + s).into(), ..Default::default() },
..Default::default()
};
assert_ok!(MultiPhase::submit(
crate::mock::RuntimeOrigin::signed(99),
Box::new(solution)
));
}
// an unexpected call to elect.
assert_ok!(MultiPhase::elect());
// all storage items must be cleared.
assert_eq!(MultiPhase::round(), 2);
assert!(MultiPhase::snapshot().is_none());
assert!(MultiPhase::snapshot_metadata().is_none());
assert!(MultiPhase::desired_targets().is_none());
assert!(MultiPhase::queued_solution().is_none());
assert!(MultiPhase::signed_submissions().is_empty());
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::SolutionStored {
compute: ElectionCompute::Signed,
origin: Some(99),
prev_ejected: false
},
Event::SolutionStored {
compute: ElectionCompute::Signed,
origin: Some(99),
prev_ejected: false
},
Event::SolutionStored {
compute: ElectionCompute::Signed,
origin: Some(99),
prev_ejected: false
},
Event::SolutionStored {
compute: ElectionCompute::Signed,
origin: Some(99),
prev_ejected: false
},
Event::SolutionStored {
compute: ElectionCompute::Signed,
origin: Some(99),
prev_ejected: false
},
Event::Slashed { account: 99, value: 5 },
Event::Slashed { account: 99, value: 5 },
Event::Slashed { account: 99, value: 5 },
Event::Slashed { account: 99, value: 5 },
Event::Slashed { account: 99, value: 5 },
Event::ElectionFinalized {
compute: ElectionCompute::Fallback,
score: ElectionScore {
minimal_stake: 0,
sum_stake: 0,
sum_stake_squared: 0
}
},
Event::PhaseTransitioned { from: Phase::Signed, to: Phase::Off, round: 2 },
]
);
})
}
#[test]
fn check_events_with_compute_signed() {
ExtBuilder::default().build_and_execute(|| {
roll_to_signed();
assert!(MultiPhase::current_phase().is_signed());
let solution = raw_solution();
assert_ok!(MultiPhase::submit(
crate::mock::RuntimeOrigin::signed(99),
Box::new(solution)
));
roll_to(30);
assert_ok!(MultiPhase::elect());
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::SolutionStored {
compute: ElectionCompute::Signed,
origin: Some(99),
prev_ejected: false
},
Event::Rewarded { account: 99, value: 7 },
Event::PhaseTransitioned {
from: Phase::Signed,
to: Phase::Unsigned((true, 25)),
round: 1
},
Event::ElectionFinalized {
compute: ElectionCompute::Signed,
score: ElectionScore {
minimal_stake: 40,
sum_stake: 100,
sum_stake_squared: 5200
}
},
Event::PhaseTransitioned {
from: Phase::Unsigned((true, 25)),
to: Phase::Off,
round: 2
},
],
);
})
}
#[test]
fn check_events_with_compute_unsigned() {
ExtBuilder::default().build_and_execute(|| {
roll_to_unsigned();
assert!(MultiPhase::current_phase().is_unsigned());
// ensure we have snapshots in place.
assert!(MultiPhase::snapshot().is_some());
assert_eq!(MultiPhase::desired_targets().unwrap(), 2);
// mine seq_phragmen solution with 2 iters.
let (solution, witness) = MultiPhase::mine_solution().unwrap();
// ensure this solution is valid.
assert!(MultiPhase::queued_solution().is_none());
assert_ok!(MultiPhase::submit_unsigned(
crate::mock::RuntimeOrigin::none(),
Box::new(solution),
witness
));
assert!(MultiPhase::queued_solution().is_some());
assert_ok!(MultiPhase::elect());
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::PhaseTransitioned {
from: Phase::Signed,
to: Phase::Unsigned((true, 25)),
round: 1
},
Event::SolutionStored {
compute: ElectionCompute::Unsigned,
origin: None,
prev_ejected: false
},
Event::ElectionFinalized {
compute: ElectionCompute::Unsigned,
score: ElectionScore {
minimal_stake: 40,
sum_stake: 100,
sum_stake_squared: 5200
}
},
Event::PhaseTransitioned {
from: Phase::Unsigned((true, 25)),
to: Phase::Off,
round: 2
},
],
);
})
}
#[test]
fn fallback_strategy_works() {
ExtBuilder::default().onchain_fallback(true).build_and_execute(|| {
roll_to_unsigned();
assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
// Zilch solutions thus far, but we get a result.
assert!(MultiPhase::queued_solution().is_none());
let supports = MultiPhase::elect().unwrap();
assert_eq!(
supports,
vec![
(30, Support { total: 40, voters: vec![(2, 5), (4, 5), (30, 30)] }),
(40, Support { total: 60, voters: vec![(2, 5), (3, 10), (4, 5), (40, 40)] })
]
);
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::PhaseTransitioned {
from: Phase::Signed,
to: Phase::Unsigned((true, 25)),
round: 1
},
Event::ElectionFinalized {
compute: ElectionCompute::Fallback,
score: ElectionScore {
minimal_stake: 0,
sum_stake: 0,
sum_stake_squared: 0
}
},
Event::PhaseTransitioned {
from: Phase::Unsigned((true, 25)),
to: Phase::Off,
round: 2
},
]
);
});
ExtBuilder::default().onchain_fallback(false).build_and_execute(|| {
roll_to_unsigned();
assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
// Zilch solutions thus far.
assert!(MultiPhase::queued_solution().is_none());
assert_eq!(MultiPhase::elect().unwrap_err(), ElectionError::Fallback("NoFallback."));
// phase is now emergency.
assert_eq!(MultiPhase::current_phase(), Phase::Emergency);
// snapshot is still there until election finalizes.
assert!(MultiPhase::snapshot().is_some());
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::PhaseTransitioned {
from: Phase::Signed,
to: Phase::Unsigned((true, 25)),
round: 1
},
Event::ElectionFailed,
Event::PhaseTransitioned {
from: Phase::Unsigned((true, 25)),
to: Phase::Emergency,
round: 1
},
]
);
})
}
#[test]
fn governance_fallback_works() {
ExtBuilder::default().onchain_fallback(false).build_and_execute(|| {
roll_to_unsigned();
assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
// Zilch solutions thus far.
assert!(MultiPhase::queued_solution().is_none());
assert_eq!(MultiPhase::elect().unwrap_err(), ElectionError::Fallback("NoFallback."));
// phase is now emergency.
assert_eq!(MultiPhase::current_phase(), Phase::Emergency);
assert!(MultiPhase::queued_solution().is_none());
assert!(MultiPhase::snapshot().is_some());
// no single account can trigger this
assert_noop!(
MultiPhase::governance_fallback(RuntimeOrigin::signed(99), None, None),
DispatchError::BadOrigin
);
// only root can
assert_ok!(MultiPhase::governance_fallback(RuntimeOrigin::root(), None, None));
// something is queued now
assert!(MultiPhase::queued_solution().is_some());
// next election call with fix everything.;
assert!(MultiPhase::elect().is_ok());
assert_eq!(MultiPhase::current_phase(), Phase::Off);
assert_eq!(
multi_phase_events(),
vec![
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
Event::PhaseTransitioned {
from: Phase::Signed,
to: Phase::Unsigned((true, 25)),
round: 1
},
Event::ElectionFailed,
Event::PhaseTransitioned {
from: Phase::Unsigned((true, 25)),
to: Phase::Emergency,
round: 1
},
Event::SolutionStored {
compute: ElectionCompute::Fallback,
origin: None,
prev_ejected: false
},
Event::ElectionFinalized {
compute: ElectionCompute::Fallback,
score: Default::default()
},
Event::PhaseTransitioned { from: Phase::Emergency, to: Phase::Off, round: 2 },
]
);
})
}
#[test]
fn snapshot_too_big_failure_onchain_fallback() {
// the `MockStaking` is designed such that if it has too many targets, it simply fails.
ExtBuilder::default().build_and_execute(|| {
Targets::set((0..(TargetIndex::max_value() as AccountId) + 1).collect::<Vec<_>>());
// Signed phase failed to open.
roll_to(15);
assert_eq!(MultiPhase::current_phase(), Phase::Off);
// Unsigned phase failed to open.
roll_to(25);
assert_eq!(MultiPhase::current_phase(), Phase::Off);
// On-chain backup works though.
let supports = MultiPhase::elect().unwrap();
assert!(supports.len() > 0);
assert_eq!(
multi_phase_events(),
vec![
Event::ElectionFinalized {
compute: ElectionCompute::Fallback,
score: ElectionScore {
minimal_stake: 0,
sum_stake: 0,
sum_stake_squared: 0
}
},
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Off, round: 2 },
]
);
});
}
#[test]
fn snapshot_too_big_failure_no_fallback() {
// and if the backup mode is nothing, we go into the emergency mode..
ExtBuilder::default().onchain_fallback(false).build_and_execute(|| {
crate::mock::Targets::set(
(0..(TargetIndex::max_value() as AccountId) + 1).collect::<Vec<_>>(),
);
// Signed phase failed to open.
roll_to(15);
assert_eq!(MultiPhase::current_phase(), Phase::Off);
// Unsigned phase failed to open.
roll_to(25);
assert_eq!(MultiPhase::current_phase(), Phase::Off);
roll_to(29);
let err = MultiPhase::elect().unwrap_err();
assert_eq!(err, ElectionError::Fallback("NoFallback."));
assert_eq!(MultiPhase::current_phase(), Phase::Emergency);
assert_eq!(
multi_phase_events(),
vec![
Event::ElectionFailed,
Event::PhaseTransitioned { from: Phase::Off, to: Phase::Emergency, round: 1 }
]
);
});
}
#[test]
fn snapshot_too_big_truncate() {
// but if there are too many voters, we simply truncate them.
ExtBuilder::default().build_and_execute(|| {
// we have 8 voters in total.
assert_eq!(crate::mock::Voters::get().len(), 8);
// but we want to take 2.
crate::mock::MaxElectingVoters::set(2);
// Signed phase opens just fine.
roll_to_signed();
assert_eq!(MultiPhase::current_phase(), Phase::Signed);
assert_eq!(
MultiPhase::snapshot_metadata().unwrap(),
SolutionOrSnapshotSize { voters: 2, targets: 4 }
);
})
}
#[test]
fn untrusted_score_verification_is_respected() {
ExtBuilder::default().build_and_execute(|| {
roll_to_signed();
assert_eq!(MultiPhase::current_phase(), Phase::Signed);
// set the solution balancing to get the desired score.
crate::mock::Balancing::set(Some(BalancingConfig { iterations: 2, tolerance: 0 }));
let (solution, _) = MultiPhase::mine_solution().unwrap();
// Default solution's score.
assert!(matches!(solution.score, ElectionScore { minimal_stake: 50, .. }));
<MinimumUntrustedScore<Runtime>>::put(ElectionScore {
minimal_stake: 49,
..Default::default()
});
assert_ok!(MultiPhase::feasibility_check(solution.clone(), ElectionCompute::Signed));
<MinimumUntrustedScore<Runtime>>::put(ElectionScore {
minimal_stake: 51,
..Default::default()
});
assert_noop!(
MultiPhase::feasibility_check(solution, ElectionCompute::Signed),
FeasibilityError::UntrustedScoreTooLow,
);
})
}
#[test]
fn number_of_voters_allowed_2sec_block() {
// Just a rough estimate with the substrate weights.
assert_eq!(MockWeightInfo::get(), MockedWeightInfo::Real);
let all_voters: u32 = 10_000;
let all_targets: u32 = 5_000;
let desired: u32 = 1_000;
let weight_with = |active| {
<Runtime as Config>::WeightInfo::submit_unsigned(
all_voters,
all_targets,
active,
desired,
)
};
let mut active = 1;
while weight_with(active)
.all_lte(<Runtime as frame_system::Config>::BlockWeights::get().max_block) ||
active == all_voters
{
active += 1;
}
println!("can support {} voters to yield a weight of {}", active, weight_with(active));
}
}