1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Cross-Consensus Message format data structures.
use super::MultiLocation;
use crate::v1::{MultiAssetFilter, MultiAssets, WildMultiAsset};
use alloc::{vec, vec::Vec};
use core::result;
use parity_scale_codec::{self, Decode, Encode};
use scale_info::TypeInfo;
pub use crate::v1::AssetInstance;
/// A single general identifier for an asset.
///
/// Represents both fungible and non-fungible assets. May only be used to represent a single asset class.
///
/// Wildcards may or may not be allowed by the interpreting context.
///
/// Assets classes may be identified in one of two ways: either an abstract identifier or a concrete identifier.
/// Implementations may support only one of these. A single asset may be referenced from multiple asset identifiers,
/// though will tend to have only a single *preferred* identifier.
///
/// ### Abstract identifiers
///
/// Abstract identifiers are absolute identifiers that represent a notional asset which can exist within multiple
/// consensus systems. These tend to be simpler to deal with since their broad meaning is unchanged regardless stay of
/// the consensus system in which it is interpreted.
///
/// However, in the attempt to provide uniformity across consensus systems, they may conflate different instantiations
/// of some notional asset (e.g. the reserve asset and a local reserve-backed derivative of it) under the same name,
/// leading to confusion. It also implies that one notional asset is accounted for locally in only one way. This may not
/// be the case, e.g. where there are multiple bridge instances each providing a bridged "BTC" token yet none being
/// fungible between the others.
///
/// Since they are meant to be absolute and universal, a global registry is needed to ensure that name collisions do not
/// occur.
///
/// An abstract identifier is represented as a simple variable-size byte string. As of writing, no global registry
/// exists and no proposals have been put forth for asset labeling.
///
/// ### Concrete identifiers
///
/// Concrete identifiers are *relative identifiers* that specifically identify a single asset through its location in a
/// consensus system relative to the context interpreting. Use of a `MultiLocation` ensures that similar but non
/// fungible variants of the same underlying asset can be properly distinguished, and obviates the need for any kind of
/// central registry.
///
/// The limitation is that the asset identifier cannot be trivially copied between consensus systems and must instead be
/// "re-anchored" whenever being moved to a new consensus system, using the two systems' relative paths.
///
/// Throughout XCM, messages are authored such that *when interpreted from the receiver's point of view* they will have
/// the desired meaning/effect. This means that relative paths should always by constructed to be read from the point of
/// view of the receiving system, *which may be have a completely different meaning in the authoring system*.
///
/// Concrete identifiers are the preferred way of identifying an asset since they are entirely unambiguous.
///
/// A concrete identifier is represented by a `MultiLocation`. If a system has an unambiguous primary asset (such as
/// Bitcoin with BTC or Ethereum with ETH), then it will conventionally be identified as the chain itself. Alternative
/// and more specific ways of referring to an asset within a system include:
///
/// - `<chain>/PalletInstance(<id>)` for a Frame chain with a single-asset pallet instance (such as an instance of the
/// Balances pallet).
/// - `<chain>/PalletInstance(<id>)/GeneralIndex(<index>)` for a Frame chain with an indexed multi-asset pallet instance
/// (such as an instance of the Assets pallet).
/// - `<chain>/AccountId32` for an ERC-20-style single-asset smart-contract on a Frame-based contracts chain.
/// - `<chain>/AccountKey20` for an ERC-20-style single-asset smart-contract on an Ethereum-like chain.
///
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Encode, Decode, Debug, TypeInfo)]
pub enum MultiAsset {
/// No assets. Rarely used.
None,
/// All assets. Typically used for the subset of assets to be used for an `Order`, and in that context means
/// "all assets currently in holding".
All,
/// All fungible assets. Typically used for the subset of assets to be used for an `Order`, and in that context
/// means "all fungible assets currently in holding".
AllFungible,
/// All non-fungible assets. Typically used for the subset of assets to be used for an `Order`, and in that
/// context means "all non-fungible assets currently in holding".
AllNonFungible,
/// All fungible assets of a given abstract asset `id`entifier.
AllAbstractFungible { id: Vec<u8> },
/// All non-fungible assets of a given abstract asset `class`.
AllAbstractNonFungible { class: Vec<u8> },
/// All fungible assets of a given concrete asset `id`entifier.
AllConcreteFungible { id: MultiLocation },
/// All non-fungible assets of a given concrete asset `class`.
AllConcreteNonFungible { class: MultiLocation },
/// Some specific `amount` of the fungible asset identified by an abstract `id`.
AbstractFungible {
id: Vec<u8>,
#[codec(compact)]
amount: u128,
},
/// Some specific `instance` of the non-fungible asset whose `class` is identified abstractly.
AbstractNonFungible { class: Vec<u8>, instance: AssetInstance },
/// Some specific `amount` of the fungible asset identified by an concrete `id`.
ConcreteFungible {
id: MultiLocation,
#[codec(compact)]
amount: u128,
},
/// Some specific `instance` of the non-fungible asset whose `class` is identified concretely.
ConcreteNonFungible { class: MultiLocation, instance: AssetInstance },
}
impl MultiAsset {
/// Returns `true` if the `MultiAsset` is a wildcard and can refer to classes of assets, instead of just one.
///
/// Typically can also be inferred by the name starting with `All`.
pub fn is_wildcard(&self) -> bool {
match self {
MultiAsset::None |
MultiAsset::AbstractFungible { .. } |
MultiAsset::AbstractNonFungible { .. } |
MultiAsset::ConcreteFungible { .. } |
MultiAsset::ConcreteNonFungible { .. } => false,
MultiAsset::All |
MultiAsset::AllFungible |
MultiAsset::AllNonFungible |
MultiAsset::AllAbstractFungible { .. } |
MultiAsset::AllConcreteFungible { .. } |
MultiAsset::AllAbstractNonFungible { .. } |
MultiAsset::AllConcreteNonFungible { .. } => true,
}
}
fn is_none(&self) -> bool {
match self {
MultiAsset::None |
MultiAsset::AbstractFungible { amount: 0, .. } |
MultiAsset::ConcreteFungible { amount: 0, .. } => true,
_ => false,
}
}
fn is_fungible(&self) -> bool {
match self {
MultiAsset::All |
MultiAsset::AllFungible |
MultiAsset::AllAbstractFungible { .. } |
MultiAsset::AllConcreteFungible { .. } |
MultiAsset::AbstractFungible { .. } |
MultiAsset::ConcreteFungible { .. } => true,
_ => false,
}
}
fn is_non_fungible(&self) -> bool {
match self {
MultiAsset::All |
MultiAsset::AllNonFungible |
MultiAsset::AllAbstractNonFungible { .. } |
MultiAsset::AllConcreteNonFungible { .. } |
MultiAsset::AbstractNonFungible { .. } |
MultiAsset::ConcreteNonFungible { .. } => true,
_ => false,
}
}
fn is_concrete_fungible(&self, id: &MultiLocation) -> bool {
match self {
MultiAsset::AllFungible => true,
MultiAsset::AllConcreteFungible { id: i } |
MultiAsset::ConcreteFungible { id: i, .. } => i == id,
_ => false,
}
}
fn is_abstract_fungible(&self, id: &[u8]) -> bool {
match self {
MultiAsset::AllFungible => true,
MultiAsset::AllAbstractFungible { id: i } |
MultiAsset::AbstractFungible { id: i, .. } => i == id,
_ => false,
}
}
fn is_concrete_non_fungible(&self, class: &MultiLocation) -> bool {
match self {
MultiAsset::AllNonFungible => true,
MultiAsset::AllConcreteNonFungible { class: i } |
MultiAsset::ConcreteNonFungible { class: i, .. } => i == class,
_ => false,
}
}
fn is_abstract_non_fungible(&self, class: &[u8]) -> bool {
match self {
MultiAsset::AllNonFungible => true,
MultiAsset::AllAbstractNonFungible { class: i } |
MultiAsset::AbstractNonFungible { class: i, .. } => i == class,
_ => false,
}
}
fn is_all(&self) -> bool {
matches!(self, MultiAsset::All)
}
/// Returns true if `self` is a super-set of the given `inner`.
///
/// Typically, any wildcard is never contained in anything else, and a wildcard can contain any other non-wildcard.
/// For more details, see the implementation and tests.
pub fn contains(&self, inner: &MultiAsset) -> bool {
use MultiAsset::*;
// Inner cannot be wild
if inner.is_wildcard() {
return false
}
// Everything contains nothing.
if inner.is_none() {
return true
}
// Everything contains anything.
if self.is_all() {
return true
}
// Nothing contains nothing.
if self.is_none() {
return false
}
match self {
// Anything fungible contains "all fungibles"
AllFungible => inner.is_fungible(),
// Anything non-fungible contains "all non-fungibles"
AllNonFungible => inner.is_non_fungible(),
AllConcreteFungible { id } => inner.is_concrete_fungible(id),
AllAbstractFungible { id } => inner.is_abstract_fungible(id),
AllConcreteNonFungible { class } => inner.is_concrete_non_fungible(class),
AllAbstractNonFungible { class } => inner.is_abstract_non_fungible(class),
ConcreteFungible { id, amount } => matches!(
inner,
ConcreteFungible { id: inner_id , amount: inner_amount } if inner_id == id && amount >= inner_amount
),
AbstractFungible { id, amount } => matches!(
inner,
AbstractFungible { id: inner_id , amount: inner_amount } if inner_id == id && amount >= inner_amount
),
ConcreteNonFungible { .. } => self == inner,
AbstractNonFungible { .. } => self == inner,
_ => false,
}
}
pub fn reanchor(&mut self, prepend: &MultiLocation) -> Result<(), ()> {
use MultiAsset::*;
match self {
AllConcreteFungible { ref mut id } |
AllConcreteNonFungible { class: ref mut id } |
ConcreteFungible { ref mut id, .. } |
ConcreteNonFungible { class: ref mut id, .. } =>
id.prepend_with(prepend.clone()).map_err(|_| ()),
_ => Ok(()),
}
}
}
impl TryFrom<crate::v1::MultiAsset> for MultiAsset {
type Error = ();
fn try_from(m: crate::v1::MultiAsset) -> result::Result<MultiAsset, ()> {
use crate::v1::{AssetId::*, Fungibility::*};
use MultiAsset::*;
Ok(match (m.id, m.fun) {
(Concrete(id), Fungible(amount)) => ConcreteFungible { id: id.try_into()?, amount },
(Concrete(class), NonFungible(instance)) =>
ConcreteNonFungible { class: class.try_into()?, instance },
(Abstract(id), Fungible(amount)) => AbstractFungible { id, amount },
(Abstract(class), NonFungible(instance)) => AbstractNonFungible { class, instance },
})
}
}
impl TryFrom<MultiAssets> for Vec<MultiAsset> {
type Error = ();
fn try_from(m: MultiAssets) -> result::Result<Vec<MultiAsset>, ()> {
m.drain().into_iter().map(MultiAsset::try_from).collect()
}
}
impl TryFrom<WildMultiAsset> for MultiAsset {
type Error = ();
fn try_from(m: WildMultiAsset) -> result::Result<MultiAsset, ()> {
use crate::v1::{AssetId::*, WildFungibility::*};
use MultiAsset::*;
Ok(match m {
WildMultiAsset::All => All,
WildMultiAsset::AllOf { id, fun } => match (id, fun) {
(Concrete(id), Fungible) => AllConcreteFungible { id: id.try_into()? },
(Concrete(class), NonFungible) =>
AllConcreteNonFungible { class: class.try_into()? },
(Abstract(id), Fungible) => AllAbstractFungible { id },
(Abstract(class), NonFungible) => AllAbstractNonFungible { class },
},
})
}
}
impl TryFrom<WildMultiAsset> for Vec<MultiAsset> {
type Error = ();
fn try_from(m: WildMultiAsset) -> result::Result<Vec<MultiAsset>, ()> {
Ok(vec![m.try_into()?])
}
}
impl TryFrom<MultiAssetFilter> for Vec<MultiAsset> {
type Error = ();
fn try_from(m: MultiAssetFilter) -> result::Result<Vec<MultiAsset>, ()> {
match m {
MultiAssetFilter::Definite(assets) => assets.try_into(),
MultiAssetFilter::Wild(wildcard) => wildcard.try_into(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn contains_works() {
use alloc::vec;
use MultiAsset::*;
// trivial case: all contains any non-wildcard.
assert!(All.contains(&None));
assert!(All.contains(&AbstractFungible { id: alloc::vec![99u8], amount: 1 }));
// trivial case: none contains nothing, except itself.
assert!(None.contains(&None));
assert!(!None.contains(&AllFungible));
assert!(!None.contains(&All));
// A bit more sneaky: Nothing can contain wildcard, even All ir the thing itself.
assert!(!All.contains(&All));
assert!(!All.contains(&AllFungible));
assert!(!AllFungible.contains(&AllFungible));
assert!(!AllNonFungible.contains(&AllNonFungible));
// For fungibles, containing is basically equality, or equal id with higher amount.
assert!(!AbstractFungible { id: vec![99u8], amount: 99 }
.contains(&AbstractFungible { id: vec![1u8], amount: 99 }));
assert!(AbstractFungible { id: vec![99u8], amount: 99 }
.contains(&AbstractFungible { id: vec![99u8], amount: 99 }));
assert!(AbstractFungible { id: vec![99u8], amount: 99 }
.contains(&AbstractFungible { id: vec![99u8], amount: 9 }));
assert!(!AbstractFungible { id: vec![99u8], amount: 99 }
.contains(&AbstractFungible { id: vec![99u8], amount: 100 }));
// For non-fungibles, containing is equality.
assert!(!AbstractNonFungible { class: vec![99u8], instance: AssetInstance::Index(9) }
.contains(&AbstractNonFungible {
class: vec![98u8],
instance: AssetInstance::Index(9)
}));
assert!(!AbstractNonFungible { class: vec![99u8], instance: AssetInstance::Index(8) }
.contains(&AbstractNonFungible {
class: vec![99u8],
instance: AssetInstance::Index(9)
}));
assert!(AbstractNonFungible { class: vec![99u8], instance: AssetInstance::Index(9) }
.contains(&AbstractNonFungible {
class: vec![99u8],
instance: AssetInstance::Index(9)
}));
}
}