1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
//! Array-backed append-only vector type.
// TODO(tarcieri): use `core` impl of `ArrayVec`
// See: https://github.com/rust-lang/rfcs/pull/2990

use crate::{ErrorKind, Result};

/// Array-backed append-only vector type.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub(crate) struct ArrayVec<T, const N: usize> {
    /// Elements of the set.
    elements: [Option<T>; N],

    /// Last populated element.
    length: usize,
}

impl<T, const N: usize> ArrayVec<T, N> {
    /// Create a new [`ArrayVec`].
    pub fn new() -> Self {
        Self {
            elements: [(); N].map(|_| None),
            length: 0,
        }
    }

    /// Add an element to this [`ArrayVec`].
    ///
    /// Items MUST be added in lexicographical order according to the `Ord`
    /// impl on `T`.
    pub fn add(&mut self, element: T) -> Result<()> {
        match self.length.checked_add(1) {
            Some(n) if n <= N => {
                self.elements[self.length] = Some(element);
                self.length = n;
                Ok(())
            }
            _ => Err(ErrorKind::Overlength.into()),
        }
    }

    /// Get an element from this [`ArrayVec`].
    pub fn get(&self, index: usize) -> Option<&T> {
        match self.elements.get(index) {
            Some(Some(ref item)) => Some(item),
            _ => None,
        }
    }

    /// Iterate over the elements in this [`ArrayVec`].
    pub fn iter(&self) -> Iter<'_, T> {
        Iter::new(&self.elements)
    }

    /// Is this [`ArrayVec`] empty?
    pub fn is_empty(&self) -> bool {
        self.length == 0
    }

    /// Get the number of elements in this [`ArrayVec`].
    pub fn len(&self) -> usize {
        self.length
    }

    /// Get the last item from this [`ArrayVec`].
    pub fn last(&self) -> Option<&T> {
        self.length.checked_sub(1).and_then(|n| self.get(n))
    }

    /// Extract the inner array.
    pub fn into_array(self) -> [Option<T>; N] {
        self.elements
    }
}

impl<T, const N: usize> AsRef<[Option<T>]> for ArrayVec<T, N> {
    fn as_ref(&self) -> &[Option<T>] {
        &self.elements[..self.length]
    }
}

impl<T, const N: usize> AsMut<[Option<T>]> for ArrayVec<T, N> {
    fn as_mut(&mut self) -> &mut [Option<T>] {
        &mut self.elements[..self.length]
    }
}

impl<T, const N: usize> Default for ArrayVec<T, N> {
    fn default() -> Self {
        Self::new()
    }
}

/// Iterator over the elements of an [`ArrayVec`].
#[derive(Clone, Debug)]
pub struct Iter<'a, T> {
    /// Decoder which iterates over the elements of the message.
    elements: &'a [Option<T>],

    /// Position within the iterator.
    position: usize,
}

impl<'a, T> Iter<'a, T> {
    pub(crate) fn new(elements: &'a [Option<T>]) -> Self {
        Self {
            elements,
            position: 0,
        }
    }
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        match self.elements.get(self.position) {
            Some(Some(res)) => {
                self.position = self.position.checked_add(1)?;
                Some(res)
            }
            _ => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.elements.len().saturating_sub(self.position);
        (len, Some(len))
    }
}

impl<'a, T> ExactSizeIterator for Iter<'a, T> {}

#[cfg(test)]
mod tests {
    use super::ArrayVec;
    use crate::ErrorKind;

    #[test]
    fn add() {
        let mut vec = ArrayVec::<u8, 3>::new();
        vec.add(1).unwrap();
        vec.add(2).unwrap();
        vec.add(3).unwrap();

        assert_eq!(vec.add(4).err().unwrap(), ErrorKind::Overlength.into());
        assert_eq!(vec.len(), 3);
    }
}