1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
use std::cmp;
use std::collections::VecDeque;
use std::io;
use std::io::Read;

/// This is a byte buffer that is built from a vector
/// of byte vectors.  This avoids extra copies when
/// appending a new byte vector, at the expense of
/// more complexity when reading out.
pub(crate) struct ChunkVecBuffer {
    chunks: VecDeque<Vec<u8>>,
    limit: Option<usize>,
}

impl ChunkVecBuffer {
    pub(crate) fn new(limit: Option<usize>) -> Self {
        Self {
            chunks: VecDeque::new(),
            limit,
        }
    }

    /// Sets the upper limit on how many bytes this
    /// object can store.
    ///
    /// Setting a lower limit than the currently stored
    /// data is not an error.
    ///
    /// A [`None`] limit is interpreted as no limit.
    pub(crate) fn set_limit(&mut self, new_limit: Option<usize>) {
        self.limit = new_limit;
    }

    /// If we're empty
    pub(crate) fn is_empty(&self) -> bool {
        self.chunks.is_empty()
    }

    pub(crate) fn is_full(&self) -> bool {
        self.limit
            .map(|limit| self.len() > limit)
            .unwrap_or_default()
    }

    /// How many bytes we're storing
    pub(crate) fn len(&self) -> usize {
        let mut len = 0;
        for ch in &self.chunks {
            len += ch.len();
        }
        len
    }

    /// For a proposed append of `len` bytes, how many
    /// bytes should we actually append to adhere to the
    /// currently set `limit`?
    pub(crate) fn apply_limit(&self, len: usize) -> usize {
        if let Some(limit) = self.limit {
            let space = limit.saturating_sub(self.len());
            cmp::min(len, space)
        } else {
            len
        }
    }

    /// Append a copy of `bytes`, perhaps a prefix if
    /// we're near the limit.
    pub(crate) fn append_limited_copy(&mut self, bytes: &[u8]) -> usize {
        let take = self.apply_limit(bytes.len());
        self.append(bytes[..take].to_vec());
        take
    }

    /// Take and append the given `bytes`.
    pub(crate) fn append(&mut self, bytes: Vec<u8>) -> usize {
        let len = bytes.len();

        if !bytes.is_empty() {
            self.chunks.push_back(bytes);
        }

        len
    }

    /// Take one of the chunks from this object.  This
    /// function panics if the object `is_empty`.
    pub(crate) fn pop(&mut self) -> Option<Vec<u8>> {
        self.chunks.pop_front()
    }

    /// Read data out of this object, writing it into `buf`
    /// and returning how many bytes were written there.
    pub(crate) fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let mut offs = 0;

        while offs < buf.len() && !self.is_empty() {
            let used = self.chunks[0]
                .as_slice()
                .read(&mut buf[offs..])?;

            self.consume(used);
            offs += used;
        }

        Ok(offs)
    }

    #[cfg(read_buf)]
    /// Read data out of this object, writing it into `cursor`.
    pub(crate) fn read_buf(&mut self, mut cursor: io::BorrowedCursor<'_>) -> io::Result<()> {
        while !self.is_empty() && cursor.capacity() > 0 {
            let chunk = self.chunks[0].as_slice();
            let used = std::cmp::min(chunk.len(), cursor.capacity());
            cursor.append(&chunk[..used]);
            self.consume(used);
        }

        Ok(())
    }

    fn consume(&mut self, mut used: usize) {
        while let Some(mut buf) = self.chunks.pop_front() {
            if used < buf.len() {
                self.chunks
                    .push_front(buf.split_off(used));
                break;
            } else {
                used -= buf.len();
            }
        }
    }

    /// Read data out of this object, passing it `wr`
    pub(crate) fn write_to(&mut self, wr: &mut dyn io::Write) -> io::Result<usize> {
        if self.is_empty() {
            return Ok(0);
        }

        let mut bufs = [io::IoSlice::new(&[]); 64];
        for (iov, chunk) in bufs.iter_mut().zip(self.chunks.iter()) {
            *iov = io::IoSlice::new(chunk);
        }
        let len = cmp::min(bufs.len(), self.chunks.len());
        let used = wr.write_vectored(&bufs[..len])?;
        self.consume(used);
        Ok(used)
    }
}

#[cfg(test)]
mod test {
    use super::ChunkVecBuffer;

    #[test]
    fn short_append_copy_with_limit() {
        let mut cvb = ChunkVecBuffer::new(Some(12));
        assert_eq!(cvb.append_limited_copy(b"hello"), 5);
        assert_eq!(cvb.append_limited_copy(b"world"), 5);
        assert_eq!(cvb.append_limited_copy(b"hello"), 2);
        assert_eq!(cvb.append_limited_copy(b"world"), 0);

        let mut buf = [0u8; 12];
        assert_eq!(cvb.read(&mut buf).unwrap(), 12);
        assert_eq!(buf.to_vec(), b"helloworldhe".to_vec());
    }

    #[cfg(read_buf)]
    #[test]
    fn read_buf() {
        use std::{io::BorrowedBuf, mem::MaybeUninit};

        {
            let mut cvb = ChunkVecBuffer::new(None);
            cvb.append(b"test ".to_vec());
            cvb.append(b"fixture ".to_vec());
            cvb.append(b"data".to_vec());

            let mut buf = [MaybeUninit::<u8>::uninit(); 8];
            let mut buf: BorrowedBuf<'_> = buf.as_mut_slice().into();
            cvb.read_buf(buf.unfilled()).unwrap();
            assert_eq!(buf.filled(), b"test fix");
            buf.clear();
            cvb.read_buf(buf.unfilled()).unwrap();
            assert_eq!(buf.filled(), b"ture dat");
            buf.clear();
            cvb.read_buf(buf.unfilled()).unwrap();
            assert_eq!(buf.filled(), b"a");
        }

        {
            let mut cvb = ChunkVecBuffer::new(None);
            cvb.append(b"short message".to_vec());

            let mut buf = [MaybeUninit::<u8>::uninit(); 1024];
            let mut buf: BorrowedBuf<'_> = buf.as_mut_slice().into();
            cvb.read_buf(buf.unfilled()).unwrap();
            assert_eq!(buf.filled(), b"short message");
        }
    }
}