1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
//! AArch64 ISA definitions: immediate constants.
// Some variants are never constructed, but we still want them as options in the future.
#[allow(dead_code)]
use crate::ir::types::*;
use crate::ir::Type;
use crate::isa::aarch64::inst::{OperandSize, ScalarSize};
use crate::machinst::{AllocationConsumer, PrettyPrint};
use core::convert::TryFrom;
use std::string::String;
/// An immediate that represents the NZCV flags.
#[derive(Clone, Copy, Debug)]
pub struct NZCV {
/// The negative condition flag.
n: bool,
/// The zero condition flag.
z: bool,
/// The carry condition flag.
c: bool,
/// The overflow condition flag.
v: bool,
}
impl NZCV {
pub fn new(n: bool, z: bool, c: bool, v: bool) -> NZCV {
NZCV { n, z, c, v }
}
/// Bits for encoding.
pub fn bits(&self) -> u32 {
(u32::from(self.n) << 3)
| (u32::from(self.z) << 2)
| (u32::from(self.c) << 1)
| u32::from(self.v)
}
}
/// An unsigned 5-bit immediate.
#[derive(Clone, Copy, Debug)]
pub struct UImm5 {
/// The value.
value: u8,
}
impl UImm5 {
pub fn maybe_from_u8(value: u8) -> Option<UImm5> {
if value < 32 {
Some(UImm5 { value })
} else {
None
}
}
/// Bits for encoding.
pub fn bits(&self) -> u32 {
u32::from(self.value)
}
}
/// A signed, scaled 7-bit offset.
#[derive(Clone, Copy, Debug)]
pub struct SImm7Scaled {
/// The value.
pub value: i16,
/// multiplied by the size of this type
pub scale_ty: Type,
}
impl SImm7Scaled {
/// Create a SImm7Scaled from a raw offset and the known scale type, if
/// possible.
pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<SImm7Scaled> {
assert!(scale_ty == I64 || scale_ty == I32 || scale_ty == F64 || scale_ty == I8X16);
let scale = scale_ty.bytes();
assert!(scale.is_power_of_two());
let scale = i64::from(scale);
let upper_limit = 63 * scale;
let lower_limit = -(64 * scale);
if value >= lower_limit && value <= upper_limit && (value & (scale - 1)) == 0 {
Some(SImm7Scaled {
value: i16::try_from(value).unwrap(),
scale_ty,
})
} else {
None
}
}
/// Bits for encoding.
pub fn bits(&self) -> u32 {
let ty_bytes: i16 = self.scale_ty.bytes() as i16;
let scaled: i16 = self.value / ty_bytes;
assert!(scaled <= 63 && scaled >= -64);
let scaled: i8 = scaled as i8;
let encoded: u32 = scaled as u32;
encoded & 0x7f
}
}
#[derive(Clone, Copy, Debug)]
pub struct FPULeftShiftImm {
pub amount: u8,
pub lane_size_in_bits: u8,
}
impl FPULeftShiftImm {
pub fn maybe_from_u8(amount: u8, lane_size_in_bits: u8) -> Option<Self> {
debug_assert!(lane_size_in_bits == 32 || lane_size_in_bits == 64);
if amount < lane_size_in_bits {
Some(Self {
amount,
lane_size_in_bits,
})
} else {
None
}
}
pub fn enc(&self) -> u32 {
debug_assert!(self.lane_size_in_bits.is_power_of_two());
debug_assert!(self.lane_size_in_bits > self.amount);
// The encoding of the immediate follows the table below,
// where xs encode the shift amount.
//
// | lane_size_in_bits | encoding |
// +------------------------------+
// | 8 | 0001xxx |
// | 16 | 001xxxx |
// | 32 | 01xxxxx |
// | 64 | 1xxxxxx |
//
// The highest one bit is represented by `lane_size_in_bits`. Since
// `lane_size_in_bits` is a power of 2 and `amount` is less
// than `lane_size_in_bits`, they can be ORed
// together to produced the encoded value.
u32::from(self.lane_size_in_bits | self.amount)
}
}
#[derive(Clone, Copy, Debug)]
pub struct FPURightShiftImm {
pub amount: u8,
pub lane_size_in_bits: u8,
}
impl FPURightShiftImm {
pub fn maybe_from_u8(amount: u8, lane_size_in_bits: u8) -> Option<Self> {
debug_assert!(lane_size_in_bits == 32 || lane_size_in_bits == 64);
if amount > 0 && amount <= lane_size_in_bits {
Some(Self {
amount,
lane_size_in_bits,
})
} else {
None
}
}
pub fn enc(&self) -> u32 {
debug_assert_ne!(0, self.amount);
// The encoding of the immediate follows the table below,
// where xs encodes the negated shift amount.
//
// | lane_size_in_bits | encoding |
// +------------------------------+
// | 8 | 0001xxx |
// | 16 | 001xxxx |
// | 32 | 01xxxxx |
// | 64 | 1xxxxxx |
//
// The shift amount is negated such that a shift ammount
// of 1 (in 64-bit) is encoded as 0b111111 and a shift
// amount of 64 is encoded as 0b000000,
// in the bottom 6 bits.
u32::from((self.lane_size_in_bits * 2) - self.amount)
}
}
/// a 9-bit signed offset.
#[derive(Clone, Copy, Debug)]
pub struct SImm9 {
/// The value.
pub value: i16,
}
impl SImm9 {
/// Create a signed 9-bit offset from a full-range value, if possible.
pub fn maybe_from_i64(value: i64) -> Option<SImm9> {
if value >= -256 && value <= 255 {
Some(SImm9 {
value: value as i16,
})
} else {
None
}
}
/// Bits for encoding.
pub fn bits(&self) -> u32 {
(self.value as u32) & 0x1ff
}
/// Signed value of immediate.
pub fn value(&self) -> i32 {
self.value as i32
}
}
/// An unsigned, scaled 12-bit offset.
#[derive(Clone, Copy, Debug)]
pub struct UImm12Scaled {
/// The value.
pub value: u16,
/// multiplied by the size of this type
pub scale_ty: Type,
}
impl UImm12Scaled {
/// Create a UImm12Scaled from a raw offset and the known scale type, if
/// possible.
pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<UImm12Scaled> {
// Ensure the type is at least one byte.
let scale_ty = if scale_ty == B1 { B8 } else { scale_ty };
let scale = scale_ty.bytes();
assert!(scale.is_power_of_two());
let scale = scale as i64;
let limit = 4095 * scale;
if value >= 0 && value <= limit && (value & (scale - 1)) == 0 {
Some(UImm12Scaled {
value: value as u16,
scale_ty,
})
} else {
None
}
}
/// Create a zero immediate of this format.
pub fn zero(scale_ty: Type) -> UImm12Scaled {
UImm12Scaled { value: 0, scale_ty }
}
/// Encoded bits.
pub fn bits(&self) -> u32 {
(self.value as u32 / self.scale_ty.bytes()) & 0xfff
}
/// Value after scaling.
pub fn value(&self) -> u32 {
self.value as u32
}
/// The value type which is the scaling base.
pub fn scale_ty(&self) -> Type {
self.scale_ty
}
}
/// A shifted immediate value in 'imm12' format: supports 12 bits, shifted
/// left by 0 or 12 places.
#[derive(Copy, Clone, Debug)]
pub struct Imm12 {
/// The immediate bits.
pub bits: u16,
/// Whether the immediate bits are shifted left by 12 or not.
pub shift12: bool,
}
impl Imm12 {
/// Compute a Imm12 from raw bits, if possible.
pub fn maybe_from_u64(val: u64) -> Option<Imm12> {
if val == 0 {
Some(Imm12 {
bits: 0,
shift12: false,
})
} else if val < 0xfff {
Some(Imm12 {
bits: val as u16,
shift12: false,
})
} else if val < 0xfff_000 && (val & 0xfff == 0) {
Some(Imm12 {
bits: (val >> 12) as u16,
shift12: true,
})
} else {
None
}
}
/// Bits for 2-bit "shift" field in e.g. AddI.
pub fn shift_bits(&self) -> u32 {
if self.shift12 {
0b01
} else {
0b00
}
}
/// Bits for 12-bit "imm" field in e.g. AddI.
pub fn imm_bits(&self) -> u32 {
self.bits as u32
}
}
/// An immediate for logical instructions.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct ImmLogic {
/// The actual value.
value: u64,
/// `N` flag.
pub n: bool,
/// `S` field: element size and element bits.
pub r: u8,
/// `R` field: rotate amount.
pub s: u8,
/// Was this constructed for a 32-bit or 64-bit instruction?
pub size: OperandSize,
}
impl ImmLogic {
/// Compute an ImmLogic from raw bits, if possible.
pub fn maybe_from_u64(value: u64, ty: Type) -> Option<ImmLogic> {
// Note: This function is a port of VIXL's Assembler::IsImmLogical.
if ty != I64 && ty != I32 {
return None;
}
let operand_size = OperandSize::from_ty(ty);
let original_value = value;
let value = if ty == I32 {
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
// Avoid making the assumption that the most-significant 32 bits are zero by
// shifting the value left and duplicating it.
let value = value << 32;
value | value >> 32
} else {
value
};
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1 bits
// are set. The pattern is rotated right by R, and repeated across a 32 or
// 64-bit value, depending on destination register width.
//
// Put another way: the basic format of a logical immediate is a single
// contiguous stretch of 1 bits, repeated across the whole word at intervals
// given by a power of 2. To identify them quickly, we first locate the
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
// is different for every logical immediate, so it gives us all the
// information we need to identify the only logical immediate that our input
// could be, and then we simply check if that's the value we actually have.
//
// (The rotation parameter does give the possibility of the stretch of 1 bits
// going 'round the end' of the word. To deal with that, we observe that in
// any situation where that happens the bitwise NOT of the value is also a
// valid logical immediate. So we simply invert the input whenever its low bit
// is set, and then we know that the rotated case can't arise.)
let (value, inverted) = if value & 1 == 1 {
(!value, true)
} else {
(value, false)
};
if value == 0 {
return None;
}
// The basic analysis idea: imagine our input word looks like this.
//
// 0011111000111110001111100011111000111110001111100011111000111110
// c b a
// |<--d-->|
//
// We find the lowest set bit (as an actual power-of-2 value, not its index)
// and call it a. Then we add a to our original number, which wipes out the
// bottommost stretch of set bits and replaces it with a 1 carried into the
// next zero bit. Then we look for the new lowest set bit, which is in
// position b, and subtract it, so now our number is just like the original
// but with the lowest stretch of set bits completely gone. Now we find the
// lowest set bit again, which is position c in the diagram above. Then we'll
// measure the distance d between bit positions a and c (using CLZ), and that
// tells us that the only valid logical immediate that could possibly be equal
// to this number is the one in which a stretch of bits running from a to just
// below b is replicated every d bits.
fn lowest_set_bit(value: u64) -> u64 {
let bit = value.trailing_zeros();
1u64.checked_shl(bit).unwrap_or(0)
}
let a = lowest_set_bit(value);
assert_ne!(0, a);
let value_plus_a = value.wrapping_add(a);
let b = lowest_set_bit(value_plus_a);
let value_plus_a_minus_b = value_plus_a - b;
let c = lowest_set_bit(value_plus_a_minus_b);
let (d, clz_a, out_n, mask) = if c != 0 {
// The general case, in which there is more than one stretch of set bits.
// Compute the repeat distance d, and set up a bitmask covering the basic
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
// of these cases the N bit of the output will be zero.
let clz_a = a.leading_zeros();
let clz_c = c.leading_zeros();
let d = clz_a - clz_c;
let mask = (1 << d) - 1;
(d, clz_a, 0, mask)
} else {
(64, a.leading_zeros(), 1, u64::max_value())
};
// If the repeat period d is not a power of two, it can't be encoded.
if !d.is_power_of_two() {
return None;
}
if ((b.wrapping_sub(a)) & !mask) != 0 {
// If the bit stretch (b - a) does not fit within the mask derived from the
// repeat period, then fail.
return None;
}
// The only possible option is b - a repeated every d bits. Now we're going to
// actually construct the valid logical immediate derived from that
// specification, and see if it equals our original input.
//
// To repeat a value every d bits, we multiply it by a number of the form
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
// be derived using a table lookup on CLZ(d).
const MULTIPLIERS: [u64; 6] = [
0x0000000000000001,
0x0000000100000001,
0x0001000100010001,
0x0101010101010101,
0x1111111111111111,
0x5555555555555555,
];
let multiplier = MULTIPLIERS[(u64::from(d).leading_zeros() - 57) as usize];
let candidate = b.wrapping_sub(a) * multiplier;
if value != candidate {
// The candidate pattern doesn't match our input value, so fail.
return None;
}
// We have a match! This is a valid logical immediate, so now we have to
// construct the bits and pieces of the instruction encoding that generates
// it.
// Count the set bits in our basic stretch. The special case of clz(0) == -1
// makes the answer come out right for stretches that reach the very top of
// the word (e.g. numbers like 0xffffc00000000000).
let clz_b = if b == 0 {
u32::max_value() // -1
} else {
b.leading_zeros()
};
let s = clz_a.wrapping_sub(clz_b);
// Decide how many bits to rotate right by, to put the low bit of that basic
// stretch in position a.
let (s, r) = if inverted {
// If we inverted the input right at the start of this function, here's
// where we compensate: the number of set bits becomes the number of clear
// bits, and the rotation count is based on position b rather than position
// a (since b is the location of the 'lowest' 1 bit after inversion).
// Need wrapping for when clz_b is max_value() (for when b == 0).
(d - s, clz_b.wrapping_add(1) & (d - 1))
} else {
(s, (clz_a + 1) & (d - 1))
};
// Now we're done, except for having to encode the S output in such a way that
// it gives both the number of set bits and the length of the repeated
// segment. The s field is encoded like this:
//
// imms size S
// ssssss 64 UInt(ssssss)
// 0sssss 32 UInt(sssss)
// 10ssss 16 UInt(ssss)
// 110sss 8 UInt(sss)
// 1110ss 4 UInt(ss)
// 11110s 2 UInt(s)
//
// So we 'or' (2 * -d) with our computed s to form imms.
let s = ((d * 2).wrapping_neg() | (s - 1)) & 0x3f;
debug_assert!(u8::try_from(r).is_ok());
debug_assert!(u8::try_from(s).is_ok());
Some(ImmLogic {
value: original_value,
n: out_n != 0,
r: r as u8,
s: s as u8,
size: operand_size,
})
}
/// Returns bits ready for encoding: (N:1, R:6, S:6)
pub fn enc_bits(&self) -> u32 {
((self.n as u32) << 12) | ((self.r as u32) << 6) | (self.s as u32)
}
/// Returns the value that this immediate represents.
pub fn value(&self) -> u64 {
self.value
}
/// Return an immediate for the bitwise-inverted value.
pub fn invert(&self) -> ImmLogic {
// For every ImmLogical immediate, the inverse can also be encoded.
Self::maybe_from_u64(!self.value, self.size.to_ty()).unwrap()
}
}
/// An immediate for shift instructions.
#[derive(Copy, Clone, Debug)]
pub struct ImmShift {
/// 6-bit shift amount.
pub imm: u8,
}
impl ImmShift {
/// Create an ImmShift from raw bits, if possible.
pub fn maybe_from_u64(val: u64) -> Option<ImmShift> {
if val < 64 {
Some(ImmShift { imm: val as u8 })
} else {
None
}
}
/// Get the immediate value.
pub fn value(&self) -> u8 {
self.imm
}
}
/// A 16-bit immediate for a MOVZ instruction, with a {0,16,32,48}-bit shift.
#[derive(Clone, Copy, Debug)]
pub struct MoveWideConst {
/// The value.
pub bits: u16,
/// Result is `bits` shifted 16*shift bits to the left.
pub shift: u8,
}
impl MoveWideConst {
/// Construct a MoveWideConst from an arbitrary 64-bit constant if possible.
pub fn maybe_from_u64(value: u64) -> Option<MoveWideConst> {
let mask0 = 0x0000_0000_0000_ffffu64;
let mask1 = 0x0000_0000_ffff_0000u64;
let mask2 = 0x0000_ffff_0000_0000u64;
let mask3 = 0xffff_0000_0000_0000u64;
if value == (value & mask0) {
return Some(MoveWideConst {
bits: (value & mask0) as u16,
shift: 0,
});
}
if value == (value & mask1) {
return Some(MoveWideConst {
bits: ((value >> 16) & mask0) as u16,
shift: 1,
});
}
if value == (value & mask2) {
return Some(MoveWideConst {
bits: ((value >> 32) & mask0) as u16,
shift: 2,
});
}
if value == (value & mask3) {
return Some(MoveWideConst {
bits: ((value >> 48) & mask0) as u16,
shift: 3,
});
}
None
}
pub fn maybe_with_shift(imm: u16, shift: u8) -> Option<MoveWideConst> {
let shift_enc = shift / 16;
if shift_enc > 3 {
None
} else {
Some(MoveWideConst {
bits: imm,
shift: shift_enc,
})
}
}
pub fn zero() -> MoveWideConst {
MoveWideConst { bits: 0, shift: 0 }
}
}
/// Advanced SIMD modified immediate as used by MOVI/MVNI.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ASIMDMovModImm {
imm: u8,
shift: u8,
is_64bit: bool,
shift_ones: bool,
}
impl ASIMDMovModImm {
/// Construct an ASIMDMovModImm from an arbitrary 64-bit constant, if possible.
/// Note that the bits in `value` outside of the range specified by `size` are
/// ignored; for example, in the case of `ScalarSize::Size8` all bits above the
/// lowest 8 are ignored.
pub fn maybe_from_u64(value: u64, size: ScalarSize) -> Option<ASIMDMovModImm> {
match size {
ScalarSize::Size8 => Some(ASIMDMovModImm {
imm: value as u8,
shift: 0,
is_64bit: false,
shift_ones: false,
}),
ScalarSize::Size16 => {
let value = value as u16;
if value >> 8 == 0 {
Some(ASIMDMovModImm {
imm: value as u8,
shift: 0,
is_64bit: false,
shift_ones: false,
})
} else if value as u8 == 0 {
Some(ASIMDMovModImm {
imm: (value >> 8) as u8,
shift: 8,
is_64bit: false,
shift_ones: false,
})
} else {
None
}
}
ScalarSize::Size32 => {
let value = value as u32;
// Value is of the form 0x00MMFFFF.
if value & 0xFF00FFFF == 0x0000FFFF {
let imm = (value >> 16) as u8;
Some(ASIMDMovModImm {
imm,
shift: 16,
is_64bit: false,
shift_ones: true,
})
// Value is of the form 0x0000MMFF.
} else if value & 0xFFFF00FF == 0x000000FF {
let imm = (value >> 8) as u8;
Some(ASIMDMovModImm {
imm,
shift: 8,
is_64bit: false,
shift_ones: true,
})
} else {
// Of the 4 bytes, at most one is non-zero.
for shift in (0..32).step_by(8) {
if value & (0xFF << shift) == value {
return Some(ASIMDMovModImm {
imm: (value >> shift) as u8,
shift,
is_64bit: false,
shift_ones: false,
});
}
}
None
}
}
ScalarSize::Size64 => {
let mut imm = 0u8;
// Check if all bytes are either 0 or 0xFF.
for i in 0..8 {
let b = (value >> (i * 8)) as u8;
if b == 0 || b == 0xFF {
imm |= (b & 1) << i;
} else {
return None;
}
}
Some(ASIMDMovModImm {
imm,
shift: 0,
is_64bit: true,
shift_ones: false,
})
}
_ => None,
}
}
/// Create a zero immediate of this format.
pub fn zero(size: ScalarSize) -> Self {
ASIMDMovModImm {
imm: 0,
shift: 0,
is_64bit: size == ScalarSize::Size64,
shift_ones: false,
}
}
/// Returns the value that this immediate represents.
pub fn value(&self) -> (u8, u32, bool) {
(self.imm, self.shift as u32, self.shift_ones)
}
}
/// Advanced SIMD modified immediate as used by the vector variant of FMOV.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ASIMDFPModImm {
imm: u8,
is_64bit: bool,
}
impl ASIMDFPModImm {
/// Construct an ASIMDFPModImm from an arbitrary 64-bit constant, if possible.
pub fn maybe_from_u64(value: u64, size: ScalarSize) -> Option<ASIMDFPModImm> {
// In all cases immediates are encoded as an 8-bit number 0b_abcdefgh;
// let `D` be the inverse of the digit `d`.
match size {
ScalarSize::Size32 => {
// In this case the representable immediates are 32-bit numbers of the form
// 0b_aBbb_bbbc_defg_h000 shifted to the left by 16.
let value = value as u32;
let b0_5 = (value >> 19) & 0b111111;
let b6 = (value >> 19) & (1 << 6);
let b7 = (value >> 24) & (1 << 7);
let imm = (b0_5 | b6 | b7) as u8;
if value == Self::value32(imm) {
Some(ASIMDFPModImm {
imm,
is_64bit: false,
})
} else {
None
}
}
ScalarSize::Size64 => {
// In this case the representable immediates are 64-bit numbers of the form
// 0b_aBbb_bbbb_bbcd_efgh shifted to the left by 48.
let b0_5 = (value >> 48) & 0b111111;
let b6 = (value >> 48) & (1 << 6);
let b7 = (value >> 56) & (1 << 7);
let imm = (b0_5 | b6 | b7) as u8;
if value == Self::value64(imm) {
Some(ASIMDFPModImm {
imm,
is_64bit: true,
})
} else {
None
}
}
_ => None,
}
}
/// Returns bits ready for encoding.
pub fn enc_bits(&self) -> u8 {
self.imm
}
/// Returns the 32-bit value that corresponds to an 8-bit encoding.
fn value32(imm: u8) -> u32 {
let imm = imm as u32;
let b0_5 = imm & 0b111111;
let b6 = (imm >> 6) & 1;
let b6_inv = b6 ^ 1;
let b7 = (imm >> 7) & 1;
b0_5 << 19 | (b6 * 0b11111) << 25 | b6_inv << 30 | b7 << 31
}
/// Returns the 64-bit value that corresponds to an 8-bit encoding.
fn value64(imm: u8) -> u64 {
let imm = imm as u64;
let b0_5 = imm & 0b111111;
let b6 = (imm >> 6) & 1;
let b6_inv = b6 ^ 1;
let b7 = (imm >> 7) & 1;
b0_5 << 48 | (b6 * 0b11111111) << 54 | b6_inv << 62 | b7 << 63
}
}
impl PrettyPrint for NZCV {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
let fmt = |c: char, v| if v { c.to_ascii_uppercase() } else { c };
format!(
"#{}{}{}{}",
fmt('n', self.n),
fmt('z', self.z),
fmt('c', self.c),
fmt('v', self.v)
)
}
}
impl PrettyPrint for UImm5 {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
format!("#{}", self.value)
}
}
impl PrettyPrint for Imm12 {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
let shift = if self.shift12 { 12 } else { 0 };
let value = u32::from(self.bits) << shift;
format!("#{}", value)
}
}
impl PrettyPrint for SImm7Scaled {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
format!("#{}", self.value)
}
}
impl PrettyPrint for FPULeftShiftImm {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
format!("#{}", self.amount)
}
}
impl PrettyPrint for FPURightShiftImm {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
format!("#{}", self.amount)
}
}
impl PrettyPrint for SImm9 {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
format!("#{}", self.value)
}
}
impl PrettyPrint for UImm12Scaled {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
format!("#{}", self.value)
}
}
impl PrettyPrint for ImmLogic {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
format!("#{}", self.value())
}
}
impl PrettyPrint for ImmShift {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
format!("#{}", self.imm)
}
}
impl PrettyPrint for MoveWideConst {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
if self.shift == 0 {
format!("#{}", self.bits)
} else {
format!("#{}, LSL #{}", self.bits, self.shift * 16)
}
}
}
impl PrettyPrint for ASIMDMovModImm {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
if self.is_64bit {
debug_assert_eq!(self.shift, 0);
let enc_imm = self.imm as i8;
let mut imm = 0u64;
for i in 0..8 {
let b = (enc_imm >> i) & 1;
imm |= (-b as u8 as u64) << (i * 8);
}
format!("#{}", imm)
} else if self.shift == 0 {
format!("#{}", self.imm)
} else {
let shift_type = if self.shift_ones { "MSL" } else { "LSL" };
format!("#{}, {} #{}", self.imm, shift_type, self.shift)
}
}
}
impl PrettyPrint for ASIMDFPModImm {
fn pretty_print(&self, _: u8, _: &mut AllocationConsumer<'_>) -> String {
if self.is_64bit {
format!("#{}", f64::from_bits(Self::value64(self.imm)))
} else {
format!("#{}", f32::from_bits(Self::value32(self.imm)))
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn imm_logical_test() {
assert_eq!(None, ImmLogic::maybe_from_u64(0, I64));
assert_eq!(None, ImmLogic::maybe_from_u64(u64::max_value(), I64));
assert_eq!(
Some(ImmLogic {
value: 1,
n: true,
r: 0,
s: 0,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(1, I64)
);
assert_eq!(
Some(ImmLogic {
value: 2,
n: true,
r: 63,
s: 0,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(2, I64)
);
assert_eq!(None, ImmLogic::maybe_from_u64(5, I64));
assert_eq!(None, ImmLogic::maybe_from_u64(11, I64));
assert_eq!(
Some(ImmLogic {
value: 248,
n: true,
r: 61,
s: 4,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(248, I64)
);
assert_eq!(None, ImmLogic::maybe_from_u64(249, I64));
assert_eq!(
Some(ImmLogic {
value: 1920,
n: true,
r: 57,
s: 3,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(1920, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x7ffe,
n: true,
r: 63,
s: 13,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(0x7ffe, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x30000,
n: true,
r: 48,
s: 1,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(0x30000, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x100000,
n: true,
r: 44,
s: 0,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(0x100000, I64)
);
assert_eq!(
Some(ImmLogic {
value: u64::max_value() - 1,
n: true,
r: 63,
s: 62,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(u64::max_value() - 1, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0xaaaaaaaaaaaaaaaa,
n: false,
r: 1,
s: 60,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(0xaaaaaaaaaaaaaaaa, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x8181818181818181,
n: false,
r: 1,
s: 49,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(0x8181818181818181, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0xffc3ffc3ffc3ffc3,
n: false,
r: 10,
s: 43,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(0xffc3ffc3ffc3ffc3, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x100000001,
n: false,
r: 0,
s: 0,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(0x100000001, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x1111111111111111,
n: false,
r: 0,
s: 56,
size: OperandSize::Size64,
}),
ImmLogic::maybe_from_u64(0x1111111111111111, I64)
);
for n in 0..2 {
let types = if n == 0 { vec![I64, I32] } else { vec![I64] };
for s in 0..64 {
for r in 0..64 {
let imm = get_logical_imm(n, s, r);
for &ty in &types {
match ImmLogic::maybe_from_u64(imm, ty) {
Some(ImmLogic { value, .. }) => {
assert_eq!(imm, value);
ImmLogic::maybe_from_u64(!value, ty).unwrap();
}
None => assert_eq!(0, imm),
};
}
}
}
}
}
// Repeat a value that has `width` bits, across a 64-bit value.
fn repeat(value: u64, width: u64) -> u64 {
let mut result = value & ((1 << width) - 1);
let mut i = width;
while i < 64 {
result |= result << i;
i *= 2;
}
result
}
// Get the logical immediate, from the encoding N/R/S bits.
fn get_logical_imm(n: u32, s: u32, r: u32) -> u64 {
// An integer is constructed from the n, imm_s and imm_r bits according to
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1
// bits are set. The pattern is rotated right by R, and repeated across a
// 64-bit value.
if n == 1 {
if s == 0x3f {
return 0;
}
let bits = (1u64 << (s + 1)) - 1;
bits.rotate_right(r)
} else {
if (s >> 1) == 0x1f {
return 0;
}
let mut width = 0x20;
while width >= 0x2 {
if (s & width) == 0 {
let mask = width - 1;
if (s & mask) == mask {
return 0;
}
let bits = (1u64 << ((s & mask) + 1)) - 1;
return repeat(bits.rotate_right(r & mask), width.into());
}
width >>= 1;
}
unreachable!();
}
}
#[test]
fn asimd_fp_mod_imm_test() {
assert_eq!(None, ASIMDFPModImm::maybe_from_u64(0, ScalarSize::Size32));
assert_eq!(
None,
ASIMDFPModImm::maybe_from_u64(0.013671875_f32.to_bits() as u64, ScalarSize::Size32)
);
assert_eq!(None, ASIMDFPModImm::maybe_from_u64(0, ScalarSize::Size64));
assert_eq!(
None,
ASIMDFPModImm::maybe_from_u64(10000_f64.to_bits(), ScalarSize::Size64)
);
}
#[test]
fn asimd_mov_mod_imm_test() {
assert_eq!(
None,
ASIMDMovModImm::maybe_from_u64(513, ScalarSize::Size16)
);
assert_eq!(
None,
ASIMDMovModImm::maybe_from_u64(4278190335, ScalarSize::Size32)
);
assert_eq!(
None,
ASIMDMovModImm::maybe_from_u64(8388608, ScalarSize::Size64)
);
assert_eq!(
Some(ASIMDMovModImm {
imm: 66,
shift: 16,
is_64bit: false,
shift_ones: true,
}),
ASIMDMovModImm::maybe_from_u64(4390911, ScalarSize::Size32)
);
}
}