1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
// Copyright 2020-2021 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Cross-Consensus Message format data structures.

use super::Junction;
use core::{mem, result};
use parity_scale_codec::{Decode, Encode, MaxEncodedLen};
use scale_info::TypeInfo;

/// A relative path between state-bearing consensus systems.
///
/// A location in a consensus system is defined as an *isolatable state machine* held within global
/// consensus. The location in question need not have a sophisticated consensus algorithm of its
/// own; a single account within Ethereum, for example, could be considered a location.
///
/// A very-much non-exhaustive list of types of location include:
/// - A (normal, layer-1) block chain, e.g. the Bitcoin mainnet or a parachain.
/// - A layer-0 super-chain, e.g. the Polkadot Relay chain.
/// - A layer-2 smart contract, e.g. an ERC-20 on Ethereum.
/// - A logical functional component of a chain, e.g. a single instance of a pallet on a Frame-based
///   Substrate chain.
/// - An account.
///
/// A `MultiLocation` is a *relative identifier*, meaning that it can only be used to define the
/// relative path between two locations, and cannot generally be used to refer to a location
/// universally. It is comprised of an integer number of parents specifying the number of times to
/// "escape" upwards into the containing consensus system and then a number of *junctions*, each
/// diving down and specifying some interior portion of state (which may be considered a
/// "sub-consensus" system).
///
/// This specific `MultiLocation` implementation uses a `Junctions` datatype which is a Rust `enum`
/// in order to make pattern matching easier. There are occasions where it is important to ensure
/// that a value is strictly an interior location, in those cases, `Junctions` may be used.
///
/// The `MultiLocation` value of `Null` simply refers to the interpreting consensus system.
#[derive(Clone, Decode, Encode, Eq, PartialEq, Ord, PartialOrd, Debug, TypeInfo, MaxEncodedLen)]
pub struct MultiLocation {
	/// The number of parent junctions at the beginning of this `MultiLocation`.
	pub parents: u8,
	/// The interior (i.e. non-parent) junctions that this `MultiLocation` contains.
	pub interior: Junctions,
}

impl Default for MultiLocation {
	fn default() -> Self {
		Self { parents: 0, interior: Junctions::Here }
	}
}

/// A relative location which is constrained to be an interior location of the context.
///
/// See also `MultiLocation`.
pub type InteriorMultiLocation = Junctions;

impl MultiLocation {
	/// Creates a new `MultiLocation` with the given number of parents and interior junctions.
	pub fn new(parents: u8, junctions: Junctions) -> MultiLocation {
		MultiLocation { parents, interior: junctions }
	}

	/// Consume `self` and return the equivalent `VersionedMultiLocation` value.
	pub fn versioned(self) -> crate::VersionedMultiLocation {
		self.into()
	}

	/// Creates a new `MultiLocation` with 0 parents and a `Here` interior.
	///
	/// The resulting `MultiLocation` can be interpreted as the "current consensus system".
	pub const fn here() -> MultiLocation {
		MultiLocation { parents: 0, interior: Junctions::Here }
	}

	/// Creates a new `MultiLocation` which evaluates to the parent context.
	pub const fn parent() -> MultiLocation {
		MultiLocation { parents: 1, interior: Junctions::Here }
	}

	/// Creates a new `MultiLocation` which evaluates to the grand parent context.
	pub const fn grandparent() -> MultiLocation {
		MultiLocation { parents: 2, interior: Junctions::Here }
	}

	/// Creates a new `MultiLocation` with `parents` and an empty (`Here`) interior.
	pub const fn ancestor(parents: u8) -> MultiLocation {
		MultiLocation { parents, interior: Junctions::Here }
	}

	/// Whether the `MultiLocation` has no parents and has a `Here` interior.
	pub const fn is_here(&self) -> bool {
		self.parents == 0 && self.interior.len() == 0
	}

	/// Return a reference to the interior field.
	pub fn interior(&self) -> &Junctions {
		&self.interior
	}

	/// Return a mutable reference to the interior field.
	pub fn interior_mut(&mut self) -> &mut Junctions {
		&mut self.interior
	}

	/// Returns the number of `Parent` junctions at the beginning of `self`.
	pub const fn parent_count(&self) -> u8 {
		self.parents
	}

	/// Returns boolean indicating whether `self` contains only the specified amount of
	/// parents and no interior junctions.
	pub const fn contains_parents_only(&self, count: u8) -> bool {
		matches!(self.interior, Junctions::Here) && self.parents == count
	}

	/// Returns the number of parents and junctions in `self`.
	pub const fn len(&self) -> usize {
		self.parent_count() as usize + self.interior.len()
	}

	/// Returns the first interior junction, or `None` if the location is empty or contains only
	/// parents.
	pub fn first_interior(&self) -> Option<&Junction> {
		self.interior.first()
	}

	/// Returns last junction, or `None` if the location is empty or contains only parents.
	pub fn last(&self) -> Option<&Junction> {
		self.interior.last()
	}

	/// Splits off the first interior junction, returning the remaining suffix (first item in tuple)
	/// and the first element (second item in tuple) or `None` if it was empty.
	pub fn split_first_interior(self) -> (MultiLocation, Option<Junction>) {
		let MultiLocation { parents, interior: junctions } = self;
		let (suffix, first) = junctions.split_first();
		let multilocation = MultiLocation { parents, interior: suffix };
		(multilocation, first)
	}

	/// Splits off the last interior junction, returning the remaining prefix (first item in tuple)
	/// and the last element (second item in tuple) or `None` if it was empty or if `self` only
	/// contains parents.
	pub fn split_last_interior(self) -> (MultiLocation, Option<Junction>) {
		let MultiLocation { parents, interior: junctions } = self;
		let (prefix, last) = junctions.split_last();
		let multilocation = MultiLocation { parents, interior: prefix };
		(multilocation, last)
	}

	/// Mutates `self`, suffixing its interior junctions with `new`. Returns `Err` with `new` in
	/// case of overflow.
	pub fn push_interior(&mut self, new: Junction) -> result::Result<(), Junction> {
		self.interior.push(new)
	}

	/// Mutates `self`, prefixing its interior junctions with `new`. Returns `Err` with `new` in
	/// case of overflow.
	pub fn push_front_interior(&mut self, new: Junction) -> result::Result<(), Junction> {
		self.interior.push_front(new)
	}

	/// Consumes `self` and returns a `MultiLocation` suffixed with `new`, or an `Err` with theoriginal value of
	/// `self` in case of overflow.
	pub fn pushed_with_interior(self, new: Junction) -> result::Result<Self, (Self, Junction)> {
		match self.interior.pushed_with(new) {
			Ok(i) => Ok(MultiLocation { interior: i, parents: self.parents }),
			Err((i, j)) => Err((MultiLocation { interior: i, parents: self.parents }, j)),
		}
	}

	/// Consumes `self` and returns a `MultiLocation` prefixed with `new`, or an `Err` with the original value of
	/// `self` in case of overflow.
	pub fn pushed_front_with_interior(
		self,
		new: Junction,
	) -> result::Result<Self, (Self, Junction)> {
		match self.interior.pushed_front_with(new) {
			Ok(i) => Ok(MultiLocation { interior: i, parents: self.parents }),
			Err((i, j)) => Err((MultiLocation { interior: i, parents: self.parents }, j)),
		}
	}

	/// Returns the junction at index `i`, or `None` if the location is a parent or if the location
	/// does not contain that many elements.
	pub fn at(&self, i: usize) -> Option<&Junction> {
		let num_parents = self.parents as usize;
		if i < num_parents {
			return None
		}
		self.interior.at(i - num_parents)
	}

	/// Returns a mutable reference to the junction at index `i`, or `None` if the location is a
	/// parent or if it doesn't contain that many elements.
	pub fn at_mut(&mut self, i: usize) -> Option<&mut Junction> {
		let num_parents = self.parents as usize;
		if i < num_parents {
			return None
		}
		self.interior.at_mut(i - num_parents)
	}

	/// Decrements the parent count by 1.
	pub fn dec_parent(&mut self) {
		self.parents = self.parents.saturating_sub(1);
	}

	/// Removes the first interior junction from `self`, returning it
	/// (or `None` if it was empty or if `self` contains only parents).
	pub fn take_first_interior(&mut self) -> Option<Junction> {
		self.interior.take_first()
	}

	/// Removes the last element from `interior`, returning it (or `None` if it was empty or if
	/// `self` only contains parents).
	pub fn take_last(&mut self) -> Option<Junction> {
		self.interior.take_last()
	}

	/// Ensures that `self` has the same number of parents as `prefix`, its junctions begins with
	/// the junctions of `prefix` and that it has a single `Junction` item following.
	/// If so, returns a reference to this `Junction` item.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v1::{Junctions::*, Junction::*, MultiLocation};
	/// # fn main() {
	/// let mut m = MultiLocation::new(1, X2(PalletInstance(3), OnlyChild));
	/// assert_eq!(
	///     m.match_and_split(&MultiLocation::new(1, X1(PalletInstance(3)))),
	///     Some(&OnlyChild),
	/// );
	/// assert_eq!(m.match_and_split(&MultiLocation::new(1, Here)), None);
	/// # }
	/// ```
	pub fn match_and_split(&self, prefix: &MultiLocation) -> Option<&Junction> {
		if self.parents != prefix.parents {
			return None
		}
		self.interior.match_and_split(&prefix.interior)
	}

	/// Returns whether `self` has the same number of parents as `prefix` and its junctions begins
	/// with the junctions of `prefix`.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v1::{Junctions::*, Junction::*, MultiLocation};
	/// let m = MultiLocation::new(1, X3(PalletInstance(3), OnlyChild, OnlyChild));
	/// assert!(m.starts_with(&MultiLocation::new(1, X1(PalletInstance(3)))));
	/// assert!(!m.starts_with(&MultiLocation::new(1, X1(GeneralIndex(99)))));
	/// assert!(!m.starts_with(&MultiLocation::new(0, X1(PalletInstance(3)))));
	/// ```
	pub fn starts_with(&self, prefix: &MultiLocation) -> bool {
		if self.parents != prefix.parents {
			return false
		}
		self.interior.starts_with(&prefix.interior)
	}

	/// Mutate `self` so that it is suffixed with `suffix`.
	///
	/// Does not modify `self` and returns `Err` with `suffix` in case of overflow.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v1::{Junctions::*, Junction::*, MultiLocation};
	/// # fn main() {
	/// let mut m = MultiLocation::new(1, X1(Parachain(21)));
	/// assert_eq!(m.append_with(X1(PalletInstance(3))), Ok(()));
	/// assert_eq!(m, MultiLocation::new(1, X2(Parachain(21), PalletInstance(3))));
	/// # }
	/// ```
	pub fn append_with(&mut self, suffix: Junctions) -> Result<(), Junctions> {
		if self.interior.len().saturating_add(suffix.len()) > MAX_JUNCTIONS {
			return Err(suffix)
		}
		for j in suffix.into_iter() {
			self.interior.push(j).expect("Already checked the sum of the len()s; qed")
		}
		Ok(())
	}

	/// Mutate `self` so that it is prefixed with `prefix`.
	///
	/// Does not modify `self` and returns `Err` with `prefix` in case of overflow.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v1::{Junctions::*, Junction::*, MultiLocation};
	/// # fn main() {
	/// let mut m = MultiLocation::new(2, X1(PalletInstance(3)));
	/// assert_eq!(m.prepend_with(MultiLocation::new(1, X2(Parachain(21), OnlyChild))), Ok(()));
	/// assert_eq!(m, MultiLocation::new(1, X1(PalletInstance(3))));
	/// # }
	/// ```
	pub fn prepend_with(&mut self, mut prefix: MultiLocation) -> Result<(), MultiLocation> {
		//     prefix     self (suffix)
		// P .. P I .. I  p .. p i .. i
		let prepend_interior = prefix.interior.len().saturating_sub(self.parents as usize);
		let final_interior = self.interior.len().saturating_add(prepend_interior);
		if final_interior > MAX_JUNCTIONS {
			return Err(prefix)
		}
		let suffix_parents = (self.parents as usize).saturating_sub(prefix.interior.len());
		let final_parents = (prefix.parents as usize).saturating_add(suffix_parents);
		if final_parents > 255 {
			return Err(prefix)
		}

		// cancel out the final item on the prefix interior for one of the suffix's parents.
		while self.parents > 0 && prefix.take_last().is_some() {
			self.dec_parent();
		}

		// now we have either removed all suffix's parents or prefix interior.
		// this means we can combine the prefix's and suffix's remaining parents/interior since
		// we know that with at least one empty, the overall order will be respected:
		//     prefix     self (suffix)
		// P .. P   (I)   p .. p i .. i => P + p .. (no I) i
		//  -- or --
		// P .. P I .. I    (p)  i .. i => P (no p) .. I + i

		self.parents = self.parents.saturating_add(prefix.parents);
		for j in prefix.interior.into_iter().rev() {
			self.push_front_interior(j)
				.expect("final_interior no greater than MAX_JUNCTIONS; qed");
		}
		Ok(())
	}

	/// Mutate `self` so that it represents the same location from the point of view of `target`.
	/// The context of `self` is provided as `ancestry`.
	///
	/// Does not modify `self` in case of overflow.
	pub fn reanchor(&mut self, target: &MultiLocation, ancestry: &MultiLocation) -> Result<(), ()> {
		// TODO: https://github.com/paritytech/polkadot/issues/4489 Optimize this.

		// 1. Use our `ancestry` to figure out how the `target` would address us.
		let inverted_target = ancestry.inverted(target)?;

		// 2. Prepend `inverted_target` to `self` to get self's location from the perspective of
		// `target`.
		self.prepend_with(inverted_target).map_err(|_| ())?;

		// 3. Given that we know some of `target` ancestry, ensure that any parents in `self` are
		// strictly needed.
		self.simplify(target.interior());

		Ok(())
	}

	/// Treating `self` as a context, determine how it would be referenced by a `target` location.
	pub fn inverted(&self, target: &MultiLocation) -> Result<MultiLocation, ()> {
		use Junction::OnlyChild;
		let mut ancestry = self.clone();
		let mut junctions = Junctions::Here;
		for _ in 0..target.parent_count() {
			junctions = junctions
				.pushed_front_with(ancestry.interior.take_last().unwrap_or(OnlyChild))
				.map_err(|_| ())?;
		}
		let parents = target.interior().len() as u8;
		Ok(MultiLocation::new(parents, junctions))
	}

	/// Remove any unneeded parents/junctions in `self` based on the given context it will be
	/// interpreted in.
	pub fn simplify(&mut self, context: &Junctions) {
		if context.len() < self.parents as usize {
			// Not enough context
			return
		}
		while self.parents > 0 {
			let maybe = context.at(context.len() - (self.parents as usize));
			match (self.interior.first(), maybe) {
				(Some(i), Some(j)) if i == j => {
					self.interior.take_first();
					self.parents -= 1;
				},
				_ => break,
			}
		}
	}
}

/// A unit struct which can be converted into a `MultiLocation` of `parents` value 1.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct Parent;
impl From<Parent> for MultiLocation {
	fn from(_: Parent) -> Self {
		MultiLocation { parents: 1, interior: Junctions::Here }
	}
}

/// A tuple struct which can be converted into a `MultiLocation` of `parents` value 1 with the inner interior.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct ParentThen(Junctions);
impl From<ParentThen> for MultiLocation {
	fn from(ParentThen(interior): ParentThen) -> Self {
		MultiLocation { parents: 1, interior }
	}
}

/// A unit struct which can be converted into a `MultiLocation` of the inner `parents` value.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct Ancestor(u8);
impl From<Ancestor> for MultiLocation {
	fn from(Ancestor(parents): Ancestor) -> Self {
		MultiLocation { parents, interior: Junctions::Here }
	}
}

/// A unit struct which can be converted into a `MultiLocation` of the inner `parents` value and the inner interior.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct AncestorThen(u8, Junctions);
impl From<AncestorThen> for MultiLocation {
	fn from(AncestorThen(parents, interior): AncestorThen) -> Self {
		MultiLocation { parents, interior }
	}
}

xcm_procedural::impl_conversion_functions_for_multilocation_v1!();

/// Maximum number of `Junction`s that a `Junctions` can contain.
const MAX_JUNCTIONS: usize = 8;

/// Non-parent junctions that can be constructed, up to the length of 8. This specific `Junctions`
/// implementation uses a Rust `enum` in order to make pattern matching easier.
///
/// Parent junctions cannot be constructed with this type. Refer to `MultiLocation` for
/// instructions on constructing parent junctions.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Encode, Decode, Debug, TypeInfo, MaxEncodedLen)]
pub enum Junctions {
	/// The interpreting consensus system.
	Here,
	/// A relative path comprising 1 junction.
	X1(Junction),
	/// A relative path comprising 2 junctions.
	X2(Junction, Junction),
	/// A relative path comprising 3 junctions.
	X3(Junction, Junction, Junction),
	/// A relative path comprising 4 junctions.
	X4(Junction, Junction, Junction, Junction),
	/// A relative path comprising 5 junctions.
	X5(Junction, Junction, Junction, Junction, Junction),
	/// A relative path comprising 6 junctions.
	X6(Junction, Junction, Junction, Junction, Junction, Junction),
	/// A relative path comprising 7 junctions.
	X7(Junction, Junction, Junction, Junction, Junction, Junction, Junction),
	/// A relative path comprising 8 junctions.
	X8(Junction, Junction, Junction, Junction, Junction, Junction, Junction, Junction),
}

pub struct JunctionsIterator(Junctions);
impl Iterator for JunctionsIterator {
	type Item = Junction;
	fn next(&mut self) -> Option<Junction> {
		self.0.take_first()
	}
}

impl DoubleEndedIterator for JunctionsIterator {
	fn next_back(&mut self) -> Option<Junction> {
		self.0.take_last()
	}
}

pub struct JunctionsRefIterator<'a> {
	junctions: &'a Junctions,
	next: usize,
	back: usize,
}

impl<'a> Iterator for JunctionsRefIterator<'a> {
	type Item = &'a Junction;
	fn next(&mut self) -> Option<&'a Junction> {
		if self.next.saturating_add(self.back) >= self.junctions.len() {
			return None
		}

		let result = self.junctions.at(self.next);
		self.next += 1;
		result
	}
}

impl<'a> DoubleEndedIterator for JunctionsRefIterator<'a> {
	fn next_back(&mut self) -> Option<&'a Junction> {
		let next_back = self.back.saturating_add(1);
		// checked_sub here, because if the result is less than 0, we end iteration
		let index = self.junctions.len().checked_sub(next_back)?;
		if self.next > index {
			return None
		}
		self.back = next_back;

		self.junctions.at(index)
	}
}

impl<'a> IntoIterator for &'a Junctions {
	type Item = &'a Junction;
	type IntoIter = JunctionsRefIterator<'a>;
	fn into_iter(self) -> Self::IntoIter {
		JunctionsRefIterator { junctions: self, next: 0, back: 0 }
	}
}

impl IntoIterator for Junctions {
	type Item = Junction;
	type IntoIter = JunctionsIterator;
	fn into_iter(self) -> Self::IntoIter {
		JunctionsIterator(self)
	}
}

impl Junctions {
	/// Convert `self` into a `MultiLocation` containing 0 parents.
	///
	/// Similar to `Into::into`, except that this method can be used in a const evaluation context.
	pub const fn into(self) -> MultiLocation {
		MultiLocation { parents: 0, interior: self }
	}

	/// Convert `self` into a `MultiLocation` containing `n` parents.
	///
	/// Similar to `Self::into`, with the added ability to specify the number of parent junctions.
	pub const fn into_exterior(self, n: u8) -> MultiLocation {
		MultiLocation { parents: n, interior: self }
	}

	/// Returns first junction, or `None` if the location is empty.
	pub fn first(&self) -> Option<&Junction> {
		match &self {
			Junctions::Here => None,
			Junctions::X1(ref a) => Some(a),
			Junctions::X2(ref a, ..) => Some(a),
			Junctions::X3(ref a, ..) => Some(a),
			Junctions::X4(ref a, ..) => Some(a),
			Junctions::X5(ref a, ..) => Some(a),
			Junctions::X6(ref a, ..) => Some(a),
			Junctions::X7(ref a, ..) => Some(a),
			Junctions::X8(ref a, ..) => Some(a),
		}
	}

	/// Returns last junction, or `None` if the location is empty.
	pub fn last(&self) -> Option<&Junction> {
		match &self {
			Junctions::Here => None,
			Junctions::X1(ref a) => Some(a),
			Junctions::X2(.., ref a) => Some(a),
			Junctions::X3(.., ref a) => Some(a),
			Junctions::X4(.., ref a) => Some(a),
			Junctions::X5(.., ref a) => Some(a),
			Junctions::X6(.., ref a) => Some(a),
			Junctions::X7(.., ref a) => Some(a),
			Junctions::X8(.., ref a) => Some(a),
		}
	}

	/// Splits off the first junction, returning the remaining suffix (first item in tuple) and the first element
	/// (second item in tuple) or `None` if it was empty.
	pub fn split_first(self) -> (Junctions, Option<Junction>) {
		match self {
			Junctions::Here => (Junctions::Here, None),
			Junctions::X1(a) => (Junctions::Here, Some(a)),
			Junctions::X2(a, b) => (Junctions::X1(b), Some(a)),
			Junctions::X3(a, b, c) => (Junctions::X2(b, c), Some(a)),
			Junctions::X4(a, b, c, d) => (Junctions::X3(b, c, d), Some(a)),
			Junctions::X5(a, b, c, d, e) => (Junctions::X4(b, c, d, e), Some(a)),
			Junctions::X6(a, b, c, d, e, f) => (Junctions::X5(b, c, d, e, f), Some(a)),
			Junctions::X7(a, b, c, d, e, f, g) => (Junctions::X6(b, c, d, e, f, g), Some(a)),
			Junctions::X8(a, b, c, d, e, f, g, h) => (Junctions::X7(b, c, d, e, f, g, h), Some(a)),
		}
	}

	/// Splits off the last junction, returning the remaining prefix (first item in tuple) and the last element
	/// (second item in tuple) or `None` if it was empty.
	pub fn split_last(self) -> (Junctions, Option<Junction>) {
		match self {
			Junctions::Here => (Junctions::Here, None),
			Junctions::X1(a) => (Junctions::Here, Some(a)),
			Junctions::X2(a, b) => (Junctions::X1(a), Some(b)),
			Junctions::X3(a, b, c) => (Junctions::X2(a, b), Some(c)),
			Junctions::X4(a, b, c, d) => (Junctions::X3(a, b, c), Some(d)),
			Junctions::X5(a, b, c, d, e) => (Junctions::X4(a, b, c, d), Some(e)),
			Junctions::X6(a, b, c, d, e, f) => (Junctions::X5(a, b, c, d, e), Some(f)),
			Junctions::X7(a, b, c, d, e, f, g) => (Junctions::X6(a, b, c, d, e, f), Some(g)),
			Junctions::X8(a, b, c, d, e, f, g, h) => (Junctions::X7(a, b, c, d, e, f, g), Some(h)),
		}
	}

	/// Removes the first element from `self`, returning it (or `None` if it was empty).
	pub fn take_first(&mut self) -> Option<Junction> {
		let mut d = Junctions::Here;
		mem::swap(&mut *self, &mut d);
		let (tail, head) = d.split_first();
		*self = tail;
		head
	}

	/// Removes the last element from `self`, returning it (or `None` if it was empty).
	pub fn take_last(&mut self) -> Option<Junction> {
		let mut d = Junctions::Here;
		mem::swap(&mut *self, &mut d);
		let (head, tail) = d.split_last();
		*self = head;
		tail
	}

	/// Mutates `self` to be appended with `new` or returns an `Err` with `new` if would overflow.
	pub fn push(&mut self, new: Junction) -> result::Result<(), Junction> {
		let mut dummy = Junctions::Here;
		mem::swap(self, &mut dummy);
		match dummy.pushed_with(new) {
			Ok(s) => {
				*self = s;
				Ok(())
			},
			Err((s, j)) => {
				*self = s;
				Err(j)
			},
		}
	}

	/// Mutates `self` to be prepended with `new` or returns an `Err` with `new` if would overflow.
	pub fn push_front(&mut self, new: Junction) -> result::Result<(), Junction> {
		let mut dummy = Junctions::Here;
		mem::swap(self, &mut dummy);
		match dummy.pushed_front_with(new) {
			Ok(s) => {
				*self = s;
				Ok(())
			},
			Err((s, j)) => {
				*self = s;
				Err(j)
			},
		}
	}

	/// Consumes `self` and returns a `Junctions` suffixed with `new`, or an `Err` with the
	/// original value of `self` and `new` in case of overflow.
	pub fn pushed_with(self, new: Junction) -> result::Result<Self, (Self, Junction)> {
		Ok(match self {
			Junctions::Here => Junctions::X1(new),
			Junctions::X1(a) => Junctions::X2(a, new),
			Junctions::X2(a, b) => Junctions::X3(a, b, new),
			Junctions::X3(a, b, c) => Junctions::X4(a, b, c, new),
			Junctions::X4(a, b, c, d) => Junctions::X5(a, b, c, d, new),
			Junctions::X5(a, b, c, d, e) => Junctions::X6(a, b, c, d, e, new),
			Junctions::X6(a, b, c, d, e, f) => Junctions::X7(a, b, c, d, e, f, new),
			Junctions::X7(a, b, c, d, e, f, g) => Junctions::X8(a, b, c, d, e, f, g, new),
			s => Err((s, new))?,
		})
	}

	/// Consumes `self` and returns a `Junctions` prefixed with `new`, or an `Err` with the
	/// original value of `self` and `new` in case of overflow.
	pub fn pushed_front_with(self, new: Junction) -> result::Result<Self, (Self, Junction)> {
		Ok(match self {
			Junctions::Here => Junctions::X1(new),
			Junctions::X1(a) => Junctions::X2(new, a),
			Junctions::X2(a, b) => Junctions::X3(new, a, b),
			Junctions::X3(a, b, c) => Junctions::X4(new, a, b, c),
			Junctions::X4(a, b, c, d) => Junctions::X5(new, a, b, c, d),
			Junctions::X5(a, b, c, d, e) => Junctions::X6(new, a, b, c, d, e),
			Junctions::X6(a, b, c, d, e, f) => Junctions::X7(new, a, b, c, d, e, f),
			Junctions::X7(a, b, c, d, e, f, g) => Junctions::X8(new, a, b, c, d, e, f, g),
			s => Err((s, new))?,
		})
	}

	/// Returns the number of junctions in `self`.
	pub const fn len(&self) -> usize {
		match &self {
			Junctions::Here => 0,
			Junctions::X1(..) => 1,
			Junctions::X2(..) => 2,
			Junctions::X3(..) => 3,
			Junctions::X4(..) => 4,
			Junctions::X5(..) => 5,
			Junctions::X6(..) => 6,
			Junctions::X7(..) => 7,
			Junctions::X8(..) => 8,
		}
	}

	/// Returns the junction at index `i`, or `None` if the location doesn't contain that many elements.
	pub fn at(&self, i: usize) -> Option<&Junction> {
		Some(match (i, self) {
			(0, Junctions::X1(ref a)) => a,
			(0, Junctions::X2(ref a, ..)) => a,
			(0, Junctions::X3(ref a, ..)) => a,
			(0, Junctions::X4(ref a, ..)) => a,
			(0, Junctions::X5(ref a, ..)) => a,
			(0, Junctions::X6(ref a, ..)) => a,
			(0, Junctions::X7(ref a, ..)) => a,
			(0, Junctions::X8(ref a, ..)) => a,
			(1, Junctions::X2(_, ref a)) => a,
			(1, Junctions::X3(_, ref a, ..)) => a,
			(1, Junctions::X4(_, ref a, ..)) => a,
			(1, Junctions::X5(_, ref a, ..)) => a,
			(1, Junctions::X6(_, ref a, ..)) => a,
			(1, Junctions::X7(_, ref a, ..)) => a,
			(1, Junctions::X8(_, ref a, ..)) => a,
			(2, Junctions::X3(_, _, ref a)) => a,
			(2, Junctions::X4(_, _, ref a, ..)) => a,
			(2, Junctions::X5(_, _, ref a, ..)) => a,
			(2, Junctions::X6(_, _, ref a, ..)) => a,
			(2, Junctions::X7(_, _, ref a, ..)) => a,
			(2, Junctions::X8(_, _, ref a, ..)) => a,
			(3, Junctions::X4(_, _, _, ref a)) => a,
			(3, Junctions::X5(_, _, _, ref a, ..)) => a,
			(3, Junctions::X6(_, _, _, ref a, ..)) => a,
			(3, Junctions::X7(_, _, _, ref a, ..)) => a,
			(3, Junctions::X8(_, _, _, ref a, ..)) => a,
			(4, Junctions::X5(_, _, _, _, ref a)) => a,
			(4, Junctions::X6(_, _, _, _, ref a, ..)) => a,
			(4, Junctions::X7(_, _, _, _, ref a, ..)) => a,
			(4, Junctions::X8(_, _, _, _, ref a, ..)) => a,
			(5, Junctions::X6(_, _, _, _, _, ref a)) => a,
			(5, Junctions::X7(_, _, _, _, _, ref a, ..)) => a,
			(5, Junctions::X8(_, _, _, _, _, ref a, ..)) => a,
			(6, Junctions::X7(_, _, _, _, _, _, ref a)) => a,
			(6, Junctions::X8(_, _, _, _, _, _, ref a, ..)) => a,
			(7, Junctions::X8(_, _, _, _, _, _, _, ref a)) => a,
			_ => return None,
		})
	}

	/// Returns a mutable reference to the junction at index `i`, or `None` if the location doesn't contain that many
	/// elements.
	pub fn at_mut(&mut self, i: usize) -> Option<&mut Junction> {
		Some(match (i, self) {
			(0, Junctions::X1(ref mut a)) => a,
			(0, Junctions::X2(ref mut a, ..)) => a,
			(0, Junctions::X3(ref mut a, ..)) => a,
			(0, Junctions::X4(ref mut a, ..)) => a,
			(0, Junctions::X5(ref mut a, ..)) => a,
			(0, Junctions::X6(ref mut a, ..)) => a,
			(0, Junctions::X7(ref mut a, ..)) => a,
			(0, Junctions::X8(ref mut a, ..)) => a,
			(1, Junctions::X2(_, ref mut a)) => a,
			(1, Junctions::X3(_, ref mut a, ..)) => a,
			(1, Junctions::X4(_, ref mut a, ..)) => a,
			(1, Junctions::X5(_, ref mut a, ..)) => a,
			(1, Junctions::X6(_, ref mut a, ..)) => a,
			(1, Junctions::X7(_, ref mut a, ..)) => a,
			(1, Junctions::X8(_, ref mut a, ..)) => a,
			(2, Junctions::X3(_, _, ref mut a)) => a,
			(2, Junctions::X4(_, _, ref mut a, ..)) => a,
			(2, Junctions::X5(_, _, ref mut a, ..)) => a,
			(2, Junctions::X6(_, _, ref mut a, ..)) => a,
			(2, Junctions::X7(_, _, ref mut a, ..)) => a,
			(2, Junctions::X8(_, _, ref mut a, ..)) => a,
			(3, Junctions::X4(_, _, _, ref mut a)) => a,
			(3, Junctions::X5(_, _, _, ref mut a, ..)) => a,
			(3, Junctions::X6(_, _, _, ref mut a, ..)) => a,
			(3, Junctions::X7(_, _, _, ref mut a, ..)) => a,
			(3, Junctions::X8(_, _, _, ref mut a, ..)) => a,
			(4, Junctions::X5(_, _, _, _, ref mut a)) => a,
			(4, Junctions::X6(_, _, _, _, ref mut a, ..)) => a,
			(4, Junctions::X7(_, _, _, _, ref mut a, ..)) => a,
			(4, Junctions::X8(_, _, _, _, ref mut a, ..)) => a,
			(5, Junctions::X6(_, _, _, _, _, ref mut a)) => a,
			(5, Junctions::X7(_, _, _, _, _, ref mut a, ..)) => a,
			(5, Junctions::X8(_, _, _, _, _, ref mut a, ..)) => a,
			(6, Junctions::X7(_, _, _, _, _, _, ref mut a)) => a,
			(6, Junctions::X8(_, _, _, _, _, _, ref mut a, ..)) => a,
			(7, Junctions::X8(_, _, _, _, _, _, _, ref mut a)) => a,
			_ => return None,
		})
	}

	/// Returns a reference iterator over the junctions.
	pub fn iter(&self) -> JunctionsRefIterator {
		JunctionsRefIterator { junctions: self, next: 0, back: 0 }
	}

	/// Returns a reference iterator over the junctions in reverse.
	#[deprecated(note = "Please use iter().rev()")]
	pub fn iter_rev(&self) -> impl Iterator + '_ {
		self.iter().rev()
	}

	/// Consumes `self` and returns an iterator over the junctions in reverse.
	#[deprecated(note = "Please use into_iter().rev()")]
	pub fn into_iter_rev(self) -> impl Iterator {
		self.into_iter().rev()
	}

	/// Ensures that self begins with `prefix` and that it has a single `Junction` item following.
	/// If so, returns a reference to this `Junction` item.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v1::{Junctions::*, Junction::*};
	/// # fn main() {
	/// let mut m = X3(Parachain(2), PalletInstance(3), OnlyChild);
	/// assert_eq!(m.match_and_split(&X2(Parachain(2), PalletInstance(3))), Some(&OnlyChild));
	/// assert_eq!(m.match_and_split(&X1(Parachain(2))), None);
	/// # }
	/// ```
	pub fn match_and_split(&self, prefix: &Junctions) -> Option<&Junction> {
		if prefix.len() + 1 != self.len() || !self.starts_with(prefix) {
			return None
		}
		self.at(prefix.len())
	}

	/// Returns whether `self` begins with or is equal to `prefix`.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v1::{Junctions::*, Junction::*};
	/// let mut j = X3(Parachain(2), PalletInstance(3), OnlyChild);
	/// assert!(j.starts_with(&X2(Parachain(2), PalletInstance(3))));
	/// assert!(j.starts_with(&j));
	/// assert!(j.starts_with(&X1(Parachain(2))));
	/// assert!(!j.starts_with(&X1(Parachain(999))));
	/// assert!(!j.starts_with(&X4(Parachain(2), PalletInstance(3), OnlyChild, OnlyChild)));
	/// ```
	pub fn starts_with(&self, prefix: &Junctions) -> bool {
		if self.len() < prefix.len() {
			return false
		}
		prefix.iter().zip(self.iter()).all(|(l, r)| l == r)
	}
}

impl TryFrom<MultiLocation> for Junctions {
	type Error = ();
	fn try_from(x: MultiLocation) -> result::Result<Self, ()> {
		if x.parents > 0 {
			Err(())
		} else {
			Ok(x.interior)
		}
	}
}

#[cfg(test)]
mod tests {
	use super::{Ancestor, AncestorThen, Junctions::*, MultiLocation, Parent, ParentThen};
	use crate::opaque::v1::{Junction::*, NetworkId::*};
	use parity_scale_codec::{Decode, Encode};

	#[test]
	fn inverted_works() {
		let ancestry: MultiLocation = (Parachain(1000), PalletInstance(42)).into();
		let target = (Parent, PalletInstance(69)).into();
		let expected = (Parent, PalletInstance(42)).into();
		let inverted = ancestry.inverted(&target).unwrap();
		assert_eq!(inverted, expected);

		let ancestry: MultiLocation = (Parachain(1000), PalletInstance(42), GeneralIndex(1)).into();
		let target = (Parent, Parent, PalletInstance(69), GeneralIndex(2)).into();
		let expected = (Parent, Parent, PalletInstance(42), GeneralIndex(1)).into();
		let inverted = ancestry.inverted(&target).unwrap();
		assert_eq!(inverted, expected);
	}

	#[test]
	fn simplify_basic_works() {
		let mut location: MultiLocation =
			(Parent, Parent, Parachain(1000), PalletInstance(42), GeneralIndex(69)).into();
		let context = X2(Parachain(1000), PalletInstance(42));
		let expected = GeneralIndex(69).into();
		location.simplify(&context);
		assert_eq!(location, expected);

		let mut location: MultiLocation = (Parent, PalletInstance(42), GeneralIndex(69)).into();
		let context = X1(PalletInstance(42));
		let expected = GeneralIndex(69).into();
		location.simplify(&context);
		assert_eq!(location, expected);

		let mut location: MultiLocation = (Parent, PalletInstance(42), GeneralIndex(69)).into();
		let context = X2(Parachain(1000), PalletInstance(42));
		let expected = GeneralIndex(69).into();
		location.simplify(&context);
		assert_eq!(location, expected);

		let mut location: MultiLocation =
			(Parent, Parent, Parachain(1000), PalletInstance(42), GeneralIndex(69)).into();
		let context = X3(OnlyChild, Parachain(1000), PalletInstance(42));
		let expected = GeneralIndex(69).into();
		location.simplify(&context);
		assert_eq!(location, expected);
	}

	#[test]
	fn simplify_incompatible_location_fails() {
		let mut location: MultiLocation =
			(Parent, Parent, Parachain(1000), PalletInstance(42), GeneralIndex(69)).into();
		let context = X3(Parachain(1000), PalletInstance(42), GeneralIndex(42));
		let expected =
			(Parent, Parent, Parachain(1000), PalletInstance(42), GeneralIndex(69)).into();
		location.simplify(&context);
		assert_eq!(location, expected);

		let mut location: MultiLocation =
			(Parent, Parent, Parachain(1000), PalletInstance(42), GeneralIndex(69)).into();
		let context = X1(Parachain(1000));
		let expected =
			(Parent, Parent, Parachain(1000), PalletInstance(42), GeneralIndex(69)).into();
		location.simplify(&context);
		assert_eq!(location, expected);
	}

	#[test]
	fn reanchor_works() {
		let mut id: MultiLocation = (Parent, Parachain(1000), GeneralIndex(42)).into();
		let ancestry = Parachain(2000).into();
		let target = (Parent, Parachain(1000)).into();
		let expected = GeneralIndex(42).into();
		id.reanchor(&target, &ancestry).unwrap();
		assert_eq!(id, expected);
	}

	#[test]
	fn encode_and_decode_works() {
		let m = MultiLocation {
			parents: 1,
			interior: X2(Parachain(42), AccountIndex64 { network: Any, index: 23 }),
		};
		let encoded = m.encode();
		assert_eq!(encoded, [1, 2, 0, 168, 2, 0, 92].to_vec());
		let decoded = MultiLocation::decode(&mut &encoded[..]);
		assert_eq!(decoded, Ok(m));
	}

	#[test]
	fn match_and_split_works() {
		let m = MultiLocation {
			parents: 1,
			interior: X2(Parachain(42), AccountIndex64 { network: Any, index: 23 }),
		};
		assert_eq!(m.match_and_split(&MultiLocation { parents: 1, interior: Here }), None);
		assert_eq!(
			m.match_and_split(&MultiLocation { parents: 1, interior: X1(Parachain(42)) }),
			Some(&AccountIndex64 { network: Any, index: 23 })
		);
		assert_eq!(m.match_and_split(&m), None);
	}

	#[test]
	fn starts_with_works() {
		let full: MultiLocation =
			(Parent, Parachain(1000), AccountId32 { network: Any, id: [0; 32] }).into();
		let identity: MultiLocation = full.clone();
		let prefix: MultiLocation = (Parent, Parachain(1000)).into();
		let wrong_parachain: MultiLocation = (Parent, Parachain(1001)).into();
		let wrong_account: MultiLocation =
			(Parent, Parachain(1000), AccountId32 { network: Any, id: [1; 32] }).into();
		let no_parents: MultiLocation = (Parachain(1000)).into();
		let too_many_parents: MultiLocation = (Parent, Parent, Parachain(1000)).into();

		assert!(full.starts_with(&identity));
		assert!(full.starts_with(&prefix));
		assert!(!full.starts_with(&wrong_parachain));
		assert!(!full.starts_with(&wrong_account));
		assert!(!full.starts_with(&no_parents));
		assert!(!full.starts_with(&too_many_parents));
	}

	#[test]
	fn append_with_works() {
		let acc = AccountIndex64 { network: Any, index: 23 };
		let mut m = MultiLocation { parents: 1, interior: X1(Parachain(42)) };
		assert_eq!(m.append_with(X2(PalletInstance(3), acc.clone())), Ok(()));
		assert_eq!(
			m,
			MultiLocation {
				parents: 1,
				interior: X3(Parachain(42), PalletInstance(3), acc.clone())
			}
		);

		// cannot append to create overly long multilocation
		let acc = AccountIndex64 { network: Any, index: 23 };
		let m = MultiLocation {
			parents: 254,
			interior: X5(Parachain(42), OnlyChild, OnlyChild, OnlyChild, OnlyChild),
		};
		let suffix = X4(PalletInstance(3), acc.clone(), OnlyChild, OnlyChild);
		assert_eq!(m.clone().append_with(suffix.clone()), Err(suffix));
	}

	#[test]
	fn prepend_with_works() {
		let mut m = MultiLocation {
			parents: 1,
			interior: X2(Parachain(42), AccountIndex64 { network: Any, index: 23 }),
		};
		assert_eq!(m.prepend_with(MultiLocation { parents: 1, interior: X1(OnlyChild) }), Ok(()));
		assert_eq!(
			m,
			MultiLocation {
				parents: 1,
				interior: X2(Parachain(42), AccountIndex64 { network: Any, index: 23 })
			}
		);

		// cannot prepend to create overly long multilocation
		let mut m = MultiLocation { parents: 254, interior: X1(Parachain(42)) };
		let prefix = MultiLocation { parents: 2, interior: Here };
		assert_eq!(m.prepend_with(prefix.clone()), Err(prefix));

		let prefix = MultiLocation { parents: 1, interior: Here };
		assert_eq!(m.prepend_with(prefix), Ok(()));
		assert_eq!(m, MultiLocation { parents: 255, interior: X1(Parachain(42)) });
	}

	#[test]
	fn double_ended_ref_iteration_works() {
		let m = X3(Parachain(1000), Parachain(3), PalletInstance(5));
		let mut iter = m.iter();

		let first = iter.next().unwrap();
		assert_eq!(first, &Parachain(1000));
		let third = iter.next_back().unwrap();
		assert_eq!(third, &PalletInstance(5));
		let second = iter.next_back().unwrap();
		assert_eq!(iter.next(), None);
		assert_eq!(iter.next_back(), None);
		assert_eq!(second, &Parachain(3));

		let res = Here
			.pushed_with(first.clone())
			.unwrap()
			.pushed_with(second.clone())
			.unwrap()
			.pushed_with(third.clone())
			.unwrap();
		assert_eq!(m, res);

		// make sure there's no funny business with the 0 indexing
		let m = Here;
		let mut iter = m.iter();

		assert_eq!(iter.next(), None);
		assert_eq!(iter.next_back(), None);
	}

	#[test]
	fn conversion_from_other_types_works() {
		use crate::v0;
		fn takes_multilocation<Arg: Into<MultiLocation>>(_arg: Arg) {}

		takes_multilocation(Parent);
		takes_multilocation(Here);
		takes_multilocation(X1(Parachain(42)));
		takes_multilocation((255, PalletInstance(8)));
		takes_multilocation((Ancestor(5), Parachain(1), PalletInstance(3)));
		takes_multilocation((Ancestor(2), Here));
		takes_multilocation(AncestorThen(
			3,
			X2(Parachain(43), AccountIndex64 { network: Any, index: 155 }),
		));
		takes_multilocation((Parent, AccountId32 { network: Any, id: [0; 32] }));
		takes_multilocation((Parent, Here));
		takes_multilocation(ParentThen(X1(Parachain(75))));
		takes_multilocation([Parachain(100), PalletInstance(3)]);

		assert_eq!(v0::MultiLocation::Null.try_into(), Ok(MultiLocation::here()));
		assert_eq!(
			v0::MultiLocation::X1(v0::Junction::Parent).try_into(),
			Ok(MultiLocation::parent())
		);
		assert_eq!(
			v0::MultiLocation::X2(v0::Junction::Parachain(88), v0::Junction::Parent).try_into(),
			Ok(MultiLocation::here()),
		);
		assert_eq!(
			v0::MultiLocation::X3(
				v0::Junction::Parent,
				v0::Junction::Parent,
				v0::Junction::GeneralKey(b"foo".to_vec().try_into().unwrap()),
			)
			.try_into(),
			Ok(MultiLocation {
				parents: 2,
				interior: X1(GeneralKey(b"foo".to_vec().try_into().unwrap()))
			}),
		);
	}
}