1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
//! Lowering rules for AArch64.
//!
//! TODO: opportunities for better code generation:
//!
//! - Smarter use of addressing modes. Recognize a+SCALE*b patterns. Recognize
//!   pre/post-index opportunities.
//!
//! - Floating-point immediates (FIMM instruction).

use super::lower_inst;
use crate::ir::condcodes::{FloatCC, IntCC};
use crate::ir::types::*;
use crate::ir::Inst as IRInst;
use crate::ir::{Opcode, Type, Value};
use crate::isa::aarch64::inst::*;
use crate::isa::aarch64::AArch64Backend;
use crate::machinst::lower::*;
use crate::machinst::{Reg, Writable};
use crate::{machinst::*, trace};
use crate::{CodegenError, CodegenResult};
use smallvec::{smallvec, SmallVec};
use std::cmp;

pub mod isle;

//============================================================================
// Result enum types.
//
// Lowering of a given value results in one of these enums, depending on the
// modes in which we can accept the value.

/// A lowering result: register, register-shift.  An SSA value can always be
/// lowered into one of these options; the register form is the fallback.
#[derive(Clone, Debug)]
enum ResultRS {
    Reg(Reg),
    RegShift(Reg, ShiftOpAndAmt),
}

/// A lowering result: register, register-shift, register-extend.  An SSA value can always be
/// lowered into one of these options; the register form is the fallback.
#[derive(Clone, Debug)]
enum ResultRSE {
    Reg(Reg),
    RegShift(Reg, ShiftOpAndAmt),
    RegExtend(Reg, ExtendOp),
}

impl ResultRSE {
    fn from_rs(rs: ResultRS) -> ResultRSE {
        match rs {
            ResultRS::Reg(r) => ResultRSE::Reg(r),
            ResultRS::RegShift(r, s) => ResultRSE::RegShift(r, s),
        }
    }
}

/// A lowering result: register, register-shift, register-extend, or 12-bit immediate form.
/// An SSA value can always be lowered into one of these options; the register form is the
/// fallback.
#[derive(Clone, Debug)]
pub(crate) enum ResultRSEImm12 {
    Reg(Reg),
    RegShift(Reg, ShiftOpAndAmt),
    RegExtend(Reg, ExtendOp),
    Imm12(Imm12),
}

impl ResultRSEImm12 {
    fn from_rse(rse: ResultRSE) -> ResultRSEImm12 {
        match rse {
            ResultRSE::Reg(r) => ResultRSEImm12::Reg(r),
            ResultRSE::RegShift(r, s) => ResultRSEImm12::RegShift(r, s),
            ResultRSE::RegExtend(r, e) => ResultRSEImm12::RegExtend(r, e),
        }
    }
}

//============================================================================
// Lowering: convert instruction inputs to forms that we can use.

/// Lower an instruction input to a 64-bit constant, if possible.
pub(crate) fn input_to_const(ctx: &mut Lower<Inst>, input: InsnInput) -> Option<u64> {
    let input = ctx.get_input_as_source_or_const(input.insn, input.input);
    input.constant
}

/// Lower an instruction input to a constant register-shift amount, if possible.
pub(crate) fn input_to_shiftimm(
    ctx: &mut Lower<Inst>,
    input: InsnInput,
) -> Option<ShiftOpShiftImm> {
    input_to_const(ctx, input).and_then(ShiftOpShiftImm::maybe_from_shift)
}

/// How to handle narrow values loaded into registers; see note on `narrow_mode`
/// parameter to `put_input_in_*` below.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub(crate) enum NarrowValueMode {
    None,
    /// Zero-extend to 32 bits if original is < 32 bits.
    ZeroExtend32,
    /// Sign-extend to 32 bits if original is < 32 bits.
    SignExtend32,
    /// Zero-extend to 64 bits if original is < 64 bits.
    ZeroExtend64,
    /// Sign-extend to 64 bits if original is < 64 bits.
    SignExtend64,
}

impl NarrowValueMode {
    fn is_32bit(&self) -> bool {
        match self {
            NarrowValueMode::None => false,
            NarrowValueMode::ZeroExtend32 | NarrowValueMode::SignExtend32 => true,
            NarrowValueMode::ZeroExtend64 | NarrowValueMode::SignExtend64 => false,
        }
    }

    fn is_signed(&self) -> bool {
        match self {
            NarrowValueMode::SignExtend32 | NarrowValueMode::SignExtend64 => true,
            NarrowValueMode::ZeroExtend32 | NarrowValueMode::ZeroExtend64 => false,
            NarrowValueMode::None => false,
        }
    }
}

/// Emits instruction(s) to generate the given constant value into newly-allocated
/// temporary registers, returning these registers.
fn generate_constant(ctx: &mut Lower<Inst>, ty: Type, c: u128) -> ValueRegs<Reg> {
    let from_bits = ty_bits(ty);
    let masked = if from_bits < 128 {
        c & ((1u128 << from_bits) - 1)
    } else {
        c
    };

    let cst_copy = ctx.alloc_tmp(ty);
    for inst in Inst::gen_constant(cst_copy, masked, ty, |ty| {
        ctx.alloc_tmp(ty).only_reg().unwrap()
    })
    .into_iter()
    {
        ctx.emit(inst);
    }
    non_writable_value_regs(cst_copy)
}

/// Extends a register according to `narrow_mode`.
/// If extended, the value is always extended to 64 bits, for simplicity.
fn extend_reg(
    ctx: &mut Lower<Inst>,
    ty: Type,
    in_reg: Reg,
    is_const: bool,
    narrow_mode: NarrowValueMode,
) -> Reg {
    let from_bits = ty_bits(ty) as u8;
    match (narrow_mode, from_bits) {
        (NarrowValueMode::None, _) => in_reg,
        (NarrowValueMode::ZeroExtend32, n) if n < 32 => {
            let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
            ctx.emit(Inst::Extend {
                rd: tmp,
                rn: in_reg,
                signed: false,
                from_bits,
                to_bits: 32,
            });
            tmp.to_reg()
        }
        (NarrowValueMode::SignExtend32, n) if n < 32 => {
            let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
            ctx.emit(Inst::Extend {
                rd: tmp,
                rn: in_reg,
                signed: true,
                from_bits,
                to_bits: 32,
            });
            tmp.to_reg()
        }
        (NarrowValueMode::ZeroExtend32, 32) | (NarrowValueMode::SignExtend32, 32) => in_reg,

        (NarrowValueMode::ZeroExtend64, n) if n < 64 => {
            if is_const {
                // Constants are zero-extended to full 64-bit width on load already.
                in_reg
            } else {
                let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
                ctx.emit(Inst::Extend {
                    rd: tmp,
                    rn: in_reg,
                    signed: false,
                    from_bits,
                    to_bits: 64,
                });
                tmp.to_reg()
            }
        }
        (NarrowValueMode::SignExtend64, n) if n < 64 => {
            let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
            ctx.emit(Inst::Extend {
                rd: tmp,
                rn: in_reg,
                signed: true,
                from_bits,
                to_bits: 64,
            });
            tmp.to_reg()
        }
        (_, 64) => in_reg,
        (_, 128) => in_reg,

        _ => panic!(
            "Unsupported input width: input ty {} bits {} mode {:?}",
            ty, from_bits, narrow_mode
        ),
    }
}

/// Lowers an instruction input to multiple regs
fn lower_value_to_regs(ctx: &mut Lower<Inst>, value: Value) -> (ValueRegs<Reg>, Type, bool) {
    trace!("lower_value_to_regs: value {:?}", value);
    let ty = ctx.value_ty(value);
    let inputs = ctx.get_value_as_source_or_const(value);
    let is_const = inputs.constant.is_some();

    let in_regs = if let Some(c) = inputs.constant {
        // Generate constants fresh at each use to minimize long-range register pressure.
        generate_constant(ctx, ty, c as u128)
    } else {
        ctx.put_value_in_regs(value)
    };

    (in_regs, ty, is_const)
}

/// Lower an instruction input to a register
///
/// The given register will be extended appropriately, according to
/// `narrow_mode` and the input's type. If extended, the value is
/// always extended to 64 bits, for simplicity.
pub(crate) fn put_input_in_reg(
    ctx: &mut Lower<Inst>,
    input: InsnInput,
    narrow_mode: NarrowValueMode,
) -> Reg {
    let value = ctx.input_as_value(input.insn, input.input);
    put_value_in_reg(ctx, value, narrow_mode)
}

/// Like above, only for values
fn put_value_in_reg(ctx: &mut Lower<Inst>, value: Value, narrow_mode: NarrowValueMode) -> Reg {
    let (in_regs, ty, is_const) = lower_value_to_regs(ctx, value);
    let reg = in_regs
        .only_reg()
        .expect("Multi-register value not expected");

    extend_reg(ctx, ty, reg, is_const, narrow_mode)
}

/// Lower an instruction input to multiple regs
pub(crate) fn put_input_in_regs(ctx: &mut Lower<Inst>, input: InsnInput) -> ValueRegs<Reg> {
    let value = ctx.input_as_value(input.insn, input.input);
    let (in_regs, _, _) = lower_value_to_regs(ctx, value);
    in_regs
}

/// Lower an instruction input to a reg or reg/shift, or reg/extend operand.
///
/// The `narrow_mode` flag indicates whether the consumer of this value needs
/// the high bits clear. For many operations, such as an add/sub/mul or any
/// bitwise logical operation, the low-bit results depend only on the low-bit
/// inputs, so e.g. we can do an 8 bit add on 32 bit registers where the 8-bit
/// value is stored in the low 8 bits of the register and the high 24 bits are
/// undefined. If the op truly needs the high N bits clear (such as for a
/// divide or a right-shift or a compare-to-zero), `narrow_mode` should be
/// set to `ZeroExtend` or `SignExtend` as appropriate, and the resulting
/// register will be provided the extended value.
fn put_input_in_rs(
    ctx: &mut Lower<Inst>,
    input: InsnInput,
    narrow_mode: NarrowValueMode,
) -> ResultRS {
    let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
    // Unique or non-unique use is fine for merging here.
    if let Some((insn, 0)) = inputs.inst.as_inst() {
        let op = ctx.data(insn).opcode();

        if op == Opcode::Ishl {
            let shiftee = InsnInput { insn, input: 0 };
            let shift_amt = InsnInput { insn, input: 1 };

            // Can we get the shift amount as an immediate?
            if let Some(shiftimm) = input_to_shiftimm(ctx, shift_amt) {
                let shiftee_bits = ty_bits(ctx.input_ty(insn, 0));
                if shiftee_bits <= std::u8::MAX as usize {
                    let shiftimm = shiftimm.mask(shiftee_bits as u8);
                    let reg = put_input_in_reg(ctx, shiftee, narrow_mode);
                    return ResultRS::RegShift(reg, ShiftOpAndAmt::new(ShiftOp::LSL, shiftimm));
                }
            }
        }
    }

    ResultRS::Reg(put_input_in_reg(ctx, input, narrow_mode))
}

/// Lower an instruction input to a reg or reg/shift, or reg/extend operand.
/// This does not actually codegen the source instruction; it just uses the
/// vreg into which the source instruction will generate its value.
///
/// See note on `put_input_in_rs` for a description of `narrow_mode`.
fn put_input_in_rse(
    ctx: &mut Lower<Inst>,
    input: InsnInput,
    narrow_mode: NarrowValueMode,
) -> ResultRSE {
    let value = ctx.input_as_value(input.insn, input.input);
    if let Some((val, extendop)) = get_as_extended_value(ctx, value, narrow_mode) {
        let reg = put_value_in_reg(ctx, val, NarrowValueMode::None);
        return ResultRSE::RegExtend(reg, extendop);
    }

    ResultRSE::from_rs(put_input_in_rs(ctx, input, narrow_mode))
}

fn get_as_extended_value(
    ctx: &mut Lower<Inst>,
    val: Value,
    narrow_mode: NarrowValueMode,
) -> Option<(Value, ExtendOp)> {
    let inputs = ctx.get_value_as_source_or_const(val);
    let (insn, n) = inputs.inst.as_inst()?;
    if n != 0 {
        return None;
    }
    let op = ctx.data(insn).opcode();
    let out_ty = ctx.output_ty(insn, 0);
    let out_bits = ty_bits(out_ty);

    // Is this a zero-extend or sign-extend and can we handle that with a register-mode operator?
    if op == Opcode::Uextend || op == Opcode::Sextend {
        let sign_extend = op == Opcode::Sextend;
        let inner_ty = ctx.input_ty(insn, 0);
        let inner_bits = ty_bits(inner_ty);
        assert!(inner_bits < out_bits);
        if match (sign_extend, narrow_mode) {
            // A single zero-extend or sign-extend is equal to itself.
            (_, NarrowValueMode::None) => true,
            // Two zero-extends or sign-extends in a row is equal to a single zero-extend or sign-extend.
            (false, NarrowValueMode::ZeroExtend32) | (false, NarrowValueMode::ZeroExtend64) => true,
            (true, NarrowValueMode::SignExtend32) | (true, NarrowValueMode::SignExtend64) => true,
            // A zero-extend and a sign-extend in a row is not equal to a single zero-extend or sign-extend
            (false, NarrowValueMode::SignExtend32) | (false, NarrowValueMode::SignExtend64) => {
                false
            }
            (true, NarrowValueMode::ZeroExtend32) | (true, NarrowValueMode::ZeroExtend64) => false,
        } {
            let extendop = match (sign_extend, inner_bits) {
                (true, 8) => ExtendOp::SXTB,
                (false, 8) => ExtendOp::UXTB,
                (true, 16) => ExtendOp::SXTH,
                (false, 16) => ExtendOp::UXTH,
                (true, 32) => ExtendOp::SXTW,
                (false, 32) => ExtendOp::UXTW,
                _ => unreachable!(),
            };
            return Some((ctx.input_as_value(insn, 0), extendop));
        }
    }

    // If `out_ty` is smaller than 32 bits and we need to zero- or sign-extend,
    // then get the result into a register and return an Extend-mode operand on
    // that register.
    if narrow_mode != NarrowValueMode::None
        && ((narrow_mode.is_32bit() && out_bits < 32) || (!narrow_mode.is_32bit() && out_bits < 64))
    {
        let extendop = match (narrow_mode, out_bits) {
            (NarrowValueMode::SignExtend32, 1) | (NarrowValueMode::SignExtend64, 1) => {
                ExtendOp::SXTB
            }
            (NarrowValueMode::ZeroExtend32, 1) | (NarrowValueMode::ZeroExtend64, 1) => {
                ExtendOp::UXTB
            }
            (NarrowValueMode::SignExtend32, 8) | (NarrowValueMode::SignExtend64, 8) => {
                ExtendOp::SXTB
            }
            (NarrowValueMode::ZeroExtend32, 8) | (NarrowValueMode::ZeroExtend64, 8) => {
                ExtendOp::UXTB
            }
            (NarrowValueMode::SignExtend32, 16) | (NarrowValueMode::SignExtend64, 16) => {
                ExtendOp::SXTH
            }
            (NarrowValueMode::ZeroExtend32, 16) | (NarrowValueMode::ZeroExtend64, 16) => {
                ExtendOp::UXTH
            }
            (NarrowValueMode::SignExtend64, 32) => ExtendOp::SXTW,
            (NarrowValueMode::ZeroExtend64, 32) => ExtendOp::UXTW,
            _ => unreachable!(),
        };
        return Some((val, extendop));
    }
    None
}

pub(crate) fn put_input_in_rse_imm12(
    ctx: &mut Lower<Inst>,
    input: InsnInput,
    narrow_mode: NarrowValueMode,
) -> ResultRSEImm12 {
    if let Some(imm_value) = input_to_const(ctx, input) {
        if let Some(i) = Imm12::maybe_from_u64(imm_value) {
            let out_ty_bits = ty_bits(ctx.input_ty(input.insn, input.input));
            let is_negative = (i.bits as u64) & (1 << (cmp::max(out_ty_bits, 1) - 1)) != 0;

            // This condition can happen if we matched a value that overflows the output type of
            // its `iconst` when viewed as a signed value (i.e. iconst.i8 200).
            // When that happens we need to lower as a negative value, which we cannot do here.
            if !(narrow_mode.is_signed() && is_negative) {
                return ResultRSEImm12::Imm12(i);
            }
        }
    }

    ResultRSEImm12::from_rse(put_input_in_rse(ctx, input, narrow_mode))
}

//============================================================================
// ALU instruction constructors.

pub(crate) fn alu_inst_imm12(
    op: ALUOp,
    ty: Type,
    rd: Writable<Reg>,
    rn: Reg,
    rm: ResultRSEImm12,
) -> Inst {
    let size = OperandSize::from_ty(ty);
    match rm {
        ResultRSEImm12::Imm12(imm12) => Inst::AluRRImm12 {
            alu_op: op,
            size,
            rd,
            rn,
            imm12,
        },
        ResultRSEImm12::Reg(rm) => Inst::AluRRR {
            alu_op: op,
            size,
            rd,
            rn,
            rm,
        },
        ResultRSEImm12::RegShift(rm, shiftop) => Inst::AluRRRShift {
            alu_op: op,
            size,
            rd,
            rn,
            rm,
            shiftop,
        },
        ResultRSEImm12::RegExtend(rm, extendop) => Inst::AluRRRExtend {
            alu_op: op,
            size,
            rd,
            rn,
            rm,
            extendop,
        },
    }
}

//============================================================================
// Lowering: addressing mode support. Takes instruction directly, rather
// than an `InsnInput`, to do more introspection.

/// 32-bit addends that make up an address: an input, and an extension mode on that
/// input.
type AddressAddend32List = SmallVec<[(Reg, ExtendOp); 4]>;
/// 64-bit addends that make up an address: just an input.
type AddressAddend64List = SmallVec<[Reg; 4]>;

/// Collect all addends that feed into an address computation, with extend-modes
/// on each.  Note that a load/store may have multiple address components (and
/// the CLIF semantics are that these components are added to form the final
/// address), but sometimes the CLIF that we receive still has arguments that
/// refer to `iadd` instructions. We also want to handle uextend/sextend below
/// the add(s).
///
/// We match any 64-bit add (and descend into its inputs), and we match any
/// 32-to-64-bit sign or zero extension. The returned addend-list will use
/// NarrowValueMode values to indicate how to extend each input:
///
/// - NarrowValueMode::None: the associated input is 64 bits wide; no extend.
/// - NarrowValueMode::SignExtend64: the associated input is 32 bits wide;
///                                  do a sign-extension.
/// - NarrowValueMode::ZeroExtend64: the associated input is 32 bits wide;
///                                  do a zero-extension.
///
/// We do not descend further into the inputs of extensions (unless it is a constant),
/// because supporting (e.g.) a 32-bit add that is later extended would require
/// additional masking of high-order bits, which is too complex. So, in essence, we
/// descend any number of adds from the roots, collecting all 64-bit address addends;
/// then possibly support extensions at these leaves.
fn collect_address_addends(
    ctx: &mut Lower<Inst>,
    root: Value,
) -> (AddressAddend64List, AddressAddend32List, i64) {
    let mut result32: AddressAddend32List = SmallVec::new();
    let mut result64: AddressAddend64List = SmallVec::new();
    let mut offset: i64 = 0;

    let mut workqueue: SmallVec<[Value; 4]> = smallvec![root];

    while let Some(value) = workqueue.pop() {
        debug_assert_eq!(ty_bits(ctx.value_ty(value)), 64);
        if let Some((op, insn)) = maybe_value_multi(
            ctx,
            value,
            &[
                Opcode::Uextend,
                Opcode::Sextend,
                Opcode::Iadd,
                Opcode::Iconst,
            ],
        ) {
            match op {
                Opcode::Uextend | Opcode::Sextend if ty_bits(ctx.input_ty(insn, 0)) == 32 => {
                    let extendop = if op == Opcode::Uextend {
                        ExtendOp::UXTW
                    } else {
                        ExtendOp::SXTW
                    };
                    let extendee_input = InsnInput { insn, input: 0 };
                    // If the input is a zero-extension of a constant, add the value to the known
                    // offset.
                    // Only do this for zero-extension, as generating a sign-extended
                    // constant may be more instructions than using the 'SXTW' addressing mode.
                    if let (Some(insn), ExtendOp::UXTW) = (
                        maybe_input_insn(ctx, extendee_input, Opcode::Iconst),
                        extendop,
                    ) {
                        let value = (ctx.get_constant(insn).unwrap() & 0xFFFF_FFFF_u64) as i64;
                        offset += value;
                    } else {
                        let reg = put_input_in_reg(ctx, extendee_input, NarrowValueMode::None);
                        result32.push((reg, extendop));
                    }
                }
                Opcode::Uextend | Opcode::Sextend => {
                    let reg = put_value_in_reg(ctx, value, NarrowValueMode::None);
                    result64.push(reg);
                }
                Opcode::Iadd => {
                    for input in 0..ctx.num_inputs(insn) {
                        let addend = ctx.input_as_value(insn, input);
                        workqueue.push(addend);
                    }
                }
                Opcode::Iconst => {
                    let value: i64 = ctx.get_constant(insn).unwrap() as i64;
                    offset += value;
                }
                _ => panic!("Unexpected opcode from maybe_input_insn_multi"),
            }
        } else {
            let reg = put_value_in_reg(ctx, value, NarrowValueMode::ZeroExtend64);
            result64.push(reg);
        }
    }

    (result64, result32, offset)
}

/// Lower the address of a pair load or store.
pub(crate) fn lower_pair_address(ctx: &mut Lower<Inst>, addr: Value, offset: i32) -> PairAMode {
    // Collect addends through an arbitrary tree of 32-to-64-bit sign/zero
    // extends and addition ops. We update these as we consume address
    // components, so they represent the remaining addends not yet handled.
    let (mut addends64, mut addends32, args_offset) = collect_address_addends(ctx, addr);
    let offset = args_offset + (offset as i64);

    trace!(
        "lower_pair_address: addends64 {:?}, addends32 {:?}, offset {}",
        addends64,
        addends32,
        offset
    );

    // Pairs basically only have reg + imm formats so we only have to worry about those

    let base_reg = if let Some(reg64) = addends64.pop() {
        reg64
    } else if let Some((reg32, extendop)) = addends32.pop() {
        let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
        let signed = match extendop {
            ExtendOp::SXTW => true,
            ExtendOp::UXTW => false,
            _ => unreachable!(),
        };
        ctx.emit(Inst::Extend {
            rd: tmp,
            rn: reg32,
            signed,
            from_bits: 32,
            to_bits: 64,
        });
        tmp.to_reg()
    } else {
        zero_reg()
    };

    let addr = ctx.alloc_tmp(I64).only_reg().unwrap();
    ctx.emit(Inst::gen_move(addr, base_reg, I64));

    // We have the base register, if we have any others, we need to add them
    lower_add_addends(ctx, addr, addends64, addends32);

    // Figure out what offset we should emit
    let imm7 = SImm7Scaled::maybe_from_i64(offset, I64).unwrap_or_else(|| {
        lower_add_immediate(ctx, addr, addr.to_reg(), offset);
        SImm7Scaled::maybe_from_i64(0, I64).unwrap()
    });

    PairAMode::SignedOffset(addr.to_reg(), imm7)
}

/// Lower the address of a load or store.
pub(crate) fn lower_address(
    ctx: &mut Lower<Inst>,
    elem_ty: Type,
    addr: Value,
    offset: i32,
) -> AMode {
    // TODO: support base_reg + scale * index_reg. For this, we would need to
    // pattern-match shl or mul instructions.

    // Collect addends through an arbitrary tree of 32-to-64-bit sign/zero
    // extends and addition ops. We update these as we consume address
    // components, so they represent the remaining addends not yet handled.
    let (mut addends64, mut addends32, args_offset) = collect_address_addends(ctx, addr);
    let mut offset = args_offset + (offset as i64);

    trace!(
        "lower_address: addends64 {:?}, addends32 {:?}, offset {}",
        addends64,
        addends32,
        offset
    );

    // First, decide what the `AMode` will be. Take one extendee and one 64-bit
    // reg, or two 64-bit regs, or a 64-bit reg and a 32-bit reg with extension,
    // or some other combination as appropriate.
    let memarg = if addends64.len() > 0 {
        if addends32.len() > 0 {
            let (reg32, extendop) = addends32.pop().unwrap();
            let reg64 = addends64.pop().unwrap();
            AMode::RegExtended {
                rn: reg64,
                rm: reg32,
                extendop,
            }
        } else if offset > 0 && offset < 0x1000 {
            let reg64 = addends64.pop().unwrap();
            let off = offset;
            offset = 0;
            AMode::RegOffset {
                rn: reg64,
                off,
                ty: elem_ty,
            }
        } else if addends64.len() >= 2 {
            let reg1 = addends64.pop().unwrap();
            let reg2 = addends64.pop().unwrap();
            AMode::RegReg { rn: reg1, rm: reg2 }
        } else {
            let reg1 = addends64.pop().unwrap();
            AMode::reg(reg1)
        }
    } else
    /* addends64.len() == 0 */
    {
        if addends32.len() > 0 {
            let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
            let (reg1, extendop) = addends32.pop().unwrap();
            let signed = match extendop {
                ExtendOp::SXTW => true,
                ExtendOp::UXTW => false,
                _ => unreachable!(),
            };
            ctx.emit(Inst::Extend {
                rd: tmp,
                rn: reg1,
                signed,
                from_bits: 32,
                to_bits: 64,
            });
            if let Some((reg2, extendop)) = addends32.pop() {
                AMode::RegExtended {
                    rn: tmp.to_reg(),
                    rm: reg2,
                    extendop,
                }
            } else {
                AMode::reg(tmp.to_reg())
            }
        } else
        /* addends32.len() == 0 */
        {
            let off_reg = ctx.alloc_tmp(I64).only_reg().unwrap();
            lower_constant_u64(ctx, off_reg, offset as u64);
            offset = 0;
            AMode::reg(off_reg.to_reg())
        }
    };

    // At this point, if we have any remaining components, we need to allocate a
    // temp, replace one of the registers in the AMode with the temp, and emit
    // instructions to add together the remaining components. Return immediately
    // if this is *not* the case.
    if offset == 0 && addends32.len() == 0 && addends64.len() == 0 {
        return memarg;
    }

    // Allocate the temp and shoehorn it into the AMode.
    let addr = ctx.alloc_tmp(I64).only_reg().unwrap();
    let (reg, memarg) = match memarg {
        AMode::RegExtended { rn, rm, extendop } => (
            rn,
            AMode::RegExtended {
                rn: addr.to_reg(),
                rm,
                extendop,
            },
        ),
        AMode::RegOffset { rn, off, ty } => (
            rn,
            AMode::RegOffset {
                rn: addr.to_reg(),
                off,
                ty,
            },
        ),
        AMode::RegReg { rn, rm } => (
            rm,
            AMode::RegReg {
                rn: addr.to_reg(),
                rm: rn,
            },
        ),
        AMode::UnsignedOffset { rn, uimm12 } => (
            rn,
            AMode::UnsignedOffset {
                rn: addr.to_reg(),
                uimm12,
            },
        ),
        _ => unreachable!(),
    };

    // If there is any offset, load that first into `addr`, and add the `reg`
    // that we kicked out of the `AMode`; otherwise, start with that reg.
    if offset != 0 {
        lower_add_immediate(ctx, addr, reg, offset)
    } else {
        ctx.emit(Inst::gen_move(addr, reg, I64));
    }

    // Now handle reg64 and reg32-extended components.
    lower_add_addends(ctx, addr, addends64, addends32);

    memarg
}

fn lower_add_addends(
    ctx: &mut Lower<Inst>,
    rd: Writable<Reg>,
    addends64: AddressAddend64List,
    addends32: AddressAddend32List,
) {
    for reg in addends64 {
        // If the register is the stack reg, we must move it to another reg
        // before adding it.
        let reg = if reg == stack_reg() {
            let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
            ctx.emit(Inst::gen_move(tmp, stack_reg(), I64));
            tmp.to_reg()
        } else {
            reg
        };
        ctx.emit(Inst::AluRRR {
            alu_op: ALUOp::Add,
            size: OperandSize::Size64,
            rd,
            rn: rd.to_reg(),
            rm: reg,
        });
    }
    for (reg, extendop) in addends32 {
        assert!(reg != stack_reg());
        ctx.emit(Inst::AluRRRExtend {
            alu_op: ALUOp::Add,
            size: OperandSize::Size64,
            rd,
            rn: rd.to_reg(),
            rm: reg,
            extendop,
        });
    }
}

/// Adds into `rd` a signed imm pattern matching the best instruction for it.
// TODO: This function is duplicated in ctx.gen_add_imm
fn lower_add_immediate(ctx: &mut Lower<Inst>, dst: Writable<Reg>, src: Reg, imm: i64) {
    // If we can fit offset or -offset in an imm12, use an add-imm
    // Otherwise, lower the constant first then add.
    if let Some(imm12) = Imm12::maybe_from_u64(imm as u64) {
        ctx.emit(Inst::AluRRImm12 {
            alu_op: ALUOp::Add,
            size: OperandSize::Size64,
            rd: dst,
            rn: src,
            imm12,
        });
    } else if let Some(imm12) = Imm12::maybe_from_u64(imm.wrapping_neg() as u64) {
        ctx.emit(Inst::AluRRImm12 {
            alu_op: ALUOp::Sub,
            size: OperandSize::Size64,
            rd: dst,
            rn: src,
            imm12,
        });
    } else {
        lower_constant_u64(ctx, dst, imm as u64);
        ctx.emit(Inst::AluRRR {
            alu_op: ALUOp::Add,
            size: OperandSize::Size64,
            rd: dst,
            rn: dst.to_reg(),
            rm: src,
        });
    }
}

pub(crate) fn lower_constant_u64(ctx: &mut Lower<Inst>, rd: Writable<Reg>, value: u64) {
    for inst in Inst::load_constant(rd, value) {
        ctx.emit(inst);
    }
}

pub(crate) fn lower_constant_f32(ctx: &mut Lower<Inst>, rd: Writable<Reg>, value: f32) {
    let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();

    for inst in Inst::load_fp_constant32(rd, value.to_bits(), alloc_tmp) {
        ctx.emit(inst);
    }
}

pub(crate) fn lower_constant_f64(ctx: &mut Lower<Inst>, rd: Writable<Reg>, value: f64) {
    let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();

    for inst in Inst::load_fp_constant64(rd, value.to_bits(), alloc_tmp) {
        ctx.emit(inst);
    }
}

pub(crate) fn lower_constant_f128(ctx: &mut Lower<Inst>, rd: Writable<Reg>, value: u128) {
    if value == 0 {
        // Fast-track a common case.  The general case, viz, calling `Inst::load_fp_constant128`,
        // is potentially expensive.
        ctx.emit(Inst::VecDupImm {
            rd,
            imm: ASIMDMovModImm::zero(ScalarSize::Size8),
            invert: false,
            size: VectorSize::Size8x16,
        });
    } else {
        let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
        for inst in Inst::load_fp_constant128(rd, value, alloc_tmp) {
            ctx.emit(inst);
        }
    }
}

pub(crate) fn lower_splat_const(
    ctx: &mut Lower<Inst>,
    rd: Writable<Reg>,
    value: u64,
    size: VectorSize,
) {
    let (value, narrow_size) = match size.lane_size() {
        ScalarSize::Size8 => (value as u8 as u64, ScalarSize::Size128),
        ScalarSize::Size16 => (value as u16 as u64, ScalarSize::Size8),
        ScalarSize::Size32 => (value as u32 as u64, ScalarSize::Size16),
        ScalarSize::Size64 => (value, ScalarSize::Size32),
        _ => unreachable!(),
    };
    let (value, size) = match Inst::get_replicated_vector_pattern(value as u128, narrow_size) {
        Some((value, lane_size)) => (
            value,
            VectorSize::from_lane_size(lane_size, size.is_128bits()),
        ),
        None => (value, size),
    };
    let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();

    for inst in Inst::load_replicated_vector_pattern(rd, value, size, alloc_tmp) {
        ctx.emit(inst);
    }
}

pub(crate) fn lower_condcode(cc: IntCC) -> Cond {
    match cc {
        IntCC::Equal => Cond::Eq,
        IntCC::NotEqual => Cond::Ne,
        IntCC::SignedGreaterThanOrEqual => Cond::Ge,
        IntCC::SignedGreaterThan => Cond::Gt,
        IntCC::SignedLessThanOrEqual => Cond::Le,
        IntCC::SignedLessThan => Cond::Lt,
        IntCC::UnsignedGreaterThanOrEqual => Cond::Hs,
        IntCC::UnsignedGreaterThan => Cond::Hi,
        IntCC::UnsignedLessThanOrEqual => Cond::Ls,
        IntCC::UnsignedLessThan => Cond::Lo,
        IntCC::Overflow => Cond::Vs,
        IntCC::NotOverflow => Cond::Vc,
    }
}

pub(crate) fn lower_fp_condcode(cc: FloatCC) -> Cond {
    // Refer to `codegen/shared/src/condcodes.rs` and to the `FCMP` AArch64 docs.
    // The FCMP instruction sets:
    //               NZCV
    // - PCSR.NZCV = 0011 on UN (unordered),
    //               0110 on EQ,
    //               1000 on LT,
    //               0010 on GT.
    match cc {
        // EQ | LT | GT. Vc => V clear.
        FloatCC::Ordered => Cond::Vc,
        // UN. Vs => V set.
        FloatCC::Unordered => Cond::Vs,
        // EQ. Eq => Z set.
        FloatCC::Equal => Cond::Eq,
        // UN | LT | GT. Ne => Z clear.
        FloatCC::NotEqual => Cond::Ne,
        // LT | GT.
        FloatCC::OrderedNotEqual => unimplemented!(),
        //  UN | EQ
        FloatCC::UnorderedOrEqual => unimplemented!(),
        // LT. Mi => N set.
        FloatCC::LessThan => Cond::Mi,
        // LT | EQ. Ls => C clear or Z set.
        FloatCC::LessThanOrEqual => Cond::Ls,
        // GT. Gt => Z clear, N = V.
        FloatCC::GreaterThan => Cond::Gt,
        // GT | EQ. Ge => N = V.
        FloatCC::GreaterThanOrEqual => Cond::Ge,
        // UN | LT
        FloatCC::UnorderedOrLessThan => unimplemented!(),
        // UN | LT | EQ
        FloatCC::UnorderedOrLessThanOrEqual => unimplemented!(),
        // UN | GT
        FloatCC::UnorderedOrGreaterThan => unimplemented!(),
        // UN | GT | EQ
        FloatCC::UnorderedOrGreaterThanOrEqual => unimplemented!(),
    }
}

pub(crate) fn lower_vector_compare(
    ctx: &mut Lower<Inst>,
    rd: Writable<Reg>,
    mut rn: Reg,
    mut rm: Reg,
    ty: Type,
    cond: Cond,
) -> CodegenResult<()> {
    let is_float = ty.lane_type().is_float();
    let size = VectorSize::from_ty(ty);

    if is_float && (cond == Cond::Vc || cond == Cond::Vs) {
        let tmp = ctx.alloc_tmp(ty).only_reg().unwrap();

        ctx.emit(Inst::VecRRR {
            alu_op: VecALUOp::Fcmeq,
            rd,
            rn,
            rm: rn,
            size,
        });
        ctx.emit(Inst::VecRRR {
            alu_op: VecALUOp::Fcmeq,
            rd: tmp,
            rn: rm,
            rm,
            size,
        });
        ctx.emit(Inst::VecRRR {
            alu_op: VecALUOp::And,
            rd,
            rn: rd.to_reg(),
            rm: tmp.to_reg(),
            size,
        });

        if cond == Cond::Vs {
            ctx.emit(Inst::VecMisc {
                op: VecMisc2::Not,
                rd,
                rn: rd.to_reg(),
                size,
            });
        }
    } else {
        // 'Less than' operations are implemented by swapping
        // the order of operands and using the 'greater than'
        // instructions.
        // 'Not equal' is implemented with 'equal' and inverting
        // the result.
        let (alu_op, swap) = match (is_float, cond) {
            (false, Cond::Eq) => (VecALUOp::Cmeq, false),
            (false, Cond::Ne) => (VecALUOp::Cmeq, false),
            (false, Cond::Ge) => (VecALUOp::Cmge, false),
            (false, Cond::Gt) => (VecALUOp::Cmgt, false),
            (false, Cond::Le) => (VecALUOp::Cmge, true),
            (false, Cond::Lt) => (VecALUOp::Cmgt, true),
            (false, Cond::Hs) => (VecALUOp::Cmhs, false),
            (false, Cond::Hi) => (VecALUOp::Cmhi, false),
            (false, Cond::Ls) => (VecALUOp::Cmhs, true),
            (false, Cond::Lo) => (VecALUOp::Cmhi, true),
            (true, Cond::Eq) => (VecALUOp::Fcmeq, false),
            (true, Cond::Ne) => (VecALUOp::Fcmeq, false),
            (true, Cond::Mi) => (VecALUOp::Fcmgt, true),
            (true, Cond::Ls) => (VecALUOp::Fcmge, true),
            (true, Cond::Ge) => (VecALUOp::Fcmge, false),
            (true, Cond::Gt) => (VecALUOp::Fcmgt, false),
            _ => {
                return Err(CodegenError::Unsupported(format!(
                    "Unsupported {} SIMD vector comparison: {:?}",
                    if is_float {
                        "floating-point"
                    } else {
                        "integer"
                    },
                    cond
                )))
            }
        };

        if swap {
            std::mem::swap(&mut rn, &mut rm);
        }

        ctx.emit(Inst::VecRRR {
            alu_op,
            rd,
            rn,
            rm,
            size,
        });

        if cond == Cond::Ne {
            ctx.emit(Inst::VecMisc {
                op: VecMisc2::Not,
                rd,
                rn: rd.to_reg(),
                size,
            });
        }
    }

    Ok(())
}

/// Determines whether this condcode interprets inputs as signed or unsigned.  See the
/// documentation for the `icmp` instruction in cranelift-codegen/meta/src/shared/instructions.rs
/// for further insights into this.
pub(crate) fn condcode_is_signed(cc: IntCC) -> bool {
    match cc {
        IntCC::Equal
        | IntCC::UnsignedGreaterThanOrEqual
        | IntCC::UnsignedGreaterThan
        | IntCC::UnsignedLessThanOrEqual
        | IntCC::UnsignedLessThan
        | IntCC::NotEqual => false,
        IntCC::SignedGreaterThanOrEqual
        | IntCC::SignedGreaterThan
        | IntCC::SignedLessThanOrEqual
        | IntCC::SignedLessThan
        | IntCC::Overflow
        | IntCC::NotOverflow => true,
    }
}

//=============================================================================
// Helpers for instruction lowering.

/// Checks for an instance of `op` feeding the given input.
pub(crate) fn maybe_input_insn(
    c: &mut Lower<Inst>,
    input: InsnInput,
    op: Opcode,
) -> Option<IRInst> {
    let inputs = c.get_input_as_source_or_const(input.insn, input.input);
    trace!(
        "maybe_input_insn: input {:?} has options {:?}; looking for op {:?}",
        input,
        inputs,
        op
    );
    if let Some((src_inst, _)) = inputs.inst.as_inst() {
        let data = c.data(src_inst);
        trace!(" -> input inst {:?}", data);
        if data.opcode() == op {
            return Some(src_inst);
        }
    }
    None
}

/// Checks for an instance of `op` defining the given value.
pub(crate) fn maybe_value(c: &mut Lower<Inst>, value: Value, op: Opcode) -> Option<IRInst> {
    let inputs = c.get_value_as_source_or_const(value);
    if let Some((src_inst, _)) = inputs.inst.as_inst() {
        let data = c.data(src_inst);
        if data.opcode() == op {
            return Some(src_inst);
        }
    }
    None
}

/// Checks for an instance of any one of `ops` defining the given value.
pub(crate) fn maybe_value_multi(
    c: &mut Lower<Inst>,
    value: Value,
    ops: &[Opcode],
) -> Option<(Opcode, IRInst)> {
    for &op in ops {
        if let Some(inst) = maybe_value(c, value, op) {
            return Some((op, inst));
        }
    }
    None
}

/// Checks for an instance of `op` feeding the given input, possibly via a conversion `conv` (e.g.,
/// Bint or a bitcast).
///
/// FIXME cfallin 2020-03-30: this is really ugly. Factor out tree-matching stuff and make it
/// a bit more generic.
pub(crate) fn maybe_input_insn_via_conv(
    c: &mut Lower<Inst>,
    input: InsnInput,
    op: Opcode,
    conv: Opcode,
) -> Option<IRInst> {
    let inputs = c.get_input_as_source_or_const(input.insn, input.input);
    if let Some((src_inst, _)) = inputs.inst.as_inst() {
        let data = c.data(src_inst);
        if data.opcode() == op {
            return Some(src_inst);
        }
        if data.opcode() == conv {
            let inputs = c.get_input_as_source_or_const(src_inst, 0);
            if let Some((src_inst, _)) = inputs.inst.as_inst() {
                let data = c.data(src_inst);
                if data.opcode() == op {
                    return Some(src_inst);
                }
            }
        }
    }
    None
}

/// Specifies what [lower_icmp] should do when lowering
#[derive(Debug, Clone, PartialEq)]
pub(crate) enum IcmpOutput {
    /// Lowers the comparison into a cond code, discarding the results. The cond code emitted can
    /// be checked in the resulting [IcmpResult].
    CondCode,
    /// Materializes the results into a register. This may overwrite any flags previously set.
    Register(Writable<Reg>),
}

impl IcmpOutput {
    pub fn reg(&self) -> Option<Writable<Reg>> {
        match self {
            IcmpOutput::CondCode => None,
            IcmpOutput::Register(reg) => Some(*reg),
        }
    }
}

/// The output of an Icmp lowering.
#[derive(Debug, Clone, PartialEq)]
pub(crate) enum IcmpResult {
    /// The result was output into the given [Cond]. Callers may perform operations using this [Cond]
    /// and its inverse, other [Cond]'s are not guaranteed to be correct.
    CondCode(Cond),
    /// The result was materialized into the output register.
    Register,
}

impl IcmpResult {
    pub fn unwrap_cond(&self) -> Cond {
        match self {
            IcmpResult::CondCode(c) => *c,
            _ => panic!("Unwrapped cond, but IcmpResult was {:?}", self),
        }
    }
}

/// Lower an icmp comparision
///
/// We can lower into the status flags, or materialize the result into a register
/// This is controlled by the `output` parameter.
pub(crate) fn lower_icmp(
    ctx: &mut Lower<Inst>,
    insn: IRInst,
    condcode: IntCC,
    output: IcmpOutput,
) -> CodegenResult<IcmpResult> {
    trace!(
        "lower_icmp: insn {}, condcode: {}, output: {:?}",
        insn,
        condcode,
        output
    );

    let rd = output.reg().unwrap_or(writable_zero_reg());
    let inputs = insn_inputs(ctx, insn);
    let cond = lower_condcode(condcode);
    let is_signed = condcode_is_signed(condcode);
    let ty = ctx.input_ty(insn, 0);
    let bits = ty_bits(ty);
    let narrow_mode = match (bits <= 32, is_signed) {
        (true, true) => NarrowValueMode::SignExtend32,
        (true, false) => NarrowValueMode::ZeroExtend32,
        (false, true) => NarrowValueMode::SignExtend64,
        (false, false) => NarrowValueMode::ZeroExtend64,
    };
    let mut should_materialize = output.reg().is_some();

    let out_condcode = if ty == I128 {
        let lhs = put_input_in_regs(ctx, inputs[0]);
        let rhs = put_input_in_regs(ctx, inputs[1]);

        let tmp1 = ctx.alloc_tmp(I64).only_reg().unwrap();
        let tmp2 = ctx.alloc_tmp(I64).only_reg().unwrap();

        match condcode {
            IntCC::Equal | IntCC::NotEqual => {
                // cmp lhs_lo, rhs_lo
                // ccmp lhs_hi, rhs_hi, #0, eq
                // cset dst, {eq, ne}

                ctx.emit(Inst::AluRRR {
                    alu_op: ALUOp::SubS,
                    size: OperandSize::Size64,
                    rd: writable_zero_reg(),
                    rn: lhs.regs()[0],
                    rm: rhs.regs()[0],
                });
                ctx.emit(Inst::CCmp {
                    size: OperandSize::Size64,
                    rn: lhs.regs()[1],
                    rm: rhs.regs()[1],
                    nzcv: NZCV::new(false, false, false, false),
                    cond: Cond::Eq,
                });
                cond
            }
            IntCC::Overflow | IntCC::NotOverflow => {
                // cmp     lhs_lo, rhs_lo
                // sbcs    tmp1, lhs_hi, rhs_hi
                // eor     tmp2, lhs_hi, rhs_hi
                // eor     tmp1, lhs_hi, tmp1
                // tst     tmp2, tmp1
                // cset    dst, {lt, ge}

                ctx.emit(Inst::AluRRR {
                    alu_op: ALUOp::SubS,
                    size: OperandSize::Size64,
                    rd: writable_zero_reg(),
                    rn: lhs.regs()[0],
                    rm: rhs.regs()[0],
                });
                ctx.emit(Inst::AluRRR {
                    alu_op: ALUOp::SbcS,
                    size: OperandSize::Size64,
                    rd: tmp1,
                    rn: lhs.regs()[1],
                    rm: rhs.regs()[1],
                });
                ctx.emit(Inst::AluRRR {
                    alu_op: ALUOp::Eor,
                    size: OperandSize::Size64,
                    rd: tmp2,
                    rn: lhs.regs()[1],
                    rm: rhs.regs()[1],
                });
                ctx.emit(Inst::AluRRR {
                    alu_op: ALUOp::Eor,
                    size: OperandSize::Size64,
                    rd: tmp1,
                    rn: lhs.regs()[1],
                    rm: tmp1.to_reg(),
                });
                ctx.emit(Inst::AluRRR {
                    alu_op: ALUOp::AndS,
                    size: OperandSize::Size64,
                    rd: writable_zero_reg(),
                    rn: tmp2.to_reg(),
                    rm: tmp1.to_reg(),
                });

                // This instruction sequence sets the condition codes
                // on the lt and ge flags instead of the vs/vc so we
                // need to signal that
                if condcode == IntCC::Overflow {
                    Cond::Lt
                } else {
                    Cond::Ge
                }
            }
            _ => {
                // cmp     lhs_lo, rhs_lo
                // cset    tmp1, unsigned_cond
                // cmp     lhs_hi, rhs_hi
                // cset    tmp2, cond
                // csel    dst, tmp1, tmp2, eq

                let rd = output.reg().unwrap_or(tmp1);
                let unsigned_cond = lower_condcode(condcode.unsigned());

                ctx.emit(Inst::AluRRR {
                    alu_op: ALUOp::SubS,
                    size: OperandSize::Size64,
                    rd: writable_zero_reg(),
                    rn: lhs.regs()[0],
                    rm: rhs.regs()[0],
                });
                materialize_bool_result(ctx, insn, tmp1, unsigned_cond);
                ctx.emit(Inst::AluRRR {
                    alu_op: ALUOp::SubS,
                    size: OperandSize::Size64,
                    rd: writable_zero_reg(),
                    rn: lhs.regs()[1],
                    rm: rhs.regs()[1],
                });
                materialize_bool_result(ctx, insn, tmp2, cond);
                ctx.emit(Inst::CSel {
                    cond: Cond::Eq,
                    rd,
                    rn: tmp1.to_reg(),
                    rm: tmp2.to_reg(),
                });

                if output == IcmpOutput::CondCode {
                    // We only need to guarantee that the flags for `cond` are correct, so we can
                    // compare rd with 0 or 1

                    // If we are doing compare or equal, we want to compare with 1 instead of zero
                    if condcode.without_equal() != condcode {
                        lower_constant_u64(ctx, tmp2, 1);
                    }

                    let xzr = zero_reg();
                    let rd = rd.to_reg();
                    let tmp2 = tmp2.to_reg();
                    let (rn, rm) = match condcode {
                        IntCC::SignedGreaterThanOrEqual => (rd, tmp2),
                        IntCC::UnsignedGreaterThanOrEqual => (rd, tmp2),
                        IntCC::SignedLessThanOrEqual => (tmp2, rd),
                        IntCC::UnsignedLessThanOrEqual => (tmp2, rd),
                        IntCC::SignedGreaterThan => (rd, xzr),
                        IntCC::UnsignedGreaterThan => (rd, xzr),
                        IntCC::SignedLessThan => (xzr, rd),
                        IntCC::UnsignedLessThan => (xzr, rd),
                        _ => unreachable!(),
                    };

                    ctx.emit(Inst::AluRRR {
                        alu_op: ALUOp::SubS,
                        size: OperandSize::Size64,
                        rd: writable_zero_reg(),
                        rn,
                        rm,
                    });
                }

                // Prevent a second materialize_bool_result to be emitted at the end of the function
                should_materialize = false;
                cond
            }
        }
    } else if ty.is_vector() {
        assert_ne!(output, IcmpOutput::CondCode);
        should_materialize = false;

        let rn = put_input_in_reg(ctx, inputs[0], narrow_mode);
        let rm = put_input_in_reg(ctx, inputs[1], narrow_mode);
        lower_vector_compare(ctx, rd, rn, rm, ty, cond)?;
        cond
    } else {
        let rn = put_input_in_reg(ctx, inputs[0], narrow_mode);
        let rm = put_input_in_rse_imm12(ctx, inputs[1], narrow_mode);

        let is_overflow = condcode == IntCC::Overflow || condcode == IntCC::NotOverflow;
        let is_small_type = ty == I8 || ty == I16;
        let (cond, rn, rm) = if is_overflow && is_small_type {
            // Overflow checks for non native types require additional instructions, other than
            // just the extend op.
            //
            // TODO: Codegen improvements: Merge the second sxt{h,b} into the following sub instruction.
            //
            // sxt{h,b}  w0, w0
            // sxt{h,b}  w1, w1
            // sub       w0, w0, w1
            // cmp       w0, w0, sxt{h,b}
            //
            // The result of this comparison is either the EQ or NE condition code, so we need to
            // signal that to the caller

            let extend_op = if ty == I8 {
                ExtendOp::SXTB
            } else {
                ExtendOp::SXTH
            };
            let tmp1 = ctx.alloc_tmp(I32).only_reg().unwrap();
            ctx.emit(alu_inst_imm12(ALUOp::Sub, I32, tmp1, rn, rm));

            let out_cond = match condcode {
                IntCC::Overflow => Cond::Ne,
                IntCC::NotOverflow => Cond::Eq,
                _ => unreachable!(),
            };
            (
                out_cond,
                tmp1.to_reg(),
                ResultRSEImm12::RegExtend(tmp1.to_reg(), extend_op),
            )
        } else {
            (cond, rn, rm)
        };

        ctx.emit(alu_inst_imm12(ALUOp::SubS, ty, writable_zero_reg(), rn, rm));
        cond
    };

    // Most of the comparisons above produce flags by default, if the caller requested the result
    // in a register we materialize those flags into a register. Some branches do end up producing
    // the result as a register by default, so we ignore those.
    if should_materialize {
        materialize_bool_result(ctx, insn, rd, out_condcode);
    }

    Ok(match output {
        // We currently never emit a different register than what was asked for
        IcmpOutput::Register(_) => IcmpResult::Register,
        IcmpOutput::CondCode => IcmpResult::CondCode(out_condcode),
    })
}

pub(crate) fn lower_fcmp_or_ffcmp_to_flags(ctx: &mut Lower<Inst>, insn: IRInst) {
    let ty = ctx.input_ty(insn, 0);
    let inputs = [InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }];
    let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
    let rm = put_input_in_reg(ctx, inputs[1], NarrowValueMode::None);
    ctx.emit(Inst::FpuCmp {
        size: ScalarSize::from_ty(ty),
        rn,
        rm,
    });
}

/// Materialize a boolean value into a register from the flags
/// (e.g set by a comparison).
/// A 0 / -1 (all-ones) result as expected for bool operations.
pub(crate) fn materialize_bool_result(
    ctx: &mut Lower<Inst>,
    insn: IRInst,
    rd: Writable<Reg>,
    cond: Cond,
) {
    // A boolean is 0 / -1; if output width is > 1 use `csetm`,
    // otherwise use `cset`.
    if ty_bits(ctx.output_ty(insn, 0)) > 1 {
        ctx.emit(Inst::CSetm { rd, cond });
    } else {
        ctx.emit(Inst::CSet { rd, cond });
    }
}

//=============================================================================
// Lowering-backend trait implementation.

impl LowerBackend for AArch64Backend {
    type MInst = Inst;

    fn lower(&self, ctx: &mut Lower<Inst>, ir_inst: IRInst) -> CodegenResult<()> {
        lower_inst::lower_insn_to_regs(ctx, ir_inst, &self.triple, &self.flags, &self.isa_flags)
    }

    fn lower_branch_group(
        &self,
        ctx: &mut Lower<Inst>,
        branches: &[IRInst],
        targets: &[MachLabel],
    ) -> CodegenResult<()> {
        lower_inst::lower_branch(ctx, branches, targets)
    }

    fn maybe_pinned_reg(&self) -> Option<Reg> {
        Some(xreg(PINNED_REG))
    }
}