1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
use std::mem;
use std::ops::Deref;

#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};

#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;

use crate::allocator::Allocator;
use crate::base::DefaultAllocator;
use crate::storage::Storage;
use crate::{Dim, Matrix, OMatrix, RealField, Scalar, SimdComplexField, SimdRealField};

/// A wrapper that ensures the underlying algebraic entity has a unit norm.
///
/// **It is likely that the only piece of documentation that you need in this page are:**
/// - **[The construction with normalization](#construction-with-normalization)**
/// - **[Data extraction and construction without normalization](#data-extraction-and-construction-without-normalization)**
/// - **[Interpolation between two unit vectors](#interpolation-between-two-unit-vectors)**
///
/// All the other impl blocks you will see in this page are about [`UnitComplex`](crate::UnitComplex)
/// and [`UnitQuaternion`](crate::UnitQuaternion); both built on top of `Unit`.  If you are interested
/// in their documentation, read their dedicated pages directly.
#[repr(transparent)]
#[derive(Clone, Hash, Debug, Copy)]
pub struct Unit<T> {
    pub(crate) value: T,
}

#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Zeroable for Unit<T> where T: bytemuck::Zeroable {}

#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Pod for Unit<T> where T: bytemuck::Pod {}

#[cfg(feature = "serde-serialize-no-std")]
impl<T: Serialize> Serialize for Unit<T> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        self.value.serialize(serializer)
    }
}

#[cfg(feature = "serde-serialize-no-std")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Unit<T> {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        T::deserialize(deserializer).map(|x| Unit { value: x })
    }
}

#[cfg(feature = "abomonation-serialize")]
impl<T: Abomonation> Abomonation for Unit<T> {
    unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
        self.value.entomb(writer)
    }

    fn extent(&self) -> usize {
        self.value.extent()
    }

    unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
        self.value.exhume(bytes)
    }
}

#[cfg(feature = "rkyv-serialize-no-std")]
mod rkyv_impl {
    use super::Unit;
    use rkyv::{offset_of, project_struct, Archive, Deserialize, Fallible, Serialize};

    impl<T: Archive> Archive for Unit<T> {
        type Archived = Unit<T::Archived>;
        type Resolver = T::Resolver;

        fn resolve(
            &self,
            pos: usize,
            resolver: Self::Resolver,
            out: &mut ::core::mem::MaybeUninit<Self::Archived>,
        ) {
            self.value.resolve(
                pos + offset_of!(Self::Archived, value),
                resolver,
                project_struct!(out: Self::Archived => value),
            );
        }
    }

    impl<T: Serialize<S>, S: Fallible + ?Sized> Serialize<S> for Unit<T> {
        fn serialize(&self, serializer: &mut S) -> Result<Self::Resolver, S::Error> {
            Ok(self.value.serialize(serializer)?)
        }
    }

    impl<T: Archive, D: Fallible + ?Sized> Deserialize<Unit<T>, D> for Unit<T::Archived>
    where
        T::Archived: Deserialize<T, D>,
    {
        fn deserialize(&self, deserializer: &mut D) -> Result<Unit<T>, D::Error> {
            Ok(Unit {
                value: self.value.deserialize(deserializer)?,
            })
        }
    }
}

impl<T, R, C, S> PartialEq for Unit<Matrix<T, R, C, S>>
where
    T: Scalar + PartialEq,
    R: Dim,
    C: Dim,
    S: Storage<T, R, C>,
{
    #[inline]
    fn eq(&self, rhs: &Self) -> bool {
        self.value.eq(&rhs.value)
    }
}

impl<T, R, C, S> Eq for Unit<Matrix<T, R, C, S>>
where
    T: Scalar + Eq,
    R: Dim,
    C: Dim,
    S: Storage<T, R, C>,
{
}

/// Trait implemented by entities scan be be normalized and put in an `Unit` struct.
pub trait Normed {
    /// The type of the norm.
    type Norm: SimdRealField;
    /// Computes the norm.
    fn norm(&self) -> Self::Norm;
    /// Computes the squared norm.
    fn norm_squared(&self) -> Self::Norm;
    /// Multiply `self` by n.
    fn scale_mut(&mut self, n: Self::Norm);
    /// Divides `self` by n.
    fn unscale_mut(&mut self, n: Self::Norm);
}

/// # Construction with normalization
impl<T: Normed> Unit<T> {
    /// Normalize the given vector and return it wrapped on a `Unit` structure.
    #[inline]
    pub fn new_normalize(value: T) -> Self {
        Self::new_and_get(value).0
    }

    /// Attempts to normalize the given vector and return it wrapped on a `Unit` structure.
    ///
    /// Returns `None` if the norm was smaller or equal to `min_norm`.
    #[inline]
    pub fn try_new(value: T, min_norm: T::Norm) -> Option<Self>
    where
        T::Norm: RealField,
    {
        Self::try_new_and_get(value, min_norm).map(|res| res.0)
    }

    /// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
    #[inline]
    pub fn new_and_get(mut value: T) -> (Self, T::Norm) {
        let n = value.norm();
        value.unscale_mut(n);
        (Unit { value }, n)
    }

    /// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
    ///
    /// Returns `None` if the norm was smaller or equal to `min_norm`.
    #[inline]
    pub fn try_new_and_get(mut value: T, min_norm: T::Norm) -> Option<(Self, T::Norm)>
    where
        T::Norm: RealField,
    {
        let sq_norm = value.norm_squared();

        if sq_norm > min_norm * min_norm {
            let n = sq_norm.simd_sqrt();
            value.unscale_mut(n);
            Some((Unit { value }, n))
        } else {
            None
        }
    }

    /// Normalizes this vector again. This is useful when repeated computations
    /// might cause a drift in the norm because of float inaccuracies.
    ///
    /// Returns the norm before re-normalization. See `.renormalize_fast` for a faster alternative
    /// that may be slightly less accurate if `self` drifted significantly from having a unit length.
    #[inline]
    pub fn renormalize(&mut self) -> T::Norm {
        let n = self.norm();
        self.value.unscale_mut(n);
        n
    }

    /// Normalizes this vector again using a first-order Taylor approximation.
    /// This is useful when repeated computations might cause a drift in the norm
    /// because of float inaccuracies.
    #[inline]
    pub fn renormalize_fast(&mut self) {
        let sq_norm = self.value.norm_squared();
        let three: T::Norm = crate::convert(3.0);
        let half: T::Norm = crate::convert(0.5);
        self.value.scale_mut(half * (three - sq_norm));
    }
}

/// # Data extraction and construction without normalization
impl<T> Unit<T> {
    /// Wraps the given value, assuming it is already normalized.
    #[inline]
    pub fn new_unchecked(value: T) -> Self {
        Unit { value }
    }

    /// Wraps the given reference, assuming it is already normalized.
    #[inline]
    pub fn from_ref_unchecked<'a>(value: &'a T) -> &'a Self {
        unsafe { mem::transmute(value) }
    }

    /// Retrieves the underlying value.
    #[inline]
    pub fn into_inner(self) -> T {
        self.value
    }

    /// Retrieves the underlying value.
    /// Deprecated: use [Unit::into_inner] instead.
    #[deprecated(note = "use `.into_inner()` instead")]
    #[inline]
    pub fn unwrap(self) -> T {
        self.value
    }

    /// Returns a mutable reference to the underlying value. This is `_unchecked` because modifying
    /// the underlying value in such a way that it no longer has unit length may lead to unexpected
    /// results.
    #[inline]
    pub fn as_mut_unchecked(&mut self) -> &mut T {
        &mut self.value
    }
}

impl<T> AsRef<T> for Unit<T> {
    #[inline]
    fn as_ref(&self) -> &T {
        &self.value
    }
}

/*
/*
 *
 * Conversions.
 *
 */
impl<T: NormedSpace> SubsetOf<T> for Unit<T>
where T::RealField: RelativeEq
{
    #[inline]
    fn to_superset(&self) -> T {
        self.clone().into_inner()
    }

    #[inline]
    fn is_in_subset(value: &T) -> bool {
        relative_eq!(value.norm_squared(), crate::one())
    }

    #[inline]
    fn from_superset_unchecked(value: &T) -> Self {
        Unit::new_normalize(value.clone()) // We still need to re-normalize because the condition is inexact.
    }
}

// impl<T: RelativeEq> RelativeEq for Unit<T> {
//     type Epsilon = T::Epsilon;
//
//     #[inline]
//     fn default_epsilon() -> Self::Epsilon {
//         T::default_epsilon()
//     }
//
//     #[inline]
//     fn default_max_relative() -> Self::Epsilon {
//         T::default_max_relative()
//     }
//
//     #[inline]
//     fn default_max_ulps() -> u32 {
//         T::default_max_ulps()
//     }
//
//     #[inline]
//     fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
//         self.value.relative_eq(&other.value, epsilon, max_relative)
//     }
//
//     #[inline]
//     fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
//         self.value.ulps_eq(&other.value, epsilon, max_ulps)
//     }
// }
*/
// TODO:re-enable this impl when specialization is possible.
// Currently, it is disabled so that we can have a nice output for the `UnitQuaternion` display.
/*
impl<T: fmt::Display> fmt::Display for Unit<T> {
    // XXX: will not always work correctly due to rounding errors.
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.value.fmt(f)
    }
}
*/

impl<T> Deref for Unit<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        unsafe { mem::transmute(self) }
    }
}

// NOTE: we can't use a generic implementation for `Unit<T>` because
// num_complex::Complex does not implement `From[Complex<...>...]` (and can't
// because of the orphan rules).
impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
    From<[Unit<OMatrix<T::Element, R, C>>; 2]> for Unit<OMatrix<T, R, C>>
where
    T: From<[<T as simba::simd::SimdValue>::Element; 2]>,
    T::Element: Scalar,
    DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
    #[inline]
    fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 2]) -> Self {
        Self::new_unchecked(OMatrix::from([
            arr[0].clone().into_inner(),
            arr[1].clone().into_inner(),
        ]))
    }
}

impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
    From<[Unit<OMatrix<T::Element, R, C>>; 4]> for Unit<OMatrix<T, R, C>>
where
    T: From<[<T as simba::simd::SimdValue>::Element; 4]>,
    T::Element: Scalar,
    DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
    #[inline]
    fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 4]) -> Self {
        Self::new_unchecked(OMatrix::from([
            arr[0].clone().into_inner(),
            arr[1].clone().into_inner(),
            arr[2].clone().into_inner(),
            arr[3].clone().into_inner(),
        ]))
    }
}

impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
    From<[Unit<OMatrix<T::Element, R, C>>; 8]> for Unit<OMatrix<T, R, C>>
where
    T: From<[<T as simba::simd::SimdValue>::Element; 8]>,
    T::Element: Scalar,
    DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
    #[inline]
    fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 8]) -> Self {
        Self::new_unchecked(OMatrix::from([
            arr[0].clone().into_inner(),
            arr[1].clone().into_inner(),
            arr[2].clone().into_inner(),
            arr[3].clone().into_inner(),
            arr[4].clone().into_inner(),
            arr[5].clone().into_inner(),
            arr[6].clone().into_inner(),
            arr[7].clone().into_inner(),
        ]))
    }
}

impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
    From<[Unit<OMatrix<T::Element, R, C>>; 16]> for Unit<OMatrix<T, R, C>>
where
    T: From<[<T as simba::simd::SimdValue>::Element; 16]>,
    T::Element: Scalar,
    DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
    #[inline]
    fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 16]) -> Self {
        Self::new_unchecked(OMatrix::from([
            arr[0].clone().into_inner(),
            arr[1].clone().into_inner(),
            arr[2].clone().into_inner(),
            arr[3].clone().into_inner(),
            arr[4].clone().into_inner(),
            arr[5].clone().into_inner(),
            arr[6].clone().into_inner(),
            arr[7].clone().into_inner(),
            arr[8].clone().into_inner(),
            arr[9].clone().into_inner(),
            arr[10].clone().into_inner(),
            arr[11].clone().into_inner(),
            arr[12].clone().into_inner(),
            arr[13].clone().into_inner(),
            arr[14].clone().into_inner(),
            arr[15].clone().into_inner(),
        ]))
    }
}