1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
* Released under the terms of the Apache 2.0 license with LLVM
* exception. See `LICENSE` for details.
*/
//! Index sets: sets of integers that represent indices into a space.
use fxhash::FxHashMap;
use std::cell::Cell;
const SMALL_ELEMS: usize = 12;
/// A hybrid large/small-mode sparse mapping from integer indices to
/// elements.
///
/// The trailing `(u32, u64)` elements in each variant is a one-item
/// cache to allow fast access when streaming through.
#[derive(Clone, Debug)]
enum AdaptiveMap {
Small {
len: u32,
keys: [u32; SMALL_ELEMS],
values: [u64; SMALL_ELEMS],
},
Large(FxHashMap<u32, u64>),
}
const INVALID: u32 = 0xffff_ffff;
impl AdaptiveMap {
fn new() -> Self {
Self::Small {
len: 0,
keys: [INVALID; SMALL_ELEMS],
values: [0; SMALL_ELEMS],
}
}
/// Expand into `Large` mode if we are at capacity and have no
/// zero-value pairs that can be trimmed.
#[inline(never)]
fn expand(&mut self) {
match self {
&mut Self::Small {
ref mut len,
ref mut keys,
ref mut values,
} => {
// Note: we *may* remain as `Small` if there are any
// zero elements. Try removing them first, before we
// commit to a memory allocation.
if values.iter().any(|v| *v == 0) {
let mut out = 0;
for i in 0..(*len as usize) {
if values[i] == 0 {
continue;
}
if out < i {
keys[out] = keys[i];
values[out] = values[i];
}
out += 1;
}
*len = out as u32;
} else {
let mut map = FxHashMap::default();
for i in 0..(*len as usize) {
map.insert(keys[i], values[i]);
}
*self = Self::Large(map);
}
}
_ => {}
}
}
#[inline(always)]
fn get_or_insert<'a>(&'a mut self, key: u32) -> &'a mut u64 {
// Check whether the key is present and we are in small mode;
// if no to both, we need to expand first.
let (needs_expand, small_mode_idx) = match self {
&mut Self::Small { len, ref keys, .. } => {
// Perform this scan but do not return right away;
// doing so runs into overlapping-borrow issues
// because the current non-lexical lifetimes
// implementation is not able to see that the `self`
// mutable borrow on return is only on the
// early-return path.
let small_mode_idx = keys.iter().take(len as usize).position(|k| *k == key);
let needs_expand = small_mode_idx.is_none() && len == SMALL_ELEMS as u32;
(needs_expand, small_mode_idx)
}
_ => (false, None),
};
if needs_expand {
debug_assert!(small_mode_idx.is_none());
self.expand();
}
match self {
&mut Self::Small {
ref mut len,
ref mut keys,
ref mut values,
} => {
// If we found the key already while checking whether
// we need to expand above, use that index to return
// early.
if let Some(i) = small_mode_idx {
return &mut values[i];
}
// Otherwise, the key must not be present; add a new
// entry.
debug_assert!(*len < SMALL_ELEMS as u32);
let idx = *len;
*len += 1;
keys[idx as usize] = key;
values[idx as usize] = 0;
&mut values[idx as usize]
}
&mut Self::Large(ref mut map) => map.entry(key).or_insert(0),
}
}
#[inline(always)]
fn get_mut(&mut self, key: u32) -> Option<&mut u64> {
match self {
&mut Self::Small {
len,
ref keys,
ref mut values,
} => {
for i in 0..len {
if keys[i as usize] == key {
return Some(&mut values[i as usize]);
}
}
None
}
&mut Self::Large(ref mut map) => map.get_mut(&key),
}
}
#[inline(always)]
fn get(&self, key: u32) -> Option<u64> {
match self {
&Self::Small {
len,
ref keys,
ref values,
} => {
for i in 0..len {
if keys[i as usize] == key {
let value = values[i as usize];
return Some(value);
}
}
None
}
&Self::Large(ref map) => {
let value = map.get(&key).cloned();
value
}
}
}
fn iter<'a>(&'a self) -> AdaptiveMapIter<'a> {
match self {
&Self::Small {
len,
ref keys,
ref values,
} => AdaptiveMapIter::Small(&keys[0..len as usize], &values[0..len as usize]),
&Self::Large(ref map) => AdaptiveMapIter::Large(map.iter()),
}
}
}
enum AdaptiveMapIter<'a> {
Small(&'a [u32], &'a [u64]),
Large(std::collections::hash_map::Iter<'a, u32, u64>),
}
impl<'a> std::iter::Iterator for AdaptiveMapIter<'a> {
type Item = (u32, u64);
fn next(&mut self) -> Option<Self::Item> {
match self {
&mut Self::Small(ref mut keys, ref mut values) => {
if keys.is_empty() {
None
} else {
let (k, v) = ((*keys)[0], (*values)[0]);
*keys = &(*keys)[1..];
*values = &(*values)[1..];
Some((k, v))
}
}
&mut Self::Large(ref mut it) => it.next().map(|(&k, &v)| (k, v)),
}
}
}
/// A conceptually infinite-length set of indices that allows union
/// and efficient iteration over elements.
#[derive(Clone)]
pub struct IndexSet {
elems: AdaptiveMap,
cache: Cell<(u32, u64)>,
}
const BITS_PER_WORD: usize = 64;
impl IndexSet {
pub fn new() -> Self {
Self {
elems: AdaptiveMap::new(),
cache: Cell::new((INVALID, 0)),
}
}
#[inline(always)]
fn elem(&mut self, bit_index: usize) -> &mut u64 {
let word_index = (bit_index / BITS_PER_WORD) as u32;
if self.cache.get().0 == word_index {
self.cache.set((INVALID, 0));
}
self.elems.get_or_insert(word_index)
}
#[inline(always)]
fn maybe_elem_mut(&mut self, bit_index: usize) -> Option<&mut u64> {
let word_index = (bit_index / BITS_PER_WORD) as u32;
if self.cache.get().0 == word_index {
self.cache.set((INVALID, 0));
}
self.elems.get_mut(word_index)
}
#[inline(always)]
fn maybe_elem(&self, bit_index: usize) -> Option<u64> {
let word_index = (bit_index / BITS_PER_WORD) as u32;
if self.cache.get().0 == word_index {
Some(self.cache.get().1)
} else {
self.elems.get(word_index)
}
}
#[inline(always)]
pub fn set(&mut self, idx: usize, val: bool) {
let bit = idx % BITS_PER_WORD;
if val {
*self.elem(idx) |= 1 << bit;
} else if let Some(word) = self.maybe_elem_mut(idx) {
*word &= !(1 << bit);
}
}
pub fn assign(&mut self, other: &Self) {
self.elems = other.elems.clone();
self.cache = other.cache.clone();
}
#[inline(always)]
pub fn get(&self, idx: usize) -> bool {
let bit = idx % BITS_PER_WORD;
if let Some(word) = self.maybe_elem(idx) {
(word & (1 << bit)) != 0
} else {
false
}
}
pub fn union_with(&mut self, other: &Self) -> bool {
let mut changed = 0;
for (word_idx, bits) in other.elems.iter() {
if bits == 0 {
continue;
}
let word_idx = word_idx as usize;
let self_word = self.elem(word_idx * BITS_PER_WORD);
changed |= bits & !*self_word;
*self_word |= bits;
}
changed != 0
}
pub fn iter<'a>(&'a self) -> impl Iterator<Item = usize> + 'a {
self.elems.iter().flat_map(|(word_idx, bits)| {
let word_idx = word_idx as usize;
set_bits(bits).map(move |i| BITS_PER_WORD * word_idx + i)
})
}
/// Is the adaptive data structure in "small" mode? This is meant
/// for testing assertions only.
pub(crate) fn is_small(&self) -> bool {
match &self.elems {
&AdaptiveMap::Small { .. } => true,
_ => false,
}
}
}
fn set_bits(bits: u64) -> impl Iterator<Item = usize> {
let iter = SetBitsIter(bits);
iter
}
pub struct SetBitsIter(u64);
impl Iterator for SetBitsIter {
type Item = usize;
fn next(&mut self) -> Option<usize> {
// Build an `Option<NonZeroU64>` so that on the nonzero path,
// the compiler can optimize the trailing-zeroes operator
// using that knowledge.
std::num::NonZeroU64::new(self.0).map(|nz| {
let bitidx = nz.trailing_zeros();
self.0 &= self.0 - 1; // clear highest set bit
bitidx as usize
})
}
}
impl std::fmt::Debug for IndexSet {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let vals = self.iter().collect::<Vec<_>>();
write!(f, "{:?}", vals)
}
}
#[cfg(test)]
mod test {
use super::IndexSet;
#[test]
fn test_set_bits_iter() {
let mut vec = IndexSet::new();
let mut sum = 0;
for i in 0..1024 {
if i % 17 == 0 {
vec.set(i, true);
sum += i;
}
}
let mut checksum = 0;
for bit in vec.iter() {
debug_assert!(bit % 17 == 0);
checksum += bit;
}
debug_assert_eq!(sum, checksum);
}
#[test]
fn test_expand_remove_zero_elems() {
let mut vec = IndexSet::new();
// Set 12 different words (this is the max small-mode size).
for i in 0..12 {
vec.set(64 * i, true);
}
// Now clear a bit, and set a bit in a different word. We
// should still be in small mode.
vec.set(64 * 5, false);
vec.set(64 * 100, true);
debug_assert!(vec.is_small());
}
}