1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Noise protocol handshake I/O.
#[allow(clippy::derive_partial_eq_without_eq)]
mod payload_proto {
include!(concat!(env!("OUT_DIR"), "/payload.proto.rs"));
}
use crate::io::{framed::NoiseFramed, NoiseOutput};
use crate::protocol::{KeypairIdentity, Protocol, PublicKey};
use crate::LegacyConfig;
use crate::NoiseError;
use bytes::Bytes;
use futures::prelude::*;
use libp2p_core::identity;
use prost::Message;
use std::io;
/// The identity of the remote established during a handshake.
pub enum RemoteIdentity<C> {
/// The remote provided no identifying information.
///
/// The identity of the remote is unknown and must be obtained through
/// a different, out-of-band channel.
Unknown,
/// The remote provided a static DH public key.
///
/// The static DH public key is authentic in the sense that a successful
/// handshake implies that the remote possesses a corresponding secret key.
///
/// > **Note**: To rule out active attacks like a MITM, trust in the public key must
/// > still be established, e.g. by comparing the key against an expected or
/// > otherwise known public key.
StaticDhKey(PublicKey<C>),
/// The remote provided a public identity key in addition to a static DH
/// public key and the latter is authentic w.r.t. the former.
///
/// > **Note**: To rule out active attacks like a MITM, trust in the public key must
/// > still be established, e.g. by comparing the key against an expected or
/// > otherwise known public key.
IdentityKey(identity::PublicKey),
}
//////////////////////////////////////////////////////////////////////////////
// Internal
/// Handshake state.
pub struct State<T> {
/// The underlying I/O resource.
io: NoiseFramed<T, snow::HandshakeState>,
/// The associated public identity of the local node's static DH keypair,
/// which can be sent to the remote as part of an authenticated handshake.
identity: KeypairIdentity,
/// The received signature over the remote's static DH public key, if any.
dh_remote_pubkey_sig: Option<Vec<u8>>,
/// The known or received public identity key of the remote, if any.
id_remote_pubkey: Option<identity::PublicKey>,
/// Legacy configuration parameters.
legacy: LegacyConfig,
}
impl<T> State<T> {
/// Initializes the state for a new Noise handshake, using the given local
/// identity keypair and local DH static public key. The handshake messages
/// will be sent and received on the given I/O resource and using the
/// provided session for cryptographic operations according to the chosen
/// Noise handshake pattern.
pub fn new(
io: T,
session: snow::HandshakeState,
identity: KeypairIdentity,
expected_remote_key: Option<identity::PublicKey>,
legacy: LegacyConfig,
) -> Self {
Self {
identity,
io: NoiseFramed::new(io, session),
dh_remote_pubkey_sig: None,
id_remote_pubkey: expected_remote_key,
legacy,
}
}
}
impl<T> State<T> {
/// Finish a handshake, yielding the established remote identity and the
/// [`NoiseOutput`] for communicating on the encrypted channel.
pub fn finish<C>(self) -> Result<(RemoteIdentity<C>, NoiseOutput<T>), NoiseError>
where
C: Protocol<C> + AsRef<[u8]>,
{
let (pubkey, io) = self.io.into_transport()?;
let remote = match (self.id_remote_pubkey, pubkey) {
(_, None) => RemoteIdentity::Unknown,
(None, Some(dh_pk)) => RemoteIdentity::StaticDhKey(dh_pk),
(Some(id_pk), Some(dh_pk)) => {
if C::verify(&id_pk, &dh_pk, &self.dh_remote_pubkey_sig) {
RemoteIdentity::IdentityKey(id_pk)
} else {
return Err(NoiseError::BadSignature);
}
}
};
Ok((remote, io))
}
}
//////////////////////////////////////////////////////////////////////////////
// Handshake Message Futures
/// A future for receiving a Noise handshake message.
async fn recv<T>(state: &mut State<T>) -> Result<Bytes, NoiseError>
where
T: AsyncRead + Unpin,
{
match state.io.next().await {
None => Err(io::Error::new(io::ErrorKind::UnexpectedEof, "eof").into()),
Some(Err(e)) => Err(e.into()),
Some(Ok(m)) => Ok(m),
}
}
/// A future for receiving a Noise handshake message with an empty payload.
pub async fn recv_empty<T>(state: &mut State<T>) -> Result<(), NoiseError>
where
T: AsyncRead + Unpin,
{
let msg = recv(state).await?;
if !msg.is_empty() {
return Err(
io::Error::new(io::ErrorKind::InvalidData, "Unexpected handshake payload.").into(),
);
}
Ok(())
}
/// A future for sending a Noise handshake message with an empty payload.
pub async fn send_empty<T>(state: &mut State<T>) -> Result<(), NoiseError>
where
T: AsyncWrite + Unpin,
{
state.io.send(&Vec::new()).await?;
Ok(())
}
/// A future for receiving a Noise handshake message with a payload
/// identifying the remote.
///
/// In case `expected_key` is passed, this function will fail if the received key does not match the expected key.
/// In case the remote does not send us a key, the expected key is assumed to be the remote's key.
pub async fn recv_identity<T>(state: &mut State<T>) -> Result<(), NoiseError>
where
T: AsyncRead + Unpin,
{
let msg = recv(state).await?;
let mut pb_result = payload_proto::NoiseHandshakePayload::decode(&msg[..]);
if pb_result.is_err() && state.legacy.recv_legacy_handshake {
// NOTE: This is support for legacy handshake payloads. As long as
// the frame length is less than 256 bytes, which is the case for
// all protobuf payloads not containing RSA keys, there is no room
// for misinterpretation, since if a two-bytes length prefix is present
// the first byte will be 0, which is always an unexpected protobuf tag
// value because the fields in the .proto file start with 1 and decoding
// thus expects a non-zero first byte. We will therefore always correctly
// fall back to the legacy protobuf parsing in these cases (again, not
// considering RSA keys, for which there may be a probabilistically
// very small chance of misinterpretation).
pb_result = pb_result.or_else(|e| {
if msg.len() > 2 {
let mut buf = [0, 0];
buf.copy_from_slice(&msg[..2]);
// If there is a second length it must be 2 bytes shorter than the
// frame length, because each length is encoded as a `u16`.
if usize::from(u16::from_be_bytes(buf)) + 2 == msg.len() {
log::debug!("Attempting fallback legacy protobuf decoding.");
payload_proto::NoiseHandshakePayload::decode(&msg[2..])
} else {
Err(e)
}
} else {
Err(e)
}
});
}
let pb = pb_result?;
if !pb.identity_key.is_empty() {
let pk = identity::PublicKey::from_protobuf_encoding(&pb.identity_key)?;
if let Some(ref k) = state.id_remote_pubkey {
if k != &pk {
return Err(NoiseError::UnexpectedKey);
}
}
state.id_remote_pubkey = Some(pk);
}
if !pb.identity_sig.is_empty() {
state.dh_remote_pubkey_sig = Some(pb.identity_sig);
}
Ok(())
}
/// Send a Noise handshake message with a payload identifying the local node to the remote.
pub async fn send_identity<T>(state: &mut State<T>) -> Result<(), NoiseError>
where
T: AsyncWrite + Unpin,
{
let mut pb = payload_proto::NoiseHandshakePayload {
identity_key: state.identity.public.to_protobuf_encoding(),
..Default::default()
};
if let Some(ref sig) = state.identity.signature {
pb.identity_sig = sig.clone()
}
let mut msg = if state.legacy.send_legacy_handshake {
let mut msg = Vec::with_capacity(2 + pb.encoded_len());
msg.extend_from_slice(&(pb.encoded_len() as u16).to_be_bytes());
msg
} else {
Vec::with_capacity(pb.encoded_len())
};
pb.encode(&mut msg)
.expect("Vec<u8> provides capacity as needed");
state.io.send(&msg).await?;
Ok(())
}
/// Send a Noise handshake message with a payload identifying the local node to the remote.
pub async fn send_signature_only<T>(state: &mut State<T>) -> Result<(), NoiseError>
where
T: AsyncWrite + Unpin,
{
let mut pb = payload_proto::NoiseHandshakePayload::default();
if let Some(ref sig) = state.identity.signature {
pb.identity_sig = sig.clone()
}
let mut msg = if state.legacy.send_legacy_handshake {
let mut msg = Vec::with_capacity(2 + pb.encoded_len());
msg.extend_from_slice(&(pb.encoded_len() as u16).to_be_bytes());
msg
} else {
Vec::with_capacity(pb.encoded_len())
};
pb.encode(&mut msg)
.expect("Vec<u8> provides capacity as needed");
state.io.send(&msg).await?;
Ok(())
}