1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
use super::RankTieBreaker;
/// The `OrderStatistics` trait provides statistical utilities
/// having to do with ordering. All the algorithms are in-place thus requiring
/// a mutable borrow.
pub trait OrderStatistics<T> {
/// Returns the order statistic `(order 1..N)` from the data
///
/// # Remarks
///
/// No sorting is assumed. Order must be one-based (between `1` and `N`
/// inclusive)
/// Returns `f64::NAN` if order is outside the viable range or data is
/// empty.
///
/// # Examples
///
/// ```
/// use statrs::statistics::OrderStatistics;
/// use statrs::statistics::Data;
///
/// let x = [];
/// let mut x = Data::new(x);
/// assert!(x.order_statistic(1).is_nan());
///
/// let y = [0.0, 3.0, -2.0];
/// let mut y = Data::new(y);
/// assert!(y.order_statistic(0).is_nan());
/// assert!(y.order_statistic(4).is_nan());
/// assert_eq!(y.order_statistic(2), 0.0);
/// assert!(y != Data::new([0.0, 3.0, -2.0]));
/// ```
fn order_statistic(&mut self, order: usize) -> T;
/// Returns the median value from the data
///
/// # Remarks
///
/// Returns `f64::NAN` if data is empty
///
/// # Examples
///
/// ```
/// use statrs::statistics::OrderStatistics;
/// use statrs::statistics::Data;
///
/// let x = [];
/// let mut x = Data::new(x);
/// assert!(x.median().is_nan());
///
/// let y = [0.0, 3.0, -2.0];
/// let mut y = Data::new(y);
/// assert_eq!(y.median(), 0.0);
/// assert!(y != Data::new([0.0, 3.0, -2.0]));
fn median(&mut self) -> T;
/// Estimates the tau-th quantile from the data. The tau-th quantile
/// is the data value where the cumulative distribution function crosses
/// tau.
///
/// # Remarks
///
/// No sorting is assumed. Tau must be between `0` and `1` inclusive.
/// Returns `f64::NAN` if data is empty or tau is outside the inclusive
/// range.
///
/// # Examples
///
/// ```
/// use statrs::statistics::OrderStatistics;
/// use statrs::statistics::Data;
///
/// let x = [];
/// let mut x = Data::new(x);
/// assert!(x.quantile(0.5).is_nan());
///
/// let y = [0.0, 3.0, -2.0];
/// let mut y = Data::new(y);
/// assert!(y.quantile(-1.0).is_nan());
/// assert!(y.quantile(2.0).is_nan());
/// assert_eq!(y.quantile(0.5), 0.0);
/// assert!(y != Data::new([0.0, 3.0, -2.0]));
/// ```
fn quantile(&mut self, tau: f64) -> T;
/// Estimates the p-Percentile value from the data.
///
/// # Remarks
///
/// Use quantile for non-integer percentiles. `p` must be between `0` and
/// `100` inclusive.
/// Returns `f64::NAN` if data is empty or `p` is outside the inclusive
/// range.
///
/// # Examples
///
/// ```
/// use statrs::statistics::OrderStatistics;
/// use statrs::statistics::Data;
///
/// let x = [];
/// let mut x = Data::new(x);
/// assert!(x.percentile(0).is_nan());
///
/// let y = [1.0, 5.0, 3.0, 4.0, 10.0, 9.0, 6.0, 7.0, 8.0, 2.0];
/// let mut y = Data::new(y);
/// assert_eq!(y.percentile(0), 1.0);
/// assert_eq!(y.percentile(50), 5.5);
/// assert_eq!(y.percentile(100), 10.0);
/// assert!(y.percentile(105).is_nan());
/// assert!(y != Data::new([1.0, 5.0, 3.0, 4.0, 10.0, 9.0, 6.0, 7.0, 8.0, 2.0]));
/// ```
fn percentile(&mut self, p: usize) -> T;
/// Estimates the first quartile value from the data.
///
/// # Remarks
///
/// Returns `f64::NAN` if data is empty
///
/// # Examples
///
/// ```
/// #[macro_use]
/// extern crate statrs;
///
/// use statrs::statistics::OrderStatistics;
/// use statrs::statistics::Data;
///
/// # fn main() {
/// let x = [];
/// let mut x = Data::new(x);
/// assert!(x.lower_quartile().is_nan());
///
/// let y = [2.0, 1.0, 3.0, 4.0];
/// let mut y = Data::new(y);
/// assert_almost_eq!(y.lower_quartile(), 1.416666666666666, 1e-15);
/// assert!(y != Data::new([2.0, 1.0, 3.0, 4.0]));
/// # }
/// ```
fn lower_quartile(&mut self) -> T;
/// Estimates the third quartile value from the data.
///
/// # Remarks
///
/// Returns `f64::NAN` if data is empty
///
/// # Examples
///
/// ```
/// #[macro_use]
/// extern crate statrs;
///
/// use statrs::statistics::OrderStatistics;
/// use statrs::statistics::Data;
///
/// # fn main() {
/// let x = [];
/// let mut x = Data::new(x);
/// assert!(x.upper_quartile().is_nan());
///
/// let y = [2.0, 1.0, 3.0, 4.0];
/// let mut y = Data::new(y);
/// assert_almost_eq!(y.upper_quartile(), 3.5833333333333333, 1e-15);
/// assert!(y != Data::new([2.0, 1.0, 3.0, 4.0]));
/// # }
/// ```
fn upper_quartile(&mut self) -> T;
/// Estimates the inter-quartile range from the data.
///
/// # Remarks
///
/// Returns `f64::NAN` if data is empty
///
/// # Examples
///
/// ```
/// #[macro_use]
/// extern crate statrs;
///
/// use statrs::statistics::Data;
/// use statrs::statistics::OrderStatistics;
///
/// # fn main() {
/// let x = [];
/// let mut x = Data::new(x);
/// assert!(x.interquartile_range().is_nan());
///
/// let y = [2.0, 1.0, 3.0, 4.0];
/// let mut y = Data::new(y);
/// assert_almost_eq!(y.interquartile_range(), 2.166666666666667, 1e-15);
/// assert!(y != Data::new([2.0, 1.0, 3.0, 4.0]));
/// # }
/// ```
fn interquartile_range(&mut self) -> T;
/// Evaluates the rank of each entry of the data.
///
/// # Examples
///
/// ```
/// use statrs::statistics::{OrderStatistics, RankTieBreaker};
/// use statrs::statistics::Data;
///
/// let x = [];
/// let mut x = Data::new(x);
/// assert_eq!(x.ranks(RankTieBreaker::Average).len(), 0);
///
/// let y = [1.0, 3.0, 2.0, 2.0];
/// let mut y = Data::new([1.0, 3.0, 2.0, 2.0]);
/// assert_eq!(y.clone().ranks(RankTieBreaker::Average), [1.0, 4.0,
/// 2.5, 2.5]);
/// assert_eq!(y.clone().ranks(RankTieBreaker::Min), [1.0, 4.0, 2.0,
/// 2.0]);
/// ```
fn ranks(&mut self, tie_breaker: RankTieBreaker) -> Vec<T>;
}