1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
//! Runtime library calls.
//!
//! Note that Wasm compilers may sometimes perform these inline rather than
//! calling them, particularly when CPUs have special instructions which compute
//! them directly.
//!
//! These functions are called by compiled Wasm code, and therefore must take
//! certain care about some things:
//!
//! * They must only contain basic, raw i32/i64/f32/f64/pointer parameters that
//! are safe to pass across the system ABI.
//!
//! * If any nested function propagates an `Err(trap)` out to the library
//! function frame, we need to raise it. This involves some nasty and quite
//! unsafe code under the covers! Notably, after raising the trap, drops
//! **will not** be run for local variables! This can lead to things like
//! leaking `InstanceHandle`s which leads to never deallocating JIT code,
//! instances, and modules if we are not careful!
//!
//! * The libcall must be entered via a Wasm-to-libcall trampoline that saves
//! the last Wasm FP and PC for stack walking purposes. (For more details, see
//! `crates/runtime/src/backtrace.rs`.)
//!
//! To make it easier to correctly handle all these things, **all** libcalls
//! must be defined via the `libcall!` helper macro! See its doc comments below
//! for an example, or just look at the rest of the file.
//!
//! ## Dealing with `externref`s
//!
//! When receiving a raw `*mut u8` that is actually a `VMExternRef` reference,
//! convert it into a proper `VMExternRef` with `VMExternRef::clone_from_raw` as
//! soon as apossible. Any GC before raw pointer is converted into a reference
//! can potentially collect the referenced object, which could lead to use after
//! free.
//!
//! Avoid this by eagerly converting into a proper `VMExternRef`! (Unfortunately
//! there is no macro to help us automatically get this correct, so stay
//! vigilant!)
//!
//! ```ignore
//! pub unsafe extern "C" my_libcall_takes_ref(raw_extern_ref: *mut u8) {
//! // Before `clone_from_raw`, `raw_extern_ref` is potentially unrooted,
//! // and doing GC here could lead to use after free!
//!
//! let my_extern_ref = if raw_extern_ref.is_null() {
//! None
//! } else {
//! Some(VMExternRef::clone_from_raw(raw_extern_ref))
//! };
//!
//! // Now that we did `clone_from_raw`, it is safe to do a GC (or do
//! // anything else that might transitively GC, like call back into
//! // Wasm!)
//! }
//! ```
use crate::externref::VMExternRef;
use crate::instance::Instance;
use crate::table::{Table, TableElementType};
use crate::vmcontext::{VMCallerCheckedAnyfunc, VMContext};
use crate::TrapReason;
use anyhow::Result;
use std::mem;
use std::ptr::{self, NonNull};
use wasmtime_environ::{
DataIndex, ElemIndex, FuncIndex, GlobalIndex, MemoryIndex, TableIndex, TrapCode,
};
/// Actually public trampolines which are used by the runtime as the entrypoint
/// for libcalls.
///
/// Note that the trampolines here are actually defined in inline assembly right
/// now to ensure that the fp/sp on exit are recorded for backtraces to work
/// properly.
pub mod trampolines {
use crate::{TrapReason, VMContext};
macro_rules! libcall {
(
$(
$( #[$attr:meta] )*
$name:ident( vmctx: vmctx $(, $pname:ident: $param:ident )* ) $( -> $result:ident )?;
)*
) => {paste::paste! {
$(
// The actual libcall itself, which has the `pub` name here, is
// defined via the `wasm_to_libcall_trampoline!` macro on
// supported platforms or otherwise in inline assembly for
// platforms like s390x which don't have stable `global_asm!`
// yet.
extern "C" {
#[allow(missing_docs)]
#[allow(improper_ctypes)]
pub fn $name(
vmctx: *mut VMContext,
$( $pname: libcall!(@ty $param), )*
) $(-> libcall!(@ty $result))?;
}
wasm_to_libcall_trampoline!($name ; [<impl_ $name>]);
// This is the direct entrypoint from the inline assembly which
// still has the same raw signature as the trampoline itself.
// This will delegate to the outer module to the actual
// implementation and automatically perform `catch_unwind` along
// with conversion of the return value in the face of traps.
#[no_mangle]
unsafe extern "C" fn [<impl_ $name>](
vmctx : *mut VMContext,
$( $pname : libcall!(@ty $param), )*
) $( -> libcall!(@ty $result))? {
let result = std::panic::catch_unwind(|| {
super::$name(vmctx, $($pname),*)
});
match result {
Ok(ret) => LibcallResult::convert(ret),
Err(panic) => crate::traphandlers::resume_panic(panic),
}
}
)*
}};
(@ty i32) => (u32);
(@ty i64) => (u64);
(@ty reference) => (*mut u8);
(@ty pointer) => (*mut u8);
(@ty vmctx) => (*mut VMContext);
}
wasmtime_environ::foreach_builtin_function!(libcall);
// Helper trait to convert results of libcalls below into the ABI of what
// the libcall expects.
//
// This basically entirely exists for the `Result` implementation which
// "unwraps" via a throwing of a trap.
trait LibcallResult {
type Abi;
unsafe fn convert(self) -> Self::Abi;
}
impl LibcallResult for () {
type Abi = ();
unsafe fn convert(self) {}
}
impl<T, E> LibcallResult for Result<T, E>
where
E: Into<TrapReason>,
{
type Abi = T;
unsafe fn convert(self) -> T {
match self {
Ok(t) => t,
Err(e) => crate::traphandlers::raise_trap(e.into()),
}
}
}
impl LibcallResult for *mut u8 {
type Abi = *mut u8;
unsafe fn convert(self) -> *mut u8 {
self
}
}
}
unsafe fn memory32_grow(vmctx: *mut VMContext, delta: u64, memory_index: u32) -> Result<*mut u8> {
let instance = (*vmctx).instance_mut();
let memory_index = MemoryIndex::from_u32(memory_index);
let result = match instance.memory_grow(memory_index, delta)? {
Some(size_in_bytes) => size_in_bytes / (wasmtime_environ::WASM_PAGE_SIZE as usize),
None => usize::max_value(),
};
Ok(result as *mut _)
}
// Implementation of `table.grow`.
//
// Table grow can invoke user code provided in a ResourceLimiter{,Async}, so we
// need to catch a possible panic.
unsafe fn table_grow(
vmctx: *mut VMContext,
table_index: u32,
delta: u32,
// NB: we don't know whether this is a pointer to a `VMCallerCheckedAnyfunc`
// or is a `VMExternRef` until we look at the table type.
init_value: *mut u8,
) -> Result<u32> {
let instance = (*vmctx).instance_mut();
let table_index = TableIndex::from_u32(table_index);
let element = match instance.table_element_type(table_index) {
TableElementType::Func => (init_value as *mut VMCallerCheckedAnyfunc).into(),
TableElementType::Extern => {
let init_value = if init_value.is_null() {
None
} else {
Some(VMExternRef::clone_from_raw(init_value))
};
init_value.into()
}
};
Ok(match instance.table_grow(table_index, delta, element)? {
Some(r) => r,
None => -1_i32 as u32,
})
}
use table_grow as table_grow_funcref;
use table_grow as table_grow_externref;
// Implementation of `table.fill`.
unsafe fn table_fill(
vmctx: *mut VMContext,
table_index: u32,
dst: u32,
// NB: we don't know whether this is a `VMExternRef` or a pointer to a
// `VMCallerCheckedAnyfunc` until we look at the table's element type.
val: *mut u8,
len: u32,
) -> Result<(), TrapCode> {
let instance = (*vmctx).instance_mut();
let table_index = TableIndex::from_u32(table_index);
let table = &mut *instance.get_table(table_index);
match table.element_type() {
TableElementType::Func => {
let val = val as *mut VMCallerCheckedAnyfunc;
table.fill(dst, val.into(), len)
}
TableElementType::Extern => {
let val = if val.is_null() {
None
} else {
Some(VMExternRef::clone_from_raw(val))
};
table.fill(dst, val.into(), len)
}
}
}
use table_fill as table_fill_funcref;
use table_fill as table_fill_externref;
// Implementation of `table.copy`.
unsafe fn table_copy(
vmctx: *mut VMContext,
dst_table_index: u32,
src_table_index: u32,
dst: u32,
src: u32,
len: u32,
) -> Result<(), TrapCode> {
let dst_table_index = TableIndex::from_u32(dst_table_index);
let src_table_index = TableIndex::from_u32(src_table_index);
let instance = (*vmctx).instance_mut();
let dst_table = instance.get_table(dst_table_index);
// Lazy-initialize the whole range in the source table first.
let src_range = src..(src.checked_add(len).unwrap_or(u32::MAX));
let src_table = instance.get_table_with_lazy_init(src_table_index, src_range);
Table::copy(dst_table, src_table, dst, src, len)
}
// Implementation of `table.init`.
unsafe fn table_init(
vmctx: *mut VMContext,
table_index: u32,
elem_index: u32,
dst: u32,
src: u32,
len: u32,
) -> Result<(), TrapCode> {
let table_index = TableIndex::from_u32(table_index);
let elem_index = ElemIndex::from_u32(elem_index);
let instance = (*vmctx).instance_mut();
instance.table_init(table_index, elem_index, dst, src, len)
}
// Implementation of `elem.drop`.
unsafe fn elem_drop(vmctx: *mut VMContext, elem_index: u32) {
let elem_index = ElemIndex::from_u32(elem_index);
let instance = (*vmctx).instance_mut();
instance.elem_drop(elem_index);
}
// Implementation of `memory.copy` for locally defined memories.
unsafe fn memory_copy(
vmctx: *mut VMContext,
dst_index: u32,
dst: u64,
src_index: u32,
src: u64,
len: u64,
) -> Result<(), TrapCode> {
let src_index = MemoryIndex::from_u32(src_index);
let dst_index = MemoryIndex::from_u32(dst_index);
let instance = (*vmctx).instance_mut();
instance.memory_copy(dst_index, dst, src_index, src, len)
}
// Implementation of `memory.fill` for locally defined memories.
unsafe fn memory_fill(
vmctx: *mut VMContext,
memory_index: u32,
dst: u64,
val: u32,
len: u64,
) -> Result<(), TrapCode> {
let memory_index = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance_mut();
instance.memory_fill(memory_index, dst, val as u8, len)
}
// Implementation of `memory.init`.
unsafe fn memory_init(
vmctx: *mut VMContext,
memory_index: u32,
data_index: u32,
dst: u64,
src: u32,
len: u32,
) -> Result<(), TrapCode> {
let memory_index = MemoryIndex::from_u32(memory_index);
let data_index = DataIndex::from_u32(data_index);
let instance = (*vmctx).instance_mut();
instance.memory_init(memory_index, data_index, dst, src, len)
}
// Implementation of `ref.func`.
unsafe fn ref_func(vmctx: *mut VMContext, func_index: u32) -> *mut u8 {
let instance = (*vmctx).instance_mut();
let anyfunc = instance
.get_caller_checked_anyfunc(FuncIndex::from_u32(func_index))
.expect("ref_func: caller_checked_anyfunc should always be available for given func index");
anyfunc as *mut _
}
// Implementation of `data.drop`.
unsafe fn data_drop(vmctx: *mut VMContext, data_index: u32) {
let data_index = DataIndex::from_u32(data_index);
let instance = (*vmctx).instance_mut();
instance.data_drop(data_index)
}
// Returns a table entry after lazily initializing it.
unsafe fn table_get_lazy_init_funcref(
vmctx: *mut VMContext,
table_index: u32,
index: u32,
) -> *mut u8 {
let instance = (*vmctx).instance_mut();
let table_index = TableIndex::from_u32(table_index);
let table = instance.get_table_with_lazy_init(table_index, std::iter::once(index));
let elem = (*table)
.get(index)
.expect("table access already bounds-checked");
elem.into_ref_asserting_initialized() as *mut _
}
// Drop a `VMExternRef`.
unsafe fn drop_externref(_vmctx: *mut VMContext, externref: *mut u8) {
let externref = externref as *mut crate::externref::VMExternData;
let externref = NonNull::new(externref).unwrap();
crate::externref::VMExternData::drop_and_dealloc(externref);
}
// Do a GC and insert the given `externref` into the
// `VMExternRefActivationsTable`.
unsafe fn activations_table_insert_with_gc(vmctx: *mut VMContext, externref: *mut u8) {
let externref = VMExternRef::clone_from_raw(externref);
let instance = (*vmctx).instance();
let (activations_table, module_info_lookup) = (*instance.store()).externref_activations_table();
// Invariant: all `externref`s on the stack have an entry in the activations
// table. So we need to ensure that this `externref` is in the table
// *before* we GC, even though `insert_with_gc` will ensure that it is in
// the table *after* the GC. This technically results in one more hash table
// look up than is strictly necessary -- which we could avoid by having an
// additional GC method that is aware of these GC-triggering references --
// but it isn't really a concern because this is already a slow path.
activations_table.insert_without_gc(externref.clone());
activations_table.insert_with_gc(externref, module_info_lookup);
}
// Perform a Wasm `global.get` for `externref` globals.
unsafe fn externref_global_get(vmctx: *mut VMContext, index: u32) -> *mut u8 {
let index = GlobalIndex::from_u32(index);
let instance = (*vmctx).instance();
let global = instance.defined_or_imported_global_ptr(index);
match (*global).as_externref().clone() {
None => ptr::null_mut(),
Some(externref) => {
let raw = externref.as_raw();
let (activations_table, module_info_lookup) =
(*instance.store()).externref_activations_table();
activations_table.insert_with_gc(externref, module_info_lookup);
raw
}
}
}
// Perform a Wasm `global.set` for `externref` globals.
unsafe fn externref_global_set(vmctx: *mut VMContext, index: u32, externref: *mut u8) {
let externref = if externref.is_null() {
None
} else {
Some(VMExternRef::clone_from_raw(externref))
};
let index = GlobalIndex::from_u32(index);
let instance = (*vmctx).instance();
let global = instance.defined_or_imported_global_ptr(index);
// Swap the new `externref` value into the global before we drop the old
// value. This protects against an `externref` with a `Drop` implementation
// that calls back into Wasm and touches this global again (we want to avoid
// it observing a halfway-deinitialized value).
let old = mem::replace((*global).as_externref_mut(), externref);
drop(old);
}
// Implementation of `memory.atomic.notify` for locally defined memories.
unsafe fn memory_atomic_notify(
vmctx: *mut VMContext,
memory_index: u32,
addr: *mut u8,
_count: u32,
) -> Result<u32, TrapReason> {
let addr = addr as usize;
let memory = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance();
// this should never overflow since addr + 4 either hits a guard page
// or it's been validated to be in-bounds already. Double-check for now
// just to be sure.
let addr_to_check = addr.checked_add(4).unwrap();
validate_atomic_addr(instance, memory, addr_to_check)?;
Err(
anyhow::anyhow!("unimplemented: wasm atomics (fn memory_atomic_notify) unsupported",)
.into(),
)
}
// Implementation of `memory.atomic.wait32` for locally defined memories.
unsafe fn memory_atomic_wait32(
vmctx: *mut VMContext,
memory_index: u32,
addr: *mut u8,
_expected: u32,
_timeout: u64,
) -> Result<u32, TrapReason> {
let addr = addr as usize;
let memory = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance();
// see wasmtime_memory_atomic_notify for why this shouldn't overflow
// but we still double-check
let addr_to_check = addr.checked_add(4).unwrap();
validate_atomic_addr(instance, memory, addr_to_check)?;
Err(
anyhow::anyhow!("unimplemented: wasm atomics (fn memory_atomic_wait32) unsupported",)
.into(),
)
}
// Implementation of `memory.atomic.wait64` for locally defined memories.
unsafe fn memory_atomic_wait64(
vmctx: *mut VMContext,
memory_index: u32,
addr: *mut u8,
_expected: u64,
_timeout: u64,
) -> Result<u32, TrapReason> {
let addr = addr as usize;
let memory = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance();
// see wasmtime_memory_atomic_notify for why this shouldn't overflow
// but we still double-check
let addr_to_check = addr.checked_add(8).unwrap();
validate_atomic_addr(instance, memory, addr_to_check)?;
Err(
anyhow::anyhow!("unimplemented: wasm atomics (fn memory_atomic_wait64) unsupported",)
.into(),
)
}
/// For atomic operations we still check the actual address despite this also
/// being checked via the `heap_addr` instruction in cranelift. The reason for
/// that is because the `heap_addr` instruction can defer to a later segfault to
/// actually recognize the out-of-bounds whereas once we're running Rust code
/// here we don't want to segfault.
///
/// In the situations where bounds checks were elided in JIT code (because oob
/// would then be later guaranteed to segfault) this manual check is here
/// so we don't segfault from Rust.
unsafe fn validate_atomic_addr(
instance: &Instance,
memory: MemoryIndex,
addr: usize,
) -> Result<(), TrapCode> {
if addr > instance.get_memory(memory).current_length() {
return Err(TrapCode::HeapOutOfBounds);
}
Ok(())
}
// Hook for when an instance runs out of fuel.
unsafe fn out_of_gas(vmctx: *mut VMContext) -> Result<()> {
(*(*vmctx).instance().store()).out_of_gas()
}
// Hook for when an instance observes that the epoch has changed.
unsafe fn new_epoch(vmctx: *mut VMContext) -> Result<u64> {
(*(*vmctx).instance().store()).new_epoch()
}