1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Jeffrey Burdges <jeff@web3.foundation>
//! ### Elliptic curve Qu-Vanstone implicit certificate scheme (ECQV) for Ristretto
//!
//! [Implicit certificates](https://en.wikipedia.org/wiki/Implicit_certificate)
//! provide an extremely space efficent public key certificate scheme.
//!
//! As a rule, implicit certificates do not prove possession of the
//! private key. We thus worry more about fear rogue key attack when
//! using them, but all protocols here should provide strong defenses
//! against then.
//!
//! [1] "Standards for efficient cryptography, SEC 4: Elliptic Curve
//! Qu-Vanstone Implicit Certificate Scheme (ECQV)".
//! http://www.secg.org/sec4-1.0.pdf
//! [2] Daniel R. L. Brown, Robert P. Gallant, and Scott A. Vanstone.
//! "Provably Secure Implicit Certificate Schemes". Financial
//! Cryptography 2001. Lecture Notes in Computer Science.
//! Springer Berlin Heidelberg. 2339 (1): 156–165. doi:10.1007/3-540-46088-8_15.
//! http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-55.ps
use curve25519_dalek::constants;
use curve25519_dalek::ristretto::{CompressedRistretto};
use curve25519_dalek::scalar::Scalar;
use super::*;
use crate::context::SigningTranscript;
/// ECQV Implicit Certificate Secret
///
/// Issuing an ECQV implicit certificate requires producing
/// this and securely sending it to the certificate holder.
#[derive(Clone, Copy)] // Debug, Eq, PartialEq
pub struct ECQVCertSecret(pub [u8; 64]);
/// TODO: Serde serialization/deserialization
/*
impl<'a> From<&'a ECQVCertSecret> for &'a ECQVCertPublic {
from(secret: &ECQVCertSecret) -> &ECQVCertPublic {
unsafe { ::core::mem::transmute(secret) }
}
}
*/
impl From<ECQVCertSecret> for ECQVCertPublic {
fn from(secret: ECQVCertSecret) -> ECQVCertPublic {
let mut public = ECQVCertPublic([0u8; 32]);
public.0.copy_from_slice(&secret.0[0..32]);
public
}
}
/// ECQV Implicit Certificate Public Key Reconstruction Data
///
/// Identifying the public key of, and implicity verifying, an ECQV
/// implicit certificate requires this data, which is produced
/// when the certificate holder accepts the implicit certificate.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub struct ECQVCertPublic(pub [u8; 32]);
/// TODO: Serde serialization/deserialization
impl ECQVCertPublic {
fn derive_e<T: SigningTranscript>(&self, mut t: T) -> Scalar {
t.challenge_scalar(b"ecqv-e")
}
}
impl Keypair {
/// Issue an ECQV implicit certificate
///
/// Aside from the issuing `Keypair` supplied as `self`, you provide both
/// (1) a `SigningTranscript` called `t` that incorporates both the context
/// and the certificate requester's identity, and
/// (2) the `seed_public_key` supplied by the certificate recipient
/// in their certificate request.
/// We return an `ECQVCertSecret` which the issuer sent to the
/// certificate requester, ans from which the certificate requester
/// derives their certified key pair.
pub fn issue_ecqv_cert<T>(&self, mut t: T, seed_public_key: &PublicKey) -> ECQVCertSecret
where T: SigningTranscript
{
t.proto_name(b"ECQV");
t.commit_point(b"issuer-pk",self.public.as_compressed());
// We cannot commit the `seed_public_key` to the transcript
// because the whole point is to keep the transcript minimal.
// Instead we consume it as witness datathat influences only k.
let k = t.witness_scalar(b"issuing",&[ &self.secret.nonce, seed_public_key.as_compressed().as_bytes() ]);
// Compute the public key reconstruction data
let gamma = seed_public_key.as_point() + &k * &constants::RISTRETTO_BASEPOINT_TABLE;
let gamma = gamma.compress();
t.commit_point(b"gamma",&gamma);
let cert_public = ECQVCertPublic(gamma.0);
// Compute the secret key reconstruction data
let s = cert_public.derive_e(t) * k + self.secret.key;
let mut cert_secret = ECQVCertSecret([0u8; 64]);
cert_secret.0[0..32].copy_from_slice(&cert_public.0[..]);
cert_secret.0[32..64].copy_from_slice(s.as_bytes());
cert_secret
}
}
impl PublicKey {
/// Accept an ECQV implicit certificate
///
/// We request an ECQV implicit certificate by first creating an
/// ephemeral `Keypair` and sending the public portion to the issuer
/// as `seed_public_key`. An issuer issues the certificat by replying
/// with the `ECQVCertSecret` created by `issue_ecqv_cert`.
///
/// Aside from the issuer `PublicKey` supplied as `self`, you provide
/// (1) a `SigningTranscript` called `t` that incorporates both the context
/// and the certificate requester's identity,
/// (2) the `seed_secret_key` corresponding to the `seed_public_key`
/// they sent to the issuer by the certificate recipient in their
/// certificate request, and
/// (3) the `ECQVCertSecret` send by the issuer to the certificate
/// requester.
/// We return both your certificate's new `SecretKey` as well as
/// an `ECQVCertPublic` from which third parties may derive
/// corresponding public key from `h` and the issuer's public key.
pub fn accept_ecqv_cert<T>(
&self,
mut t: T,
seed_secret_key: &SecretKey,
cert_secret: ECQVCertSecret
) -> SignatureResult<(ECQVCertPublic, SecretKey)>
where T: SigningTranscript
{
t.proto_name(b"ECQV");
t.commit_point(b"issuer-pk",self.as_compressed());
// Again we cannot commit much to the transcript, but we again
// treat anything relevant as a witness when defining the
let mut nonce = [0u8; 32];
t.witness_bytes(b"accepting",&mut nonce, &[&cert_secret.0[..],&seed_secret_key.nonce]);
let mut s = [0u8; 32];
s.copy_from_slice(&cert_secret.0[32..64]);
let s = Scalar::from_canonical_bytes(s).ok_or(SignatureError::ScalarFormatError) ?;
let cert_public : ECQVCertPublic = cert_secret.into();
let gamma = CompressedRistretto(cert_public.0.clone());
t.commit_point(b"gamma",&gamma);
let key = s + cert_public.derive_e(t) * seed_secret_key.key;
Ok(( cert_public, SecretKey { key, nonce } ))
}
}
impl Keypair {
/// Issue an ECQV Implicit Certificate for yourself
///
/// We can issue an implicit certificate to ourselves if we merely
/// want to certify an associated public key. We should prefer
/// this option over "hierarchical deterministic" key derivation
/// because compromizing the resulting secret key does not
/// compromize the issuer's secret key.
///
/// In this case, we avoid the entire interactive protocol described
/// by `issue_ecqv_cert` and `accept_ecqv_cert` by hiding it an all
/// managment of the ephemeral `Keypair` inside this function.
///
/// Aside from the issuing secret key supplied as `self`, you provide
/// only a digest `h` that incorporates any context and metadata
/// pertaining to the issued key.
pub fn issue_self_ecqv_cert<T>(&self, t: T) -> (ECQVCertPublic, SecretKey)
where T: SigningTranscript+Clone
{
let mut bytes = [0u8; 96];
t.witness_bytes(b"issue_self_ecqv_cert", &mut bytes, &[&self.secret.nonce, &self.secret.to_bytes() as &[u8]]);
let mut nonce = [0u8; 32];
nonce.copy_from_slice(&bytes[64..96]);
let mut key = [0u8; 64];
key.copy_from_slice(&bytes[0..64]);
let key = Scalar::from_bytes_mod_order_wide(&key);
let seed = SecretKey { key, nonce }.to_keypair();
let cert_secret = self.issue_ecqv_cert(t.clone(), &seed.public);
self.public.accept_ecqv_cert(t, &seed.secret, cert_secret).expect("Cert issued above and known to produce signature errors; qed")
}
}
impl PublicKey {
///
pub fn open_ecqv_cert<T>(&self, mut t: T, cert_public: &ECQVCertPublic) -> SignatureResult<PublicKey>
where T: SigningTranscript
{
t.proto_name(b"ECQV");
t.commit_point(b"issuer-pk",self.as_compressed());
let gamma = CompressedRistretto(cert_public.0.clone());
t.commit_point(b"gamma",&gamma);
let gamma = gamma.decompress().ok_or(SignatureError::PointDecompressionError) ?;
let point = self.as_point() + cert_public.derive_e(t) * gamma;
Ok(PublicKey::from_point(point))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn ecqv_cert_public_vs_private_paths() {
let t = signing_context(b"").bytes(b"MrMeow!");
// #[cfg(feature = "getrandom")]
let mut csprng = ::rand_core::OsRng;
let issuer = Keypair::generate_with(&mut csprng);
let (cert_public,secret_key) = issuer.issue_self_ecqv_cert(t.clone());
let public_key = issuer.public.open_ecqv_cert(t,&cert_public).unwrap();
assert_eq!(secret_key.to_public(), public_key);
}
}