1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Jeffrey Burdges <jeff@web3.foundation>


//! ### Elliptic curve Qu-Vanstone implicit certificate scheme (ECQV) for Ristretto
//!
//! [Implicit certificates](https://en.wikipedia.org/wiki/Implicit_certificate)
//! provide an extremely space efficent public key certificate scheme.
//!
//! As a rule, implicit certificates do not prove possession of the
//! private key.  We thus worry more about fear rogue key attack when
//! using them, but all protocols here should provide strong defenses
//! against then.
//!
//! [1] "Standards for efficient cryptography, SEC 4: Elliptic Curve
//!     Qu-Vanstone Implicit Certificate Scheme (ECQV)".
//!     http://www.secg.org/sec4-1.0.pdf
//! [2] Daniel R. L. Brown, Robert P. Gallant, and Scott A. Vanstone.
//!     "Provably Secure Implicit Certificate Schemes". Financial
//!     Cryptography 2001. Lecture Notes in Computer Science.
//!     Springer Berlin Heidelberg. 2339 (1): 156–165. doi:10.1007/3-540-46088-8_15.
//!     http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-55.ps

use curve25519_dalek::constants;
use curve25519_dalek::ristretto::{CompressedRistretto};
use curve25519_dalek::scalar::Scalar;

use super::*;
use crate::context::SigningTranscript;


/// ECQV Implicit Certificate Secret
///
/// Issuing an ECQV implicit certificate requires producing
/// this and securely sending it to the certificate holder.
#[derive(Clone, Copy)] // Debug, Eq, PartialEq
pub struct ECQVCertSecret(pub [u8; 64]);
/// TODO: Serde serialization/deserialization

/*
impl<'a> From<&'a ECQVCertSecret> for &'a ECQVCertPublic {
    from(secret: &ECQVCertSecret) -> &ECQVCertPublic {
        unsafe { ::core::mem::transmute(secret) }
    }
}
*/

impl From<ECQVCertSecret> for ECQVCertPublic {
    fn from(secret: ECQVCertSecret) -> ECQVCertPublic {
        let mut public = ECQVCertPublic([0u8; 32]);
        public.0.copy_from_slice(&secret.0[0..32]);
        public
    }
}

/// ECQV Implicit Certificate Public Key Reconstruction Data
///
/// Identifying the public key of, and implicity verifying, an ECQV
/// implicit certificate requires this data, which is produced
/// when the certificate holder accepts the implicit certificate.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub struct ECQVCertPublic(pub [u8; 32]);
/// TODO: Serde serialization/deserialization

impl ECQVCertPublic {
    fn derive_e<T: SigningTranscript>(&self, mut t: T) -> Scalar {
        t.challenge_scalar(b"ecqv-e")
    }
}

impl Keypair {
    /// Issue an ECQV implicit certificate
    ///
    /// Aside from the issuing `Keypair` supplied as `self`, you provide both
    /// (1) a `SigningTranscript` called `t` that incorporates both the context 
    ///     and the certificate requester's identity, and
    /// (2) the `seed_public_key` supplied by the certificate recipient
    ///     in their certificate request.
    /// We return an `ECQVCertSecret` which the issuer sent to the
    /// certificate requester, ans from which the certificate requester
    /// derives their certified key pair.
    pub fn issue_ecqv_cert<T>(&self, mut t: T, seed_public_key: &PublicKey) -> ECQVCertSecret
    where T: SigningTranscript
    {
        t.proto_name(b"ECQV");
        t.commit_point(b"issuer-pk",self.public.as_compressed());

        // We cannot commit the `seed_public_key` to the transcript
        // because the whole point is to keep the transcript minimal.
        // Instead we consume it as witness datathat influences only k.
        let k = t.witness_scalar(b"issuing",&[ &self.secret.nonce, seed_public_key.as_compressed().as_bytes() ]);

        // Compute the public key reconstruction data
        let gamma = seed_public_key.as_point() + &k * &constants::RISTRETTO_BASEPOINT_TABLE;
        let gamma = gamma.compress();
        t.commit_point(b"gamma",&gamma);
        let cert_public = ECQVCertPublic(gamma.0);

        // Compute the secret key reconstruction data
        let s = cert_public.derive_e(t) * k + self.secret.key;

        let mut cert_secret = ECQVCertSecret([0u8; 64]);
        cert_secret.0[0..32].copy_from_slice(&cert_public.0[..]);
        cert_secret.0[32..64].copy_from_slice(s.as_bytes());
        cert_secret
    }
}

impl PublicKey {
    /// Accept an ECQV implicit certificate
    ///
    /// We request an ECQV implicit certificate by first creating an
    /// ephemeral `Keypair` and sending the public portion to the issuer
    /// as `seed_public_key`.  An issuer issues the certificat by replying
    /// with the `ECQVCertSecret` created by `issue_ecqv_cert`.
    ///
    /// Aside from the issuer `PublicKey` supplied as `self`, you provide
    /// (1) a `SigningTranscript` called `t` that incorporates both the context
    ///     and the certificate requester's identity,
    /// (2) the `seed_secret_key` corresponding to the `seed_public_key`
    ///     they sent to the issuer by the certificate recipient in their
    ///     certificate request, and
    /// (3) the `ECQVCertSecret` send by the issuer to the certificate
    ///     requester.
    /// We return both your certificate's new `SecretKey` as well as
    /// an `ECQVCertPublic` from which third parties may derive
    /// corresponding public key from `h` and the issuer's public key.
    pub fn accept_ecqv_cert<T>(
        &self,
        mut t: T,
        seed_secret_key: &SecretKey,
        cert_secret: ECQVCertSecret
    ) -> SignatureResult<(ECQVCertPublic, SecretKey)>
    where T: SigningTranscript
    {
        t.proto_name(b"ECQV");
        t.commit_point(b"issuer-pk",self.as_compressed());

        // Again we cannot commit much to the transcript, but we again
        // treat anything relevant as a witness when defining the
        let mut nonce = [0u8; 32];
        t.witness_bytes(b"accepting",&mut nonce, &[&cert_secret.0[..],&seed_secret_key.nonce]);

        let mut s = [0u8; 32];
        s.copy_from_slice(&cert_secret.0[32..64]);
        let s = Scalar::from_canonical_bytes(s).ok_or(SignatureError::ScalarFormatError) ?;
        let cert_public : ECQVCertPublic = cert_secret.into();
        let gamma = CompressedRistretto(cert_public.0.clone());
        t.commit_point(b"gamma",&gamma);

        let key = s + cert_public.derive_e(t) * seed_secret_key.key;
        Ok(( cert_public, SecretKey { key, nonce } ))
    }
}

impl Keypair {
    /// Issue an ECQV Implicit Certificate for yourself
    ///
    /// We can issue an implicit certificate to ourselves if we merely
    /// want to certify an associated public key.  We should prefer
    /// this option over "hierarchical deterministic" key derivation
    /// because compromizing the resulting secret key does not
    /// compromize the issuer's secret key.
    ///
    /// In this case, we avoid the entire interactive protocol described
    /// by `issue_ecqv_cert` and `accept_ecqv_cert` by hiding it an all
    /// managment of the ephemeral `Keypair` inside this function.
    ///
    /// Aside from the issuing secret key supplied as `self`, you provide
    /// only a digest `h` that incorporates any context and metadata
    /// pertaining to the issued key.
    pub fn issue_self_ecqv_cert<T>(&self, t: T) -> (ECQVCertPublic, SecretKey)
    where T: SigningTranscript+Clone
    {
        let mut bytes = [0u8; 96];
        t.witness_bytes(b"issue_self_ecqv_cert", &mut bytes, &[&self.secret.nonce, &self.secret.to_bytes() as &[u8]]);

        let mut nonce = [0u8; 32];
        nonce.copy_from_slice(&bytes[64..96]);

        let mut key = [0u8; 64];
        key.copy_from_slice(&bytes[0..64]);
        let key = Scalar::from_bytes_mod_order_wide(&key);

        let seed = SecretKey { key, nonce }.to_keypair();
        let cert_secret = self.issue_ecqv_cert(t.clone(), &seed.public);
        self.public.accept_ecqv_cert(t, &seed.secret, cert_secret).expect("Cert issued above and known to produce signature errors; qed")
    }
}

impl PublicKey {
    ///
    pub fn open_ecqv_cert<T>(&self, mut t: T, cert_public: &ECQVCertPublic) -> SignatureResult<PublicKey>
    where T: SigningTranscript
    {
        t.proto_name(b"ECQV");
        t.commit_point(b"issuer-pk",self.as_compressed());

        let gamma = CompressedRistretto(cert_public.0.clone());
        t.commit_point(b"gamma",&gamma);
        let gamma = gamma.decompress().ok_or(SignatureError::PointDecompressionError) ?;

        let point = self.as_point() + cert_public.derive_e(t) * gamma;
        Ok(PublicKey::from_point(point))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn ecqv_cert_public_vs_private_paths() {
        let t = signing_context(b"").bytes(b"MrMeow!");

        // #[cfg(feature = "getrandom")]
        let mut csprng = ::rand_core::OsRng;
        let issuer = Keypair::generate_with(&mut csprng);

        let (cert_public,secret_key) = issuer.issue_self_ecqv_cert(t.clone());
        let public_key = issuer.public.open_ecqv_cert(t,&cert_public).unwrap();
        assert_eq!(secret_key.to_public(), public_key);
    }
}