1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
// -*- mode: rust; -*-
//
// This file is part of ed25519-dalek.
// Copyright (c) 2017-2019 isis lovecruft
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
//! ed25519 public keys.
use core::convert::TryFrom;
use core::fmt::Debug;
use curve25519_dalek::constants;
use curve25519_dalek::digest::generic_array::typenum::U64;
use curve25519_dalek::digest::Digest;
use curve25519_dalek::edwards::CompressedEdwardsY;
use curve25519_dalek::edwards::EdwardsPoint;
use curve25519_dalek::scalar::Scalar;
use ed25519::signature::Verifier;
pub use sha2::Sha512;
#[cfg(feature = "serde")]
use serde::de::Error as SerdeError;
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "serde")]
use serde_bytes::{Bytes as SerdeBytes, ByteBuf as SerdeByteBuf};
use crate::constants::*;
use crate::errors::*;
use crate::secret::*;
use crate::signature::*;
/// An ed25519 public key.
#[derive(Copy, Clone, Default, Eq, PartialEq)]
pub struct PublicKey(pub(crate) CompressedEdwardsY, pub(crate) EdwardsPoint);
impl Debug for PublicKey {
fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
write!(f, "PublicKey({:?}), {:?})", self.0, self.1)
}
}
impl AsRef<[u8]> for PublicKey {
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
impl<'a> From<&'a SecretKey> for PublicKey {
/// Derive this public key from its corresponding `SecretKey`.
fn from(secret_key: &SecretKey) -> PublicKey {
let mut h: Sha512 = Sha512::new();
let mut hash: [u8; 64] = [0u8; 64];
let mut digest: [u8; 32] = [0u8; 32];
h.update(secret_key.as_bytes());
hash.copy_from_slice(h.finalize().as_slice());
digest.copy_from_slice(&hash[..32]);
PublicKey::mangle_scalar_bits_and_multiply_by_basepoint_to_produce_public_key(&mut digest)
}
}
impl<'a> From<&'a ExpandedSecretKey> for PublicKey {
/// Derive this public key from its corresponding `ExpandedSecretKey`.
fn from(expanded_secret_key: &ExpandedSecretKey) -> PublicKey {
let mut bits: [u8; 32] = expanded_secret_key.key.to_bytes();
PublicKey::mangle_scalar_bits_and_multiply_by_basepoint_to_produce_public_key(&mut bits)
}
}
impl PublicKey {
/// Convert this public key to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; PUBLIC_KEY_LENGTH] {
self.0.to_bytes()
}
/// View this public key as a byte array.
#[inline]
pub fn as_bytes<'a>(&'a self) -> &'a [u8; PUBLIC_KEY_LENGTH] {
&(self.0).0
}
/// Construct a `PublicKey` from a slice of bytes.
///
/// # Warning
///
/// The caller is responsible for ensuring that the bytes passed into this
/// method actually represent a `curve25519_dalek::curve::CompressedEdwardsY`
/// and that said compressed point is actually a point on the curve.
///
/// # Example
///
/// ```
/// # extern crate ed25519_dalek;
/// #
/// use ed25519_dalek::PublicKey;
/// use ed25519_dalek::PUBLIC_KEY_LENGTH;
/// use ed25519_dalek::SignatureError;
///
/// # fn doctest() -> Result<PublicKey, SignatureError> {
/// let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = [
/// 215, 90, 152, 1, 130, 177, 10, 183, 213, 75, 254, 211, 201, 100, 7, 58,
/// 14, 225, 114, 243, 218, 166, 35, 37, 175, 2, 26, 104, 247, 7, 81, 26];
///
/// let public_key = PublicKey::from_bytes(&public_key_bytes)?;
/// #
/// # Ok(public_key)
/// # }
/// #
/// # fn main() {
/// # doctest();
/// # }
/// ```
///
/// # Returns
///
/// A `Result` whose okay value is an EdDSA `PublicKey` or whose error value
/// is an `SignatureError` describing the error that occurred.
#[inline]
pub fn from_bytes(bytes: &[u8]) -> Result<PublicKey, SignatureError> {
if bytes.len() != PUBLIC_KEY_LENGTH {
return Err(InternalError::BytesLengthError {
name: "PublicKey",
length: PUBLIC_KEY_LENGTH,
}.into());
}
let mut bits: [u8; 32] = [0u8; 32];
bits.copy_from_slice(&bytes[..32]);
let compressed = CompressedEdwardsY(bits);
let point = compressed
.decompress()
.ok_or(InternalError::PointDecompressionError)?;
Ok(PublicKey(compressed, point))
}
/// Internal utility function for mangling the bits of a (formerly
/// mathematically well-defined) "scalar" and multiplying it to produce a
/// public key.
fn mangle_scalar_bits_and_multiply_by_basepoint_to_produce_public_key(
bits: &mut [u8; 32],
) -> PublicKey {
bits[0] &= 248;
bits[31] &= 127;
bits[31] |= 64;
let point = &Scalar::from_bits(*bits) * &constants::ED25519_BASEPOINT_TABLE;
let compressed = point.compress();
PublicKey(compressed, point)
}
/// Verify a `signature` on a `prehashed_message` using the Ed25519ph algorithm.
///
/// # Inputs
///
/// * `prehashed_message` is an instantiated hash digest with 512-bits of
/// output which has had the message to be signed previously fed into its
/// state.
/// * `context` is an optional context string, up to 255 bytes inclusive,
/// which may be used to provide additional domain separation. If not
/// set, this will default to an empty string.
/// * `signature` is a purported Ed25519ph [`Signature`] on the `prehashed_message`.
///
/// # Returns
///
/// Returns `true` if the `signature` was a valid signature created by this
/// `Keypair` on the `prehashed_message`.
///
/// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1
#[allow(non_snake_case)]
pub fn verify_prehashed<D>(
&self,
prehashed_message: D,
context: Option<&[u8]>,
signature: &ed25519::Signature,
) -> Result<(), SignatureError>
where
D: Digest<OutputSize = U64>,
{
let signature = InternalSignature::try_from(signature)?;
let mut h: Sha512 = Sha512::default();
let R: EdwardsPoint;
let k: Scalar;
let ctx: &[u8] = context.unwrap_or(b"");
debug_assert!(ctx.len() <= 255, "The context must not be longer than 255 octets.");
let minus_A: EdwardsPoint = -self.1;
h.update(b"SigEd25519 no Ed25519 collisions");
h.update(&[1]); // Ed25519ph
h.update(&[ctx.len() as u8]);
h.update(ctx);
h.update(signature.R.as_bytes());
h.update(self.as_bytes());
h.update(prehashed_message.finalize().as_slice());
k = Scalar::from_hash(h);
R = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &(minus_A), &signature.s);
if R.compress() == signature.R {
Ok(())
} else {
Err(InternalError::VerifyError.into())
}
}
/// Strictly verify a signature on a message with this keypair's public key.
///
/// # On The (Multiple) Sources of Malleability in Ed25519 Signatures
///
/// This version of verification is technically non-RFC8032 compliant. The
/// following explains why.
///
/// 1. Scalar Malleability
///
/// The authors of the RFC explicitly stated that verification of an ed25519
/// signature must fail if the scalar `s` is not properly reduced mod \ell:
///
/// > To verify a signature on a message M using public key A, with F
/// > being 0 for Ed25519ctx, 1 for Ed25519ph, and if Ed25519ctx or
/// > Ed25519ph is being used, C being the context, first split the
/// > signature into two 32-octet halves. Decode the first half as a
/// > point R, and the second half as an integer S, in the range
/// > 0 <= s < L. Decode the public key A as point A'. If any of the
/// > decodings fail (including S being out of range), the signature is
/// > invalid.)
///
/// All `verify_*()` functions within ed25519-dalek perform this check.
///
/// 2. Point malleability
///
/// The authors of the RFC added in a malleability check to step #3 in
/// §5.1.7, for small torsion components in the `R` value of the signature,
/// *which is not strictly required*, as they state:
///
/// > Check the group equation \[8\]\[S\]B = \[8\]R + \[8\]\[k\]A'. It's
/// > sufficient, but not required, to instead check \[S\]B = R + \[k\]A'.
///
/// # History of Malleability Checks
///
/// As originally defined (cf. the "Malleability" section in the README of
/// this repo), ed25519 signatures didn't consider *any* form of
/// malleability to be an issue. Later the scalar malleability was
/// considered important. Still later, particularly with interests in
/// cryptocurrency design and in unique identities (e.g. for Signal users,
/// Tor onion services, etc.), the group element malleability became a
/// concern.
///
/// However, libraries had already been created to conform to the original
/// definition. One well-used library in particular even implemented the
/// group element malleability check, *but only for batch verification*!
/// Which meant that even using the same library, a single signature could
/// verify fine individually, but suddenly, when verifying it with a bunch
/// of other signatures, the whole batch would fail!
///
/// # "Strict" Verification
///
/// This method performs *both* of the above signature malleability checks.
///
/// It must be done as a separate method because one doesn't simply get to
/// change the definition of a cryptographic primitive ten years
/// after-the-fact with zero consideration for backwards compatibility in
/// hardware and protocols which have it already have the older definition
/// baked in.
///
/// # Return
///
/// Returns `Ok(())` if the signature is valid, and `Err` otherwise.
#[allow(non_snake_case)]
pub fn verify_strict(
&self,
message: &[u8],
signature: &ed25519::Signature,
) -> Result<(), SignatureError>
{
let signature = InternalSignature::try_from(signature)?;
let mut h: Sha512 = Sha512::new();
let R: EdwardsPoint;
let k: Scalar;
let minus_A: EdwardsPoint = -self.1;
let signature_R: EdwardsPoint;
match signature.R.decompress() {
None => return Err(InternalError::VerifyError.into()),
Some(x) => signature_R = x,
}
// Logical OR is fine here as we're not trying to be constant time.
if signature_R.is_small_order() || self.1.is_small_order() {
return Err(InternalError::VerifyError.into());
}
h.update(signature.R.as_bytes());
h.update(self.as_bytes());
h.update(&message);
k = Scalar::from_hash(h);
R = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &(minus_A), &signature.s);
if R == signature_R {
Ok(())
} else {
Err(InternalError::VerifyError.into())
}
}
}
impl Verifier<ed25519::Signature> for PublicKey {
/// Verify a signature on a message with this keypair's public key.
///
/// # Return
///
/// Returns `Ok(())` if the signature is valid, and `Err` otherwise.
#[allow(non_snake_case)]
fn verify(
&self,
message: &[u8],
signature: &ed25519::Signature
) -> Result<(), SignatureError>
{
let signature = InternalSignature::try_from(signature)?;
let mut h: Sha512 = Sha512::new();
let R: EdwardsPoint;
let k: Scalar;
let minus_A: EdwardsPoint = -self.1;
h.update(signature.R.as_bytes());
h.update(self.as_bytes());
h.update(&message);
k = Scalar::from_hash(h);
R = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &(minus_A), &signature.s);
if R.compress() == signature.R {
Ok(())
} else {
Err(InternalError::VerifyError.into())
}
}
}
#[cfg(feature = "serde")]
impl Serialize for PublicKey {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
SerdeBytes::new(self.as_bytes()).serialize(serializer)
}
}
#[cfg(feature = "serde")]
impl<'d> Deserialize<'d> for PublicKey {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'d>,
{
let bytes = <SerdeByteBuf>::deserialize(deserializer)?;
PublicKey::from_bytes(bytes.as_ref()).map_err(SerdeError::custom)
}
}