1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
//! Provides utility functions for generating data sequences

use crate::euclid::Modulus;
use std::f64::consts;
/// Generates a base 10 log spaced vector of the given length between the
/// specified decade exponents (inclusive). Equivalent to MATLAB logspace
///
/// # Examples
///
/// ```
/// use statrs::generate;
///
/// let x = generate::log_spaced(5, 0.0, 4.0);
/// assert_eq!(x, [1.0, 10.0, 100.0, 1000.0, 10000.0]);
/// ```
pub fn log_spaced(length: usize, start_exp: f64, stop_exp: f64) -> Vec<f64> {
    match length {
        0 => Vec::new(),
        1 => vec![10f64.powf(stop_exp)],
        _ => {
            let step = (stop_exp - start_exp) / (length - 1) as f64;
            let mut vec = (0..length)
                .map(|x| 10f64.powf(start_exp + (x as f64) * step))
                .collect::<Vec<f64>>();
            vec[length - 1] = 10f64.powf(stop_exp);
            vec
        }
    }
}

/// Infinite iterator returning floats that form a periodic wave
pub struct InfinitePeriodic {
    amplitude: f64,
    step: f64,
    phase: f64,
    k: f64,
}

impl InfinitePeriodic {
    /// Constructs a new infinite periodic wave generator
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::generate::InfinitePeriodic;
    ///
    /// let x = InfinitePeriodic::new(8.0, 2.0, 10.0, 1.0,
    /// 2).take(10).collect::<Vec<f64>>();
    /// assert_eq!(x, [6.0, 8.5, 1.0, 3.5, 6.0, 8.5, 1.0, 3.5, 6.0, 8.5]);
    /// ```
    pub fn new(
        sampling_rate: f64,
        frequency: f64,
        amplitude: f64,
        phase: f64,
        delay: i64,
    ) -> InfinitePeriodic {
        let step = frequency / sampling_rate * amplitude;
        InfinitePeriodic {
            amplitude,
            step,
            phase: (phase - delay as f64 * step).modulus(amplitude),
            k: 0.0,
        }
    }

    /// Constructs a default infinite periodic wave generator
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::generate::InfinitePeriodic;
    ///
    /// let x = InfinitePeriodic::default(8.0,
    /// 2.0).take(10).collect::<Vec<f64>>();
    /// assert_eq!(x, [0.0, 0.25, 0.5, 0.75, 0.0, 0.25, 0.5, 0.75, 0.0, 0.25]);
    /// ```
    pub fn default(sampling_rate: f64, frequency: f64) -> InfinitePeriodic {
        Self::new(sampling_rate, frequency, 1.0, 0.0, 0)
    }
}

impl Iterator for InfinitePeriodic {
    type Item = f64;

    fn next(&mut self) -> Option<f64> {
        let mut x = self.phase + self.k * self.step;
        if x >= self.amplitude {
            x %= self.amplitude;
            self.phase = x;
            self.k = 0.0;
        }
        self.k += 1.0;
        Some(x)
    }
}

/// Infinite iterator returning floats that form a sinusoidal wave
pub struct InfiniteSinusoidal {
    amplitude: f64,
    mean: f64,
    step: f64,
    phase: f64,
    i: usize,
}

impl InfiniteSinusoidal {
    /// Constructs a new infinite sinusoidal wave generator
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::generate::InfiniteSinusoidal;
    ///
    /// let x = InfiniteSinusoidal::new(8.0, 2.0, 1.0, 5.0, 2.0,
    /// 1).take(10).collect::<Vec<f64>>();
    /// assert_eq!(x,
    ///     [5.416146836547142, 5.909297426825682, 4.583853163452858,
    ///     4.090702573174318, 5.416146836547142, 5.909297426825682,
    ///     4.583853163452858, 4.090702573174318, 5.416146836547142,
    ///     5.909297426825682]);
    /// ```
    pub fn new(
        sampling_rate: f64,
        frequency: f64,
        amplitude: f64,
        mean: f64,
        phase: f64,
        delay: i64,
    ) -> InfiniteSinusoidal {
        let pi2 = consts::PI * 2.0;
        let step = frequency / sampling_rate * pi2;
        InfiniteSinusoidal {
            amplitude,
            mean,
            step,
            phase: (phase - delay as f64 * step) % pi2,
            i: 0,
        }
    }

    /// Constructs a default infinite sinusoidal wave generator
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::generate::InfiniteSinusoidal;
    ///
    /// let x = InfiniteSinusoidal::default(8.0, 2.0,
    /// 1.0).take(10).collect::<Vec<f64>>();
    /// assert_eq!(x,
    ///     [0.0, 1.0, 0.00000000000000012246467991473532,
    ///     -1.0, -0.00000000000000024492935982947064, 1.0,
    ///     0.00000000000000036739403974420594, -1.0,
    ///     -0.0000000000000004898587196589413, 1.0]);
    /// ```
    pub fn default(sampling_rate: f64, frequency: f64, amplitude: f64) -> InfiniteSinusoidal {
        Self::new(sampling_rate, frequency, amplitude, 0.0, 0.0, 0)
    }
}

impl Iterator for InfiniteSinusoidal {
    type Item = f64;

    fn next(&mut self) -> Option<f64> {
        let x = self.mean + self.amplitude * (self.phase + self.i as f64 * self.step).sin();
        self.i += 1;
        if self.i == 1000 {
            self.i = 0;
            self.phase = (self.phase + 1000.0 * self.step) % (consts::PI * 2.0);
        }
        Some(x)
    }
}

/// Infinite iterator returning floats forming a square wave starting
/// with the high phase
pub struct InfiniteSquare {
    periodic: InfinitePeriodic,
    high_duration: f64,
    high_value: f64,
    low_value: f64,
}

impl InfiniteSquare {
    /// Constructs a new infinite square wave generator
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::generate::InfiniteSquare;
    ///
    /// let x = InfiniteSquare::new(3, 7, 1.0, -1.0,
    /// 1).take(12).collect::<Vec<f64>>();
    /// assert_eq!(x, [-1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
    /// -1.0, 1.0])
    /// ```
    pub fn new(
        high_duration: i64,
        low_duration: i64,
        high_value: f64,
        low_value: f64,
        delay: i64,
    ) -> InfiniteSquare {
        let duration = (high_duration + low_duration) as f64;
        InfiniteSquare {
            periodic: InfinitePeriodic::new(1.0, 1.0 / duration, duration, 0.0, delay),
            high_duration: high_duration as f64,
            high_value,
            low_value,
        }
    }
}

impl Iterator for InfiniteSquare {
    type Item = f64;

    fn next(&mut self) -> Option<f64> {
        self.periodic.next().map(|x| {
            if x < self.high_duration {
                self.high_value
            } else {
                self.low_value
            }
        })
    }
}

/// Infinite iterator returning floats forming a triangle wave starting with
/// the raise phase from the lowest sample
pub struct InfiniteTriangle {
    periodic: InfinitePeriodic,
    raise_duration: f64,
    raise: f64,
    fall: f64,
    high_value: f64,
    low_value: f64,
}

impl InfiniteTriangle {
    /// Constructs a new infinite triangle wave generator
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use]
    /// extern crate statrs;
    ///
    /// use statrs::generate::InfiniteTriangle;
    ///
    /// # fn main() {
    /// let x = InfiniteTriangle::new(4, 7, 1.0, -1.0,
    /// 1).take(12).collect::<Vec<f64>>();
    /// let expected: [f64; 12] = [-0.714, -1.0, -0.5, 0.0, 0.5, 1.0, 0.714,
    /// 0.429, 0.143, -0.143, -0.429, -0.714];
    /// for (&left, &right) in x.iter().zip(expected.iter()) {
    ///     assert_almost_eq!(left, right, 1e-3);
    /// }
    /// # }
    /// ```
    pub fn new(
        raise_duration: i64,
        fall_duration: i64,
        high_value: f64,
        low_value: f64,
        delay: i64,
    ) -> InfiniteTriangle {
        let duration = (raise_duration + fall_duration) as f64;
        let height = high_value - low_value;
        InfiniteTriangle {
            periodic: InfinitePeriodic::new(1.0, 1.0 / duration, duration, 0.0, delay),
            raise_duration: raise_duration as f64,
            raise: height / raise_duration as f64,
            fall: height / fall_duration as f64,
            high_value,
            low_value,
        }
    }
}

impl Iterator for InfiniteTriangle {
    type Item = f64;

    fn next(&mut self) -> Option<f64> {
        self.periodic.next().map(|x| {
            if x < self.raise_duration {
                self.low_value + x * self.raise
            } else {
                self.high_value - (x - self.raise_duration) * self.fall
            }
        })
    }
}

/// Infinite iterator returning floats forming a sawtooth wave
/// starting with the lowest sample
pub struct InfiniteSawtooth {
    periodic: InfinitePeriodic,
    low_value: f64,
}

impl InfiniteSawtooth {
    /// Constructs a new infinite sawtooth wave generator
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::generate::InfiniteSawtooth;
    ///
    /// let x = InfiniteSawtooth::new(5, 1.0, -1.0,
    /// 1).take(12).collect::<Vec<f64>>();
    /// assert_eq!(x, [1.0, -1.0, -0.5, 0.0, 0.5, 1.0, -1.0, -0.5, 0.0, 0.5,
    /// 1.0, -1.0]);
    /// ```
    pub fn new(period: i64, high_value: f64, low_value: f64, delay: i64) -> InfiniteSawtooth {
        let height = high_value - low_value;
        let period = period as f64;
        InfiniteSawtooth {
            periodic: InfinitePeriodic::new(
                1.0,
                1.0 / period,
                height * period / (period - 1.0),
                0.0,
                delay,
            ),
            low_value: low_value as f64,
        }
    }
}

impl Iterator for InfiniteSawtooth {
    type Item = f64;

    fn next(&mut self) -> Option<f64> {
        self.periodic.next().map(|x| x + self.low_value)
    }
}