1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! The scheduler module for parachains and parathreads.
//!
//! This module is responsible for two main tasks:
//! - Partitioning validators into groups and assigning groups to parachains and parathreads
//! - Scheduling parachains and parathreads
//!
//! It aims to achieve these tasks with these goals in mind:
//! - It should be possible to know at least a block ahead-of-time, ideally more,
//! which validators are going to be assigned to which parachains.
//! - Parachains that have a candidate pending availability in this fork of the chain
//! should not be assigned.
//! - Validator assignments should not be gameable. Malicious cartels should not be able to
//! manipulate the scheduler to assign themselves as desired.
//! - High or close to optimal throughput of parachains and parathreads. Work among validator groups should be balanced.
//!
//! The Scheduler manages resource allocation using the concept of "Availability Cores".
//! There will be one availability core for each parachain, and a fixed number of cores
//! used for multiplexing parathreads. Validators will be partitioned into groups, with the same
//! number of groups as availability cores. Validator groups will be assigned to different availability cores
//! over time.
use frame_support::pallet_prelude::*;
use primitives::v2::{
CollatorId, CoreIndex, CoreOccupied, GroupIndex, GroupRotationInfo, Id as ParaId,
ParathreadClaim, ParathreadEntry, ScheduledCore, ValidatorIndex,
};
use scale_info::TypeInfo;
use sp_runtime::traits::{One, Saturating};
use sp_std::prelude::*;
use crate::{configuration, initializer::SessionChangeNotification, paras};
pub use pallet::*;
#[cfg(test)]
mod tests;
/// A queued parathread entry, pre-assigned to a core.
#[derive(Encode, Decode, TypeInfo)]
#[cfg_attr(test, derive(PartialEq, Debug))]
pub struct QueuedParathread {
claim: ParathreadEntry,
core_offset: u32,
}
/// The queue of all parathread claims.
#[derive(Encode, Decode, TypeInfo)]
#[cfg_attr(test, derive(PartialEq, Debug))]
pub struct ParathreadClaimQueue {
queue: Vec<QueuedParathread>,
// this value is between 0 and config.parathread_cores
next_core_offset: u32,
}
impl ParathreadClaimQueue {
/// Queue a parathread entry to be processed.
///
/// Provide the entry and the number of parathread cores, which must be greater than 0.
fn enqueue_entry(&mut self, entry: ParathreadEntry, n_parathread_cores: u32) {
let core_offset = self.next_core_offset;
self.next_core_offset = (self.next_core_offset + 1) % n_parathread_cores;
self.queue.push(QueuedParathread { claim: entry, core_offset })
}
/// Take next queued entry with given core offset, if any.
fn take_next_on_core(&mut self, core_offset: u32) -> Option<ParathreadEntry> {
let pos = self.queue.iter().position(|queued| queued.core_offset == core_offset);
pos.map(|i| self.queue.remove(i).claim)
}
/// Get the next queued entry with given core offset, if any.
fn get_next_on_core(&self, core_offset: u32) -> Option<&ParathreadEntry> {
let pos = self.queue.iter().position(|queued| queued.core_offset == core_offset);
pos.map(|i| &self.queue[i].claim)
}
}
impl Default for ParathreadClaimQueue {
fn default() -> Self {
Self { queue: vec![], next_core_offset: 0 }
}
}
/// Reasons a core might be freed
#[derive(Clone, Copy)]
pub enum FreedReason {
/// The core's work concluded and the parablock assigned to it is considered available.
Concluded,
/// The core's work timed out.
TimedOut,
}
/// The assignment type.
#[derive(Clone, Encode, Decode, TypeInfo)]
#[cfg_attr(feature = "std", derive(PartialEq, Debug))]
pub enum AssignmentKind {
/// A parachain.
Parachain,
/// A parathread.
Parathread(CollatorId, u32),
}
/// How a free core is scheduled to be assigned.
#[derive(Clone, Encode, Decode, TypeInfo)]
#[cfg_attr(feature = "std", derive(PartialEq, Debug))]
pub struct CoreAssignment {
/// The core that is assigned.
pub core: CoreIndex,
/// The unique ID of the para that is assigned to the core.
pub para_id: ParaId,
/// The kind of the assignment.
pub kind: AssignmentKind,
/// The index of the validator group assigned to the core.
pub group_idx: GroupIndex,
}
impl CoreAssignment {
/// Get the ID of a collator who is required to collate this block.
pub fn required_collator(&self) -> Option<&CollatorId> {
match self.kind {
AssignmentKind::Parachain => None,
AssignmentKind::Parathread(ref id, _) => Some(id),
}
}
/// Get the `CoreOccupied` from this.
pub fn to_core_occupied(&self) -> CoreOccupied {
match self.kind {
AssignmentKind::Parachain => CoreOccupied::Parachain,
AssignmentKind::Parathread(ref collator, retries) =>
CoreOccupied::Parathread(ParathreadEntry {
claim: ParathreadClaim(self.para_id, collator.clone()),
retries,
}),
}
}
}
#[frame_support::pallet]
pub mod pallet {
use super::*;
#[pallet::pallet]
#[pallet::generate_store(pub(super) trait Store)]
#[pallet::without_storage_info]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config: frame_system::Config + configuration::Config + paras::Config {}
/// All the validator groups. One for each core. Indices are into `ActiveValidators` - not the
/// broader set of Polkadot validators, but instead just the subset used for parachains during
/// this session.
///
/// Bound: The number of cores is the sum of the numbers of parachains and parathread multiplexers.
/// Reasonably, 100-1000. The dominant factor is the number of validators: safe upper bound at 10k.
#[pallet::storage]
#[pallet::getter(fn validator_groups)]
pub(crate) type ValidatorGroups<T> = StorageValue<_, Vec<Vec<ValidatorIndex>>, ValueQuery>;
/// A queue of upcoming claims and which core they should be mapped onto.
///
/// The number of queued claims is bounded at the `scheduling_lookahead`
/// multiplied by the number of parathread multiplexer cores. Reasonably, 10 * 50 = 500.
#[pallet::storage]
pub(crate) type ParathreadQueue<T> = StorageValue<_, ParathreadClaimQueue, ValueQuery>;
/// One entry for each availability core. Entries are `None` if the core is not currently occupied. Can be
/// temporarily `Some` if scheduled but not occupied.
/// The i'th parachain belongs to the i'th core, with the remaining cores all being
/// parathread-multiplexers.
///
/// Bounded by the maximum of either of these two values:
/// * The number of parachains and parathread multiplexers
/// * The number of validators divided by `configuration.max_validators_per_core`.
#[pallet::storage]
#[pallet::getter(fn availability_cores)]
pub(crate) type AvailabilityCores<T> = StorageValue<_, Vec<Option<CoreOccupied>>, ValueQuery>;
/// An index used to ensure that only one claim on a parathread exists in the queue or is
/// currently being handled by an occupied core.
///
/// Bounded by the number of parathread cores and scheduling lookahead. Reasonably, 10 * 50 = 500.
#[pallet::storage]
pub(crate) type ParathreadClaimIndex<T> = StorageValue<_, Vec<ParaId>, ValueQuery>;
/// The block number where the session start occurred. Used to track how many group rotations have occurred.
///
/// Note that in the context of parachains modules the session change is signaled during
/// the block and enacted at the end of the block (at the finalization stage, to be exact).
/// Thus for all intents and purposes the effect of the session change is observed at the
/// block following the session change, block number of which we save in this storage value.
#[pallet::storage]
#[pallet::getter(fn session_start_block)]
pub(crate) type SessionStartBlock<T: Config> = StorageValue<_, T::BlockNumber, ValueQuery>;
/// Currently scheduled cores - free but up to be occupied.
///
/// Bounded by the number of cores: one for each parachain and parathread multiplexer.
///
/// The value contained here will not be valid after the end of a block. Runtime APIs should be used to determine scheduled cores/
/// for the upcoming block.
#[pallet::storage]
#[pallet::getter(fn scheduled)]
pub(crate) type Scheduled<T> = StorageValue<_, Vec<CoreAssignment>, ValueQuery>;
// sorted ascending by CoreIndex.
}
impl<T: Config> Pallet<T> {
/// Called by the initializer to initialize the scheduler pallet.
pub(crate) fn initializer_initialize(_now: T::BlockNumber) -> Weight {
Weight::zero()
}
/// Called by the initializer to finalize the scheduler pallet.
pub(crate) fn initializer_finalize() {}
/// Called by the initializer to note that a new session has started.
pub(crate) fn initializer_on_new_session(
notification: &SessionChangeNotification<T::BlockNumber>,
) {
let &SessionChangeNotification { ref validators, ref new_config, .. } = notification;
let config = new_config;
let mut thread_queue = ParathreadQueue::<T>::get();
let n_parachains = <paras::Pallet<T>>::parachains().len() as u32;
let n_cores = core::cmp::max(
n_parachains + config.parathread_cores,
match config.max_validators_per_core {
Some(x) if x != 0 => validators.len() as u32 / x,
_ => 0,
},
);
AvailabilityCores::<T>::mutate(|cores| {
// clear all occupied cores.
for maybe_occupied in cores.iter_mut() {
if let Some(CoreOccupied::Parathread(claim)) = maybe_occupied.take() {
let queued = QueuedParathread {
claim,
core_offset: 0, // this gets set later in the re-balancing.
};
thread_queue.queue.push(queued);
}
}
cores.resize(n_cores as _, None);
});
// shuffle validators into groups.
if n_cores == 0 || validators.is_empty() {
ValidatorGroups::<T>::set(Vec::new());
} else {
let group_base_size = validators.len() / n_cores as usize;
let n_larger_groups = validators.len() % n_cores as usize;
// Groups contain indices into the validators from the session change notification,
// which are already shuffled.
let mut groups: Vec<Vec<ValidatorIndex>> = Vec::new();
for i in 0..n_larger_groups {
let offset = (group_base_size + 1) * i;
groups.push(
(0..group_base_size + 1)
.map(|j| offset + j)
.map(|j| ValidatorIndex(j as _))
.collect(),
);
}
for i in 0..(n_cores as usize - n_larger_groups) {
let offset = (n_larger_groups * (group_base_size + 1)) + (i * group_base_size);
groups.push(
(0..group_base_size)
.map(|j| offset + j)
.map(|j| ValidatorIndex(j as _))
.collect(),
);
}
ValidatorGroups::<T>::set(groups);
}
// prune out all parathread claims with too many retries.
// assign all non-pruned claims to new cores, if they've changed.
ParathreadClaimIndex::<T>::mutate(|claim_index| {
// wipe all parathread metadata if no parathread cores are configured.
if config.parathread_cores == 0 {
thread_queue = ParathreadClaimQueue { queue: Vec::new(), next_core_offset: 0 };
claim_index.clear();
return
}
// prune out all entries beyond retry or that no longer correspond to live parathread.
thread_queue.queue.retain(|queued| {
let will_keep = queued.claim.retries <= config.parathread_retries &&
<paras::Pallet<T>>::is_parathread(queued.claim.claim.0);
if !will_keep {
let claim_para = queued.claim.claim.0;
// clean up the pruned entry from the index.
if let Ok(i) = claim_index.binary_search(&claim_para) {
claim_index.remove(i);
}
}
will_keep
});
// do re-balancing of claims.
{
for (i, queued) in thread_queue.queue.iter_mut().enumerate() {
queued.core_offset = (i as u32) % config.parathread_cores;
}
thread_queue.next_core_offset =
((thread_queue.queue.len()) as u32) % config.parathread_cores;
}
});
ParathreadQueue::<T>::set(thread_queue);
let now = <frame_system::Pallet<T>>::block_number() + One::one();
<SessionStartBlock<T>>::set(now);
}
/// Add a parathread claim to the queue. If there is a competing claim in the queue or currently
/// assigned to a core, this call will fail. This call will also fail if the queue is full.
///
/// Fails if the claim does not correspond to any live parathread.
#[allow(unused)]
pub fn add_parathread_claim(claim: ParathreadClaim) {
if !<paras::Pallet<T>>::is_parathread(claim.0) {
return
}
let config = <configuration::Pallet<T>>::config();
let queue_max_size = config.parathread_cores * config.scheduling_lookahead;
ParathreadQueue::<T>::mutate(|queue| {
if queue.queue.len() >= queue_max_size as usize {
return
}
let para_id = claim.0;
let competes_with_another =
ParathreadClaimIndex::<T>::mutate(|index| match index.binary_search(¶_id) {
Ok(_) => true,
Err(i) => {
index.insert(i, para_id);
false
},
});
if competes_with_another {
return
}
let entry = ParathreadEntry { claim, retries: 0 };
queue.enqueue_entry(entry, config.parathread_cores);
})
}
/// Free unassigned cores. Provide a list of cores that should be considered newly-freed along with the reason
/// for them being freed. The list is assumed to be sorted in ascending order by core index.
pub(crate) fn free_cores(just_freed_cores: impl IntoIterator<Item = (CoreIndex, FreedReason)>) {
let config = <configuration::Pallet<T>>::config();
AvailabilityCores::<T>::mutate(|cores| {
for (freed_index, freed_reason) in just_freed_cores {
if (freed_index.0 as usize) < cores.len() {
match cores[freed_index.0 as usize].take() {
None => continue,
Some(CoreOccupied::Parachain) => {},
Some(CoreOccupied::Parathread(entry)) => {
match freed_reason {
FreedReason::Concluded => {
// After a parathread candidate has successfully been included,
// open it up for further claims!
ParathreadClaimIndex::<T>::mutate(|index| {
if let Ok(i) = index.binary_search(&entry.claim.0) {
index.remove(i);
}
})
},
FreedReason::TimedOut => {
// If a parathread candidate times out, it's not the collator's fault,
// so we don't increment retries.
ParathreadQueue::<T>::mutate(|queue| {
queue.enqueue_entry(entry, config.parathread_cores);
})
},
}
},
}
}
}
})
}
/// Schedule all unassigned cores, where possible. Provide a list of cores that should be considered
/// newly-freed along with the reason for them being freed. The list is assumed to be sorted in
/// ascending order by core index.
pub(crate) fn schedule(
just_freed_cores: impl IntoIterator<Item = (CoreIndex, FreedReason)>,
now: T::BlockNumber,
) {
Self::free_cores(just_freed_cores);
let cores = AvailabilityCores::<T>::get();
let parachains = <paras::Pallet<T>>::parachains();
let mut scheduled = Scheduled::<T>::get();
let mut parathread_queue = ParathreadQueue::<T>::get();
if ValidatorGroups::<T>::get().is_empty() {
return
}
{
let mut prev_scheduled_in_order = scheduled.iter().enumerate().peekable();
// Updates to the previous list of scheduled updates and the position of where to insert
// them, without accounting for prior updates.
let mut scheduled_updates: Vec<(usize, CoreAssignment)> = Vec::new();
// single-sweep O(n) in the number of cores.
for (core_index, _core) in cores.iter().enumerate().filter(|(_, ref c)| c.is_none()) {
let schedule_and_insert_at = {
// advance the iterator until just before the core index we are looking at now.
while prev_scheduled_in_order
.peek()
.map_or(false, |(_, assign)| (assign.core.0 as usize) < core_index)
{
let _ = prev_scheduled_in_order.next();
}
// check the first entry already scheduled with core index >= than the one we
// are looking at. 3 cases:
// 1. No such entry, clearly this core is not scheduled, so we need to schedule and put at the end.
// 2. Entry exists and has same index as the core we are inspecting. do not schedule again.
// 3. Entry exists and has higher index than the core we are inspecting. schedule and note
// insertion position.
prev_scheduled_in_order.peek().map_or(
Some(scheduled.len()),
|(idx_in_scheduled, assign)| {
if (assign.core.0 as usize) == core_index {
None
} else {
Some(*idx_in_scheduled)
}
},
)
};
let schedule_and_insert_at = match schedule_and_insert_at {
None => continue,
Some(at) => at,
};
let core = CoreIndex(core_index as u32);
let core_assignment = if core_index < parachains.len() {
// parachain core.
Some(CoreAssignment {
kind: AssignmentKind::Parachain,
para_id: parachains[core_index],
core,
group_idx: Self::group_assigned_to_core(core, now).expect(
"core is not out of bounds and we are guaranteed \
to be after the most recent session start; qed",
),
})
} else {
// parathread core offset, rel. to beginning.
let core_offset = (core_index - parachains.len()) as u32;
parathread_queue.take_next_on_core(core_offset).map(|entry| CoreAssignment {
kind: AssignmentKind::Parathread(entry.claim.1, entry.retries),
para_id: entry.claim.0,
core,
group_idx: Self::group_assigned_to_core(core, now).expect(
"core is not out of bounds and we are guaranteed \
to be after the most recent session start; qed",
),
})
};
if let Some(assignment) = core_assignment {
scheduled_updates.push((schedule_and_insert_at, assignment))
}
}
// at this point, because `Scheduled` is guaranteed to be sorted and we navigated unassigned
// core indices in ascending order, we can enact the updates prepared by the previous actions.
//
// while inserting, we have to account for the amount of insertions already done.
//
// This is O(n) as well, capped at n operations, where n is the number of cores.
for (num_insertions_before, (insert_at, to_insert)) in
scheduled_updates.into_iter().enumerate()
{
let insert_at = num_insertions_before + insert_at;
scheduled.insert(insert_at, to_insert);
}
// scheduled is guaranteed to be sorted after this point because it was sorted before, and we
// applied sorted updates at their correct positions, accounting for the offsets of previous
// insertions.
}
Scheduled::<T>::set(scheduled);
ParathreadQueue::<T>::set(parathread_queue);
}
/// Note that the given cores have become occupied. Behavior undefined if any of the given cores were not scheduled
/// or the slice is not sorted ascending by core index.
///
/// Complexity: O(n) in the number of scheduled cores, which is capped at the number of total cores.
/// This is efficient in the case that most scheduled cores are occupied.
pub(crate) fn occupied(now_occupied: &[CoreIndex]) {
if now_occupied.is_empty() {
return
}
let mut availability_cores = AvailabilityCores::<T>::get();
Scheduled::<T>::mutate(|scheduled| {
// The constraints on the function require that `now_occupied` is a sorted subset of the
// `scheduled` cores, which are also sorted.
let mut occupied_iter = now_occupied.iter().cloned().peekable();
scheduled.retain(|assignment| {
let retain = occupied_iter
.peek()
.map_or(true, |occupied_idx| occupied_idx != &assignment.core);
if !retain {
// remove this entry - it's now occupied. and begin inspecting the next extry
// of the occupied iterator.
let _ = occupied_iter.next();
availability_cores[assignment.core.0 as usize] =
Some(assignment.to_core_occupied());
}
retain
})
});
AvailabilityCores::<T>::set(availability_cores);
}
/// Get the para (chain or thread) ID assigned to a particular core or index, if any. Core indices
/// out of bounds will return `None`, as will indices of unassigned cores.
pub(crate) fn core_para(core_index: CoreIndex) -> Option<ParaId> {
let cores = AvailabilityCores::<T>::get();
match cores.get(core_index.0 as usize).and_then(|c| c.as_ref()) {
None => None,
Some(CoreOccupied::Parachain) => {
let parachains = <paras::Pallet<T>>::parachains();
Some(parachains[core_index.0 as usize])
},
Some(CoreOccupied::Parathread(ref entry)) => Some(entry.claim.0),
}
}
/// Get the validators in the given group, if the group index is valid for this session.
pub(crate) fn group_validators(group_index: GroupIndex) -> Option<Vec<ValidatorIndex>> {
ValidatorGroups::<T>::get().get(group_index.0 as usize).map(|g| g.clone())
}
/// Get the group assigned to a specific core by index at the current block number. Result undefined if the core index is unknown
/// or the block number is less than the session start index.
pub(crate) fn group_assigned_to_core(
core: CoreIndex,
at: T::BlockNumber,
) -> Option<GroupIndex> {
let config = <configuration::Pallet<T>>::config();
let session_start_block = <SessionStartBlock<T>>::get();
if at < session_start_block {
return None
}
let validator_groups = ValidatorGroups::<T>::get();
if core.0 as usize >= validator_groups.len() {
return None
}
let rotations_since_session_start: T::BlockNumber =
(at - session_start_block) / config.group_rotation_frequency.into();
let rotations_since_session_start =
<T::BlockNumber as TryInto<u32>>::try_into(rotations_since_session_start).unwrap_or(0);
// Error case can only happen if rotations occur only once every u32::max(),
// so functionally no difference in behavior.
let group_idx =
(core.0 as usize + rotations_since_session_start as usize) % validator_groups.len();
Some(GroupIndex(group_idx as u32))
}
/// Returns an optional predicate that should be used for timing out occupied cores.
///
/// If `None`, no timing-out should be done. The predicate accepts the index of the core, and the
/// block number since which it has been occupied, and the respective parachain and parathread
/// timeouts, i.e. only within `max(config.chain_availability_period, config.thread_availability_period)`
/// of the last rotation would this return `Some`, unless there are no rotations.
///
/// This really should not be a box, but is working around a compiler limitation filed here:
/// https://github.com/rust-lang/rust/issues/73226
/// which prevents us from testing the code if using `impl Trait`.
pub(crate) fn availability_timeout_predicate(
) -> Option<Box<dyn Fn(CoreIndex, T::BlockNumber) -> bool>> {
let now = <frame_system::Pallet<T>>::block_number();
let config = <configuration::Pallet<T>>::config();
let session_start = <SessionStartBlock<T>>::get();
let blocks_since_session_start = now.saturating_sub(session_start);
let blocks_since_last_rotation =
blocks_since_session_start % config.group_rotation_frequency;
let absolute_cutoff =
sp_std::cmp::max(config.chain_availability_period, config.thread_availability_period);
let availability_cores = AvailabilityCores::<T>::get();
if blocks_since_last_rotation >= absolute_cutoff {
None
} else {
Some(Box::new(move |core_index: CoreIndex, pending_since| {
match availability_cores.get(core_index.0 as usize) {
None => true, // out-of-bounds, doesn't really matter what is returned.
Some(None) => true, // core not occupied, still doesn't really matter.
Some(Some(CoreOccupied::Parachain)) => {
if blocks_since_last_rotation >= config.chain_availability_period {
false // no pruning except recently after rotation.
} else {
now.saturating_sub(pending_since) >= config.chain_availability_period
}
},
Some(Some(CoreOccupied::Parathread(_))) => {
if blocks_since_last_rotation >= config.thread_availability_period {
false // no pruning except recently after rotation.
} else {
now.saturating_sub(pending_since) >= config.thread_availability_period
}
},
}
}))
}
}
/// Returns a helper for determining group rotation.
pub(crate) fn group_rotation_info(now: T::BlockNumber) -> GroupRotationInfo<T::BlockNumber> {
let session_start_block = Self::session_start_block();
let group_rotation_frequency =
<configuration::Pallet<T>>::config().group_rotation_frequency;
GroupRotationInfo { session_start_block, now, group_rotation_frequency }
}
/// Return the next thing that will be scheduled on this core assuming it is currently
/// occupied and the candidate occupying it became available.
///
/// For parachains, this is always the ID of the parachain and no specified collator.
/// For parathreads, this is based on the next item in the `ParathreadQueue` assigned to that
/// core, and is None if there isn't one.
pub(crate) fn next_up_on_available(core: CoreIndex) -> Option<ScheduledCore> {
let parachains = <paras::Pallet<T>>::parachains();
if (core.0 as usize) < parachains.len() {
Some(ScheduledCore { para_id: parachains[core.0 as usize], collator: None })
} else {
let queue = ParathreadQueue::<T>::get();
let core_offset = (core.0 as usize - parachains.len()) as u32;
queue.get_next_on_core(core_offset).map(|entry| ScheduledCore {
para_id: entry.claim.0,
collator: Some(entry.claim.1.clone()),
})
}
}
/// Return the next thing that will be scheduled on this core assuming it is currently
/// occupied and the candidate occupying it became available.
///
/// For parachains, this is always the ID of the parachain and no specified collator.
/// For parathreads, this is based on the next item in the `ParathreadQueue` assigned to that
/// core, or if there isn't one, the claim that is currently occupying the core, as long
/// as the claim's retries would not exceed the limit. Otherwise None.
pub(crate) fn next_up_on_time_out(core: CoreIndex) -> Option<ScheduledCore> {
let parachains = <paras::Pallet<T>>::parachains();
if (core.0 as usize) < parachains.len() {
Some(ScheduledCore { para_id: parachains[core.0 as usize], collator: None })
} else {
let queue = ParathreadQueue::<T>::get();
// This is the next scheduled para on this core.
let core_offset = (core.0 as usize - parachains.len()) as u32;
queue
.get_next_on_core(core_offset)
.map(|entry| ScheduledCore {
para_id: entry.claim.0,
collator: Some(entry.claim.1.clone()),
})
.or_else(|| {
// Or, if none, the claim currently occupying the core,
// as it would be put back on the queue after timing out.
let cores = AvailabilityCores::<T>::get();
cores.get(core.0 as usize).and_then(|c| c.as_ref()).and_then(|o| {
match o {
CoreOccupied::Parathread(entry) => Some(ScheduledCore {
para_id: entry.claim.0,
collator: Some(entry.claim.1.clone()),
}),
CoreOccupied::Parachain => None, // defensive; not possible.
}
})
})
}
}
// Free all scheduled cores and return parathread claims to queue, with retries incremented.
pub(crate) fn clear() {
let config = <configuration::Pallet<T>>::config();
ParathreadQueue::<T>::mutate(|queue| {
for core_assignment in Scheduled::<T>::take() {
if let AssignmentKind::Parathread(collator, retries) = core_assignment.kind {
if !<paras::Pallet<T>>::is_parathread(core_assignment.para_id) {
continue
}
let entry = ParathreadEntry {
claim: ParathreadClaim(core_assignment.para_id, collator),
retries: retries + 1,
};
if entry.retries <= config.parathread_retries {
queue.enqueue_entry(entry, config.parathread_cores);
}
}
}
});
}
}