1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//! XChaCha is an extended nonce variant of ChaCha

use crate::{
    backend::soft::quarter_round,
    chacha::Key,
    max_blocks::C64,
    rounds::{Rounds, R12, R20, R8},
    ChaCha, CONSTANTS,
};
use cipher::{
    consts::{U16, U24, U32},
    errors::{LoopError, OverflowError},
    generic_array::GenericArray,
    NewCipher, SeekNum, StreamCipher, StreamCipherSeek,
};
use core::convert::TryInto;

/// EXtended ChaCha20 nonce (192-bits/24-bytes)
pub type XNonce = cipher::Nonce<XChaCha20>;

/// XChaCha20 is a ChaCha20 variant with an extended 192-bit (24-byte) nonce.
///
/// The construction is an adaptation of the same techniques used by
/// XSalsa20 as described in the paper "Extending the Salsa20 Nonce",
/// applied to the 96-bit nonce variant of ChaCha20, and derive a
/// separate subkey/nonce for each extended nonce:
///
/// <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
///
/// No authoritative specification exists for XChaCha20, however the
/// construction has "rough consensus and running code" in the form of
/// several interoperable libraries and protocols (e.g. libsodium, WireGuard)
/// and is documented in an (expired) IETF draft:
///
/// <https://tools.ietf.org/html/draft-arciszewski-xchacha-03>
pub type XChaCha20 = XChaCha<R20>;

/// XChaCha12 stream cipher (reduced-round variant of [`XChaCha20`] with 12 rounds)
pub type XChaCha12 = XChaCha<R12>;

/// XChaCha8 stream cipher (reduced-round variant of [`XChaCha20`] with 8 rounds)
pub type XChaCha8 = XChaCha<R8>;

/// XChaCha family stream cipher, generic around a number of rounds.
///
/// Use the [`XChaCha8`], [`XChaCha12`], or [`XChaCha20`] type aliases to select
/// a specific number of rounds.
///
/// Generally [`XChaCha20`] is preferred.
pub struct XChaCha<R: Rounds>(ChaCha<R, C64>);

impl<R: Rounds> NewCipher for XChaCha<R> {
    /// Key size in bytes
    type KeySize = U32;

    /// Nonce size in bytes
    type NonceSize = U24;

    #[allow(unused_mut, clippy::let_and_return)]
    fn new(key: &Key, nonce: &XNonce) -> Self {
        // TODO(tarcieri): zeroize subkey
        let subkey = hchacha::<R>(key, nonce[..16].as_ref().into());
        let mut padded_iv = GenericArray::default();
        padded_iv[4..].copy_from_slice(&nonce[16..]);
        XChaCha(ChaCha::new(&subkey, &padded_iv))
    }
}

impl<R: Rounds> StreamCipher for XChaCha<R> {
    fn try_apply_keystream(&mut self, data: &mut [u8]) -> Result<(), LoopError> {
        self.0.try_apply_keystream(data)
    }
}

impl<R: Rounds> StreamCipherSeek for XChaCha<R> {
    fn try_current_pos<T: SeekNum>(&self) -> Result<T, OverflowError> {
        self.0.try_current_pos()
    }

    fn try_seek<T: SeekNum>(&mut self, pos: T) -> Result<(), LoopError> {
        self.0.try_seek(pos)
    }
}

/// The HChaCha function: adapts the ChaCha core function in the same
/// manner that HSalsa adapts the Salsa function.
///
/// HChaCha takes 512-bits of input:
///
/// - Constants: `u32` x 4
/// - Key: `u32` x 8
/// - Nonce: `u32` x 4
///
/// It produces 256-bits of output suitable for use as a ChaCha key
///
/// For more information on HSalsa on which HChaCha is based, see:
///
/// <http://cr.yp.to/snuffle/xsalsa-20110204.pdf>
#[cfg_attr(docsrs, doc(cfg(feature = "hchacha")))]
pub fn hchacha<R: Rounds>(key: &Key, input: &GenericArray<u8, U16>) -> GenericArray<u8, U32> {
    let mut state = [0u32; 16];
    state[..4].copy_from_slice(&CONSTANTS);

    for (i, chunk) in key.chunks(4).take(8).enumerate() {
        state[4 + i] = u32::from_le_bytes(chunk.try_into().unwrap());
    }

    for (i, chunk) in input.chunks(4).enumerate() {
        state[12 + i] = u32::from_le_bytes(chunk.try_into().unwrap());
    }

    // R rounds consisting of R/2 column rounds and R/2 diagonal rounds
    for _ in 0..(R::COUNT / 2) {
        // column rounds
        quarter_round(0, 4, 8, 12, &mut state);
        quarter_round(1, 5, 9, 13, &mut state);
        quarter_round(2, 6, 10, 14, &mut state);
        quarter_round(3, 7, 11, 15, &mut state);

        // diagonal rounds
        quarter_round(0, 5, 10, 15, &mut state);
        quarter_round(1, 6, 11, 12, &mut state);
        quarter_round(2, 7, 8, 13, &mut state);
        quarter_round(3, 4, 9, 14, &mut state);
    }

    let mut output = GenericArray::default();

    for (i, chunk) in output.chunks_mut(4).take(4).enumerate() {
        chunk.copy_from_slice(&state[i].to_le_bytes());
    }

    for (i, chunk) in output.chunks_mut(4).skip(4).enumerate() {
        chunk.copy_from_slice(&state[i + 12].to_le_bytes());
    }

    output
}

#[cfg(test)]
mod hchacha20_tests {
    use super::*;

    //
    // Test vectors from:
    // https://tools.ietf.org/id/draft-arciszewski-xchacha-03.html#rfc.section.2.2.1
    //

    const KEY: [u8; 32] = [
        0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
        0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d,
        0x1e, 0x1f,
    ];

    const INPUT: [u8; 16] = [
        0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a, 0x00, 0x00, 0x00, 0x00, 0x31, 0x41, 0x59,
        0x27,
    ];

    const OUTPUT: [u8; 32] = [
        0x82, 0x41, 0x3b, 0x42, 0x27, 0xb2, 0x7b, 0xfe, 0xd3, 0xe, 0x42, 0x50, 0x8a, 0x87, 0x7d,
        0x73, 0xa0, 0xf9, 0xe4, 0xd5, 0x8a, 0x74, 0xa8, 0x53, 0xc1, 0x2e, 0xc4, 0x13, 0x26, 0xd3,
        0xec, 0xdc,
    ];

    #[test]
    fn test_vector() {
        let actual = hchacha::<R20>(
            GenericArray::from_slice(&KEY),
            &GenericArray::from_slice(&INPUT),
        );
        assert_eq!(actual.as_slice(), &OUTPUT);
    }
}