1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! This module contains all the TCP structures for demuxing TCP into streams of DNS packets.
use std::io;
use std::mem;
use std::net::SocketAddr;
use std::pin::Pin;
use std::task::{Context, Poll};
use std::time::Duration;
use async_trait::async_trait;
use futures_io::{AsyncRead, AsyncWrite};
use futures_util::stream::Stream;
use futures_util::{self, future::Future, ready, FutureExt};
use tracing::debug;
use crate::error::*;
use crate::xfer::{SerialMessage, StreamReceiver};
use crate::BufDnsStreamHandle;
use crate::Time;
/// Trait for TCP connection
pub trait DnsTcpStream: AsyncRead + AsyncWrite + Unpin + Send + Sync + Sized + 'static {
/// Timer type to use with this TCP stream type
type Time: Time;
}
/// Trait for TCP connection
#[async_trait]
pub trait Connect: DnsTcpStream {
/// connect to tcp
async fn connect(addr: SocketAddr) -> io::Result<Self> {
Self::connect_with_bind(addr, None).await
}
/// connect to tcp with address to connect from
async fn connect_with_bind(addr: SocketAddr, bind_addr: Option<SocketAddr>)
-> io::Result<Self>;
}
/// Current state while writing to the remote of the TCP connection
enum WriteTcpState {
/// Currently writing the length of bytes to of the buffer.
LenBytes {
/// Current position in the length buffer being written
pos: usize,
/// Length of the buffer
length: [u8; 2],
/// Buffer to write after the length
bytes: Vec<u8>,
},
/// Currently writing the buffer to the remote
Bytes {
/// Current position in the buffer written
pos: usize,
/// Buffer to write to the remote
bytes: Vec<u8>,
},
/// Currently flushing the bytes to the remote
Flushing,
}
/// Current state of a TCP stream as it's being read.
pub(crate) enum ReadTcpState {
/// Currently reading the length of the TCP packet
LenBytes {
/// Current position in the buffer
pos: usize,
/// Buffer of the length to read
bytes: [u8; 2],
},
/// Currently reading the bytes of the DNS packet
Bytes {
/// Current position while reading the buffer
pos: usize,
/// buffer being read into
bytes: Vec<u8>,
},
}
/// A Stream used for sending data to and from a remote DNS endpoint (client or server).
#[must_use = "futures do nothing unless polled"]
pub struct TcpStream<S: DnsTcpStream> {
socket: S,
outbound_messages: StreamReceiver,
send_state: Option<WriteTcpState>,
read_state: ReadTcpState,
peer_addr: SocketAddr,
}
impl<S: Connect> TcpStream<S> {
/// Creates a new future of the eventually establish a IO stream connection or fail trying.
///
/// Defaults to a 5 second timeout
///
/// # Arguments
///
/// * `name_server` - the IP and Port of the DNS server to connect to
#[allow(clippy::new_ret_no_self, clippy::type_complexity)]
pub fn new<E>(
name_server: SocketAddr,
) -> (
impl Future<Output = Result<Self, io::Error>> + Send,
BufDnsStreamHandle,
)
where
E: FromProtoError,
{
Self::with_timeout(name_server, Duration::from_secs(5))
}
/// Creates a new future of the eventually establish a IO stream connection or fail trying
///
/// # Arguments
///
/// * `name_server` - the IP and Port of the DNS server to connect to
/// * `timeout` - connection timeout
#[allow(clippy::type_complexity)]
pub fn with_timeout(
name_server: SocketAddr,
timeout: Duration,
) -> (
impl Future<Output = Result<Self, io::Error>> + Send,
BufDnsStreamHandle,
) {
let (message_sender, outbound_messages) = BufDnsStreamHandle::new(name_server);
// This set of futures collapses the next tcp socket into a stream which can be used for
// sending and receiving tcp packets.
let stream_fut = Self::connect(name_server, None, timeout, outbound_messages);
(stream_fut, message_sender)
}
/// Creates a new future of the eventually establish a IO stream connection or fail trying
///
/// # Arguments
///
/// * `name_server` - the IP and Port of the DNS server to connect to
/// * `bind_addr` - the IP and port to connect from
/// * `timeout` - connection timeout
#[allow(clippy::type_complexity)]
pub fn with_bind_addr_and_timeout(
name_server: SocketAddr,
bind_addr: Option<SocketAddr>,
timeout: Duration,
) -> (
impl Future<Output = Result<Self, io::Error>> + Send,
BufDnsStreamHandle,
) {
let (message_sender, outbound_messages) = BufDnsStreamHandle::new(name_server);
let stream_fut = Self::connect(name_server, bind_addr, timeout, outbound_messages);
(stream_fut, message_sender)
}
async fn connect(
name_server: SocketAddr,
bind_addr: Option<SocketAddr>,
timeout: Duration,
outbound_messages: StreamReceiver,
) -> Result<Self, io::Error> {
let tcp = S::connect_with_bind(name_server, bind_addr);
S::Time::timeout(timeout, tcp)
.map(move |tcp_stream: Result<Result<S, io::Error>, _>| {
tcp_stream
.and_then(|tcp_stream| tcp_stream)
.map(|tcp_stream| {
debug!("TCP connection established to: {}", name_server);
Self {
socket: tcp_stream,
outbound_messages,
send_state: None,
read_state: ReadTcpState::LenBytes {
pos: 0,
bytes: [0u8; 2],
},
peer_addr: name_server,
}
})
})
.await
}
}
impl<S: DnsTcpStream> TcpStream<S> {
/// Returns the address of the peer connection.
pub fn peer_addr(&self) -> SocketAddr {
self.peer_addr
}
fn pollable_split(
&mut self,
) -> (
&mut S,
&mut StreamReceiver,
&mut Option<WriteTcpState>,
&mut ReadTcpState,
) {
(
&mut self.socket,
&mut self.outbound_messages,
&mut self.send_state,
&mut self.read_state,
)
}
/// Initializes a TcpStream.
///
/// This is intended for use with a TcpListener and Incoming.
///
/// # Arguments
///
/// * `stream` - the established IO stream for communication
/// * `peer_addr` - sources address of the stream
pub fn from_stream(stream: S, peer_addr: SocketAddr) -> (Self, BufDnsStreamHandle) {
let (message_sender, outbound_messages) = BufDnsStreamHandle::new(peer_addr);
let stream = Self::from_stream_with_receiver(stream, peer_addr, outbound_messages);
(stream, message_sender)
}
/// Wraps a stream where a sender and receiver have already been established
pub fn from_stream_with_receiver(
socket: S,
peer_addr: SocketAddr,
outbound_messages: StreamReceiver,
) -> Self {
Self {
socket,
outbound_messages,
send_state: None,
read_state: ReadTcpState::LenBytes {
pos: 0,
bytes: [0u8; 2],
},
peer_addr,
}
}
}
impl<S: DnsTcpStream> Stream for TcpStream<S> {
type Item = io::Result<SerialMessage>;
#[allow(clippy::cognitive_complexity)]
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let peer = self.peer_addr;
let (socket, outbound_messages, send_state, read_state) = self.pollable_split();
let mut socket = Pin::new(socket);
let mut outbound_messages = Pin::new(outbound_messages);
// this will not accept incoming data while there is data to send
// makes this self throttling.
// TODO: it might be interesting to try and split the sending and receiving futures.
loop {
// in the case we are sending, send it all?
if send_state.is_some() {
// sending...
match send_state {
Some(WriteTcpState::LenBytes {
ref mut pos,
ref length,
..
}) => {
let wrote = ready!(socket.as_mut().poll_write(cx, &length[*pos..]))?;
*pos += wrote;
}
Some(WriteTcpState::Bytes {
ref mut pos,
ref bytes,
}) => {
let wrote = ready!(socket.as_mut().poll_write(cx, &bytes[*pos..]))?;
*pos += wrote;
}
Some(WriteTcpState::Flushing) => {
ready!(socket.as_mut().poll_flush(cx))?;
}
_ => (),
}
// get current state
let current_state = send_state.take();
// switch states
match current_state {
Some(WriteTcpState::LenBytes { pos, length, bytes }) => {
if pos < length.len() {
*send_state = Some(WriteTcpState::LenBytes { pos, length, bytes });
} else {
*send_state = Some(WriteTcpState::Bytes { pos: 0, bytes });
}
}
Some(WriteTcpState::Bytes { pos, bytes }) => {
if pos < bytes.len() {
*send_state = Some(WriteTcpState::Bytes { pos, bytes });
} else {
// At this point we successfully delivered the entire message.
// flush
*send_state = Some(WriteTcpState::Flushing);
}
}
Some(WriteTcpState::Flushing) => {
// At this point we successfully delivered the entire message.
send_state.take();
}
None => (),
};
} else {
// then see if there is more to send
match outbound_messages.as_mut().poll_next(cx)
// .map_err(|()| io::Error::new(io::ErrorKind::Other, "unknown"))?
{
// already handled above, here to make sure the poll() pops the next message
Poll::Ready(Some(message)) => {
// if there is no peer, this connection should die...
let (buffer, dst) = message.into();
// This is an error if the destination is not our peer (this is TCP after all)
// This will kill the connection...
if peer != dst {
return Poll::Ready(Some(Err(io::Error::new(
io::ErrorKind::InvalidData,
format!("mismatched peer: {} and dst: {}", peer, dst),
))));
}
// will return if the socket will block
// the length is 16 bits
let len = u16::to_be_bytes(buffer.len() as u16);
debug!("sending message len: {} to: {}", buffer.len(), dst);
*send_state = Some(WriteTcpState::LenBytes {
pos: 0,
length: len,
bytes: buffer,
});
}
// now we get to drop through to the receives...
// TODO: should we also return None if there are no more messages to send?
Poll::Pending => break,
Poll::Ready(None) => {
debug!("no messages to send");
break;
}
}
}
}
let mut ret_buf: Option<Vec<u8>> = None;
// this will loop while there is data to read, or the data has been read, or an IO
// event would block
while ret_buf.is_none() {
// Evaluates the next state. If None is the result, then no state change occurs,
// if Some(_) is returned, then that will be used as the next state.
let new_state: Option<ReadTcpState> = match read_state {
ReadTcpState::LenBytes {
ref mut pos,
ref mut bytes,
} => {
// debug!("reading length {}", bytes.len());
let read = ready!(socket.as_mut().poll_read(cx, &mut bytes[*pos..]))?;
if read == 0 {
// the Stream was closed!
debug!("zero bytes read, stream closed?");
//try!(self.socket.shutdown(Shutdown::Both)); // TODO: add generic shutdown function
if *pos == 0 {
// Since this is the start of the next message, we have a clean end
return Poll::Ready(None);
} else {
return Poll::Ready(Some(Err(io::Error::new(
io::ErrorKind::BrokenPipe,
"closed while reading length",
))));
}
}
debug!("in ReadTcpState::LenBytes: {}", pos);
*pos += read;
if *pos < bytes.len() {
debug!("remain ReadTcpState::LenBytes: {}", pos);
None
} else {
let length = u16::from_be_bytes(*bytes);
debug!("got length: {}", length);
let mut bytes = vec![0; length as usize];
bytes.resize(length as usize, 0);
debug!("move ReadTcpState::Bytes: {}", bytes.len());
Some(ReadTcpState::Bytes { pos: 0, bytes })
}
}
ReadTcpState::Bytes {
ref mut pos,
ref mut bytes,
} => {
let read = ready!(socket.as_mut().poll_read(cx, &mut bytes[*pos..]))?;
if read == 0 {
// the Stream was closed!
debug!("zero bytes read for message, stream closed?");
// Since this is the start of the next message, we have a clean end
// try!(self.socket.shutdown(Shutdown::Both)); // TODO: add generic shutdown function
return Poll::Ready(Some(Err(io::Error::new(
io::ErrorKind::BrokenPipe,
"closed while reading message",
))));
}
debug!("in ReadTcpState::Bytes: {}", bytes.len());
*pos += read;
if *pos < bytes.len() {
debug!("remain ReadTcpState::Bytes: {}", bytes.len());
None
} else {
debug!("reset ReadTcpState::LenBytes: {}", 0);
Some(ReadTcpState::LenBytes {
pos: 0,
bytes: [0u8; 2],
})
}
}
};
// this will move to the next state,
// if it was a completed receipt of bytes, then it will move out the bytes
if let Some(state) = new_state {
if let ReadTcpState::Bytes { pos, bytes } = mem::replace(read_state, state) {
debug!("returning bytes");
assert_eq!(pos, bytes.len());
ret_buf = Some(bytes);
}
}
}
// if the buffer is ready, return it, if not we're Pending
if let Some(buffer) = ret_buf {
debug!("returning buffer");
let src_addr = self.peer_addr;
Poll::Ready(Some(Ok(SerialMessage::new(buffer, src_addr))))
} else {
debug!("bottomed out");
// at a minimum the outbound_messages should have been polled,
// which will wake this future up later...
Poll::Pending
}
}
}
#[cfg(test)]
#[cfg(feature = "tokio-runtime")]
mod tests {
#[cfg(not(target_os = "linux"))]
use std::net::Ipv6Addr;
use std::net::{IpAddr, Ipv4Addr};
use tokio::net::TcpStream as TokioTcpStream;
use tokio::runtime::Runtime;
use crate::iocompat::AsyncIoTokioAsStd;
use crate::TokioTime;
use crate::tests::tcp_stream_test;
#[test]
fn test_tcp_stream_ipv4() {
let io_loop = Runtime::new().expect("failed to create tokio runtime");
tcp_stream_test::<AsyncIoTokioAsStd<TokioTcpStream>, Runtime, TokioTime>(
IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
io_loop,
)
}
#[test]
#[cfg(not(target_os = "linux"))] // ignored until Travis-CI fixes IPv6
fn test_tcp_stream_ipv6() {
let io_loop = Runtime::new().expect("failed to create tokio runtime");
tcp_stream_test::<AsyncIoTokioAsStd<TokioTcpStream>, Runtime, TokioTime>(
IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
io_loop,
)
}
}