1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// This file is part of Substrate.

// Copyright (C) 2021-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use codec::{Decode, Encode, Error, Input};
use scale_info::TypeInfo;
use sp_std::{cmp, prelude::*};

use crate::{Payload, ValidatorSetId};

/// A commitment signed by GRANDPA validators as part of BEEFY protocol.
///
/// The commitment contains a [payload](Commitment::payload) extracted from the finalized block at
/// height [block_number](Commitment::block_number).
/// GRANDPA validators collect signatures on commitments and a stream of such signed commitments
/// (see [SignedCommitment]) forms the BEEFY protocol.
#[derive(Clone, Debug, PartialEq, Eq, Encode, Decode, TypeInfo)]
pub struct Commitment<TBlockNumber> {
	///  A collection of payloads to be signed, see [`Payload`] for details.
	///
	/// One of the payloads should be some form of cumulative representation of the chain (think
	/// MMR root hash). Additionally one of the payloads should also contain some details that
	/// allow the light client to verify next validator set. The protocol does not enforce any
	/// particular format of this data, nor how often it should be present in commitments, however
	/// the light client has to be provided with full validator set whenever it performs the
	/// transition (i.e. importing first block with
	/// [validator_set_id](Commitment::validator_set_id) incremented).
	pub payload: Payload,

	/// Finalized block number this commitment is for.
	///
	/// GRANDPA validators agree on a block they create a commitment for and start collecting
	/// signatures. This process is called a round.
	/// There might be multiple rounds in progress (depending on the block choice rule), however
	/// since the payload is supposed to be cumulative, it is not required to import all
	/// commitments.
	/// BEEFY light client is expected to import at least one commitment per epoch,
	/// but is free to import as many as it requires.
	pub block_number: TBlockNumber,

	/// BEEFY validator set supposed to sign this commitment.
	///
	/// Validator set is changing once per epoch. The Light Client must be provided by details
	/// about the validator set whenever it's importing first commitment with a new
	/// `validator_set_id`. Validator set data MUST be verifiable, for instance using
	/// [payload](Commitment::payload) information.
	pub validator_set_id: ValidatorSetId,
}

impl<TBlockNumber> cmp::PartialOrd for Commitment<TBlockNumber>
where
	TBlockNumber: cmp::Ord,
{
	fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
		Some(self.cmp(other))
	}
}

impl<TBlockNumber> cmp::Ord for Commitment<TBlockNumber>
where
	TBlockNumber: cmp::Ord,
{
	fn cmp(&self, other: &Self) -> cmp::Ordering {
		self.validator_set_id
			.cmp(&other.validator_set_id)
			.then_with(|| self.block_number.cmp(&other.block_number))
	}
}

/// A commitment with matching GRANDPA validators' signatures.
///
/// Note that SCALE-encoding of the structure is optimized for size efficiency over the wire,
/// please take a look at custom [`Encode`] and [`Decode`] implementations and
/// `CompactSignedCommitment` struct.
#[derive(Clone, Debug, PartialEq, Eq, TypeInfo)]
pub struct SignedCommitment<TBlockNumber, TSignature> {
	/// The commitment signatures are collected for.
	pub commitment: Commitment<TBlockNumber>,
	/// GRANDPA validators' signatures for the commitment.
	///
	/// The length of this `Vec` must match number of validators in the current set (see
	/// [Commitment::validator_set_id]).
	pub signatures: Vec<Option<TSignature>>,
}

impl<TBlockNumber, TSignature> SignedCommitment<TBlockNumber, TSignature> {
	/// Return the number of collected signatures.
	pub fn no_of_signatures(&self) -> usize {
		self.signatures.iter().filter(|x| x.is_some()).count()
	}
}

/// Type to be used to denote placement of signatures
type BitField = Vec<u8>;
/// Compress 8 bit values into a single u8 Byte
const CONTAINER_BIT_SIZE: usize = 8;

/// Compressed representation of [`SignedCommitment`], used for encoding efficiency.
#[derive(Clone, Debug, PartialEq, Eq, Encode, Decode)]
struct CompactSignedCommitment<TBlockNumber, TSignature> {
	/// The commitment, unchanged compared to regular [`SignedCommitment`].
	commitment: Commitment<TBlockNumber>,
	/// A bitfield representing presence of a signature coming from a validator at some index.
	///
	/// The bit at index `0` is set to `1` in case we have a signature coming from a validator at
	/// index `0` in in the original validator set. In case the [`SignedCommitment`] does not
	/// contain that signature the `bit` will be set to `0`. Bits are packed into `Vec<u8>`
	signatures_from: BitField,
	/// Number of validators in the Validator Set and hence number of significant bits in the
	/// [`signatures_from`] collection.
	///
	/// Note this might be smaller than the size of `signatures_compact` in case some signatures
	/// are missing.
	validator_set_len: u32,
	/// A `Vec` containing all `Signature`s present in the original [`SignedCommitment`].
	///
	/// Note that in order to associate a `Signature` from this `Vec` with a validator, one needs
	/// to look at the `signatures_from` bitfield, since some validators might have not produced a
	/// signature.
	signatures_compact: Vec<TSignature>,
}

impl<'a, TBlockNumber: Clone, TSignature> CompactSignedCommitment<TBlockNumber, &'a TSignature> {
	/// Packs a `SignedCommitment` into the compressed `CompactSignedCommitment` format for
	/// efficient network transport.
	fn pack(signed_commitment: &'a SignedCommitment<TBlockNumber, TSignature>) -> Self {
		let SignedCommitment { commitment, signatures } = signed_commitment;
		let validator_set_len = signatures.len() as u32;

		let signatures_compact: Vec<&'a TSignature> =
			signatures.iter().filter_map(|x| x.as_ref()).collect();
		let bits = {
			let mut bits: Vec<u8> =
				signatures.iter().map(|x| if x.is_some() { 1 } else { 0 }).collect();
			// Resize with excess bits for placement purposes
			let excess_bits_len =
				CONTAINER_BIT_SIZE - (validator_set_len as usize % CONTAINER_BIT_SIZE);
			bits.resize(bits.len() + excess_bits_len, 0);
			bits
		};

		let mut signatures_from: BitField = vec![];
		let chunks = bits.chunks(CONTAINER_BIT_SIZE);
		for chunk in chunks {
			let mut iter = chunk.iter().copied();
			let mut v = iter.next().unwrap() as u8;

			for bit in iter {
				v <<= 1;
				v |= bit as u8;
			}

			signatures_from.push(v);
		}

		Self {
			commitment: commitment.clone(),
			signatures_from,
			validator_set_len,
			signatures_compact,
		}
	}

	/// Unpacks a `CompactSignedCommitment` into the uncompressed `SignedCommitment` form.
	fn unpack(
		temporary_signatures: CompactSignedCommitment<TBlockNumber, TSignature>,
	) -> SignedCommitment<TBlockNumber, TSignature> {
		let CompactSignedCommitment {
			commitment,
			signatures_from,
			validator_set_len,
			signatures_compact,
		} = temporary_signatures;
		let mut bits: Vec<u8> = vec![];

		for block in signatures_from {
			for bit in 0..CONTAINER_BIT_SIZE {
				bits.push((block >> (CONTAINER_BIT_SIZE - bit - 1)) & 1);
			}
		}

		bits.truncate(validator_set_len as usize);

		let mut next_signature = signatures_compact.into_iter();
		let signatures: Vec<Option<TSignature>> = bits
			.iter()
			.map(|&x| if x == 1 { next_signature.next() } else { None })
			.collect();

		SignedCommitment { commitment, signatures }
	}
}

impl<TBlockNumber, TSignature> Encode for SignedCommitment<TBlockNumber, TSignature>
where
	TBlockNumber: Encode + Clone,
	TSignature: Encode,
{
	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
		let temp = CompactSignedCommitment::pack(self);
		temp.using_encoded(f)
	}
}

impl<TBlockNumber, TSignature> Decode for SignedCommitment<TBlockNumber, TSignature>
where
	TBlockNumber: Decode + Clone,
	TSignature: Decode,
{
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		let temp = CompactSignedCommitment::decode(input)?;
		Ok(CompactSignedCommitment::unpack(temp))
	}
}

/// A [SignedCommitment] with a version number.
///
/// This variant will be appended to the block justifications for the block
/// for which the signed commitment has been generated.
///
/// Note that this enum is subject to change in the future with introduction
/// of additional cryptographic primitives to BEEFY.
#[derive(Clone, Debug, PartialEq, codec::Encode, codec::Decode)]
pub enum VersionedFinalityProof<N, S> {
	#[codec(index = 1)]
	/// Current active version
	V1(SignedCommitment<N, S>),
}

impl<N, S> From<SignedCommitment<N, S>> for VersionedFinalityProof<N, S> {
	fn from(commitment: SignedCommitment<N, S>) -> Self {
		VersionedFinalityProof::V1(commitment)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{crypto, known_payloads, KEY_TYPE};
	use codec::Decode;
	use sp_core::{keccak_256, Pair};
	use sp_keystore::{testing::KeyStore, SyncCryptoStore, SyncCryptoStorePtr};

	type TestCommitment = Commitment<u128>;
	type TestSignedCommitment = SignedCommitment<u128, crypto::Signature>;
	type TestVersionedFinalityProof = VersionedFinalityProof<u128, crypto::Signature>;

	const LARGE_RAW_COMMITMENT: &[u8] = include_bytes!("../test-res/large-raw-commitment");

	// The mock signatures are equivalent to the ones produced by the BEEFY keystore
	fn mock_signatures() -> (crypto::Signature, crypto::Signature) {
		let store: SyncCryptoStorePtr = KeyStore::new().into();

		let alice = sp_core::ecdsa::Pair::from_string("//Alice", None).unwrap();
		let _ =
			SyncCryptoStore::insert_unknown(&*store, KEY_TYPE, "//Alice", alice.public().as_ref())
				.unwrap();

		let msg = keccak_256(b"This is the first message");
		let sig1 = SyncCryptoStore::ecdsa_sign_prehashed(&*store, KEY_TYPE, &alice.public(), &msg)
			.unwrap()
			.unwrap();

		let msg = keccak_256(b"This is the second message");
		let sig2 = SyncCryptoStore::ecdsa_sign_prehashed(&*store, KEY_TYPE, &alice.public(), &msg)
			.unwrap()
			.unwrap();

		(sig1.into(), sig2.into())
	}

	#[test]
	fn commitment_encode_decode() {
		// given
		let payload =
			Payload::from_single_entry(known_payloads::MMR_ROOT_ID, "Hello World!".encode());
		let commitment: TestCommitment =
			Commitment { payload, block_number: 5, validator_set_id: 0 };

		// when
		let encoded = codec::Encode::encode(&commitment);
		let decoded = TestCommitment::decode(&mut &*encoded);

		// then
		assert_eq!(decoded, Ok(commitment));
		assert_eq!(
			encoded,
			array_bytes::hex2bytes_unchecked(
				"046d68343048656c6c6f20576f726c6421050000000000000000000000000000000000000000000000"
			)
		);
	}

	#[test]
	fn signed_commitment_encode_decode() {
		// given
		let payload =
			Payload::from_single_entry(known_payloads::MMR_ROOT_ID, "Hello World!".encode());
		let commitment: TestCommitment =
			Commitment { payload, block_number: 5, validator_set_id: 0 };

		let sigs = mock_signatures();

		let signed = SignedCommitment {
			commitment,
			signatures: vec![None, None, Some(sigs.0), Some(sigs.1)],
		};

		// when
		let encoded = codec::Encode::encode(&signed);
		let decoded = TestSignedCommitment::decode(&mut &*encoded);

		// then
		assert_eq!(decoded, Ok(signed));
		assert_eq!(
			encoded,
			array_bytes::hex2bytes_unchecked(
				"\
				046d68343048656c6c6f20576f726c64210500000000000000000000000000000000000000000000000\
				4300400000008558455ad81279df0795cc985580e4fb75d72d948d1107b2ac80a09abed4da8480c746c\
				c321f2319a5e99a830e314d10dd3cd68ce3dc0c33c86e99bcb7816f9ba012d6e1f8105c337a86cdd9aa\
				acdc496577f3db8c55ef9e6fd48f2c5c05a2274707491635d8ba3df64f324575b7b2a34487bca2324b6\
				a0046395a71681be3d0c2a00\
			"
			)
		);
	}

	#[test]
	fn signed_commitment_count_signatures() {
		// given
		let payload =
			Payload::from_single_entry(known_payloads::MMR_ROOT_ID, "Hello World!".encode());
		let commitment: TestCommitment =
			Commitment { payload, block_number: 5, validator_set_id: 0 };

		let sigs = mock_signatures();

		let mut signed = SignedCommitment {
			commitment,
			signatures: vec![None, None, Some(sigs.0), Some(sigs.1)],
		};
		assert_eq!(signed.no_of_signatures(), 2);

		// when
		signed.signatures[2] = None;

		// then
		assert_eq!(signed.no_of_signatures(), 1);
	}

	#[test]
	fn commitment_ordering() {
		fn commitment(
			block_number: u128,
			validator_set_id: crate::ValidatorSetId,
		) -> TestCommitment {
			let payload =
				Payload::from_single_entry(known_payloads::MMR_ROOT_ID, "Hello World!".encode());
			Commitment { payload, block_number, validator_set_id }
		}

		// given
		let a = commitment(1, 0);
		let b = commitment(2, 1);
		let c = commitment(10, 0);
		let d = commitment(10, 1);

		// then
		assert!(a < b);
		assert!(a < c);
		assert!(c < b);
		assert!(c < d);
		assert!(b < d);
	}

	#[test]
	fn versioned_commitment_encode_decode() {
		let payload =
			Payload::from_single_entry(known_payloads::MMR_ROOT_ID, "Hello World!".encode());
		let commitment: TestCommitment =
			Commitment { payload, block_number: 5, validator_set_id: 0 };

		let sigs = mock_signatures();

		let signed = SignedCommitment {
			commitment,
			signatures: vec![None, None, Some(sigs.0), Some(sigs.1)],
		};

		let versioned = TestVersionedFinalityProof::V1(signed.clone());

		let encoded = codec::Encode::encode(&versioned);

		assert_eq!(1, encoded[0]);
		assert_eq!(encoded[1..], codec::Encode::encode(&signed));

		let decoded = TestVersionedFinalityProof::decode(&mut &*encoded);

		assert_eq!(decoded, Ok(versioned));
	}

	#[test]
	fn large_signed_commitment_encode_decode() {
		// given
		let payload =
			Payload::from_single_entry(known_payloads::MMR_ROOT_ID, "Hello World!".encode());
		let commitment: TestCommitment =
			Commitment { payload, block_number: 5, validator_set_id: 0 };

		let sigs = mock_signatures();

		let signatures: Vec<Option<_>> = (0..1024)
			.into_iter()
			.map(|x| if x < 340 { None } else { Some(sigs.0.clone()) })
			.collect();
		let signed = SignedCommitment { commitment, signatures };

		// when
		let encoded = codec::Encode::encode(&signed);
		let decoded = TestSignedCommitment::decode(&mut &*encoded);

		// then
		assert_eq!(decoded, Ok(signed));
		assert_eq!(encoded, LARGE_RAW_COMMITMENT);
	}
}