#![allow(clippy::op_ref)]
use super::{AffinePoint, FieldElement, Scalar, CURVE_EQUATION_B_SINGLE};
use crate::{CompressedPoint, EncodedPoint, PublicKey, Secp256k1};
use core::{
iter::Sum,
ops::{Add, AddAssign, Neg, Sub, SubAssign},
};
use elliptic_curve::{
group::{
ff::Field,
prime::{PrimeCurve, PrimeCurveAffine, PrimeGroup},
Curve, Group, GroupEncoding,
},
rand_core::RngCore,
sec1::{FromEncodedPoint, ToEncodedPoint},
subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption},
zeroize::DefaultIsZeroes,
Error, PrimeCurveArithmetic, ProjectiveArithmetic, Result,
};
#[rustfmt::skip]
const ENDOMORPHISM_BETA: FieldElement = FieldElement::from_bytes_unchecked(&[
0x7a, 0xe9, 0x6a, 0x2b, 0x65, 0x7c, 0x07, 0x10,
0x6e, 0x64, 0x47, 0x9e, 0xac, 0x34, 0x34, 0xe9,
0x9c, 0xf0, 0x49, 0x75, 0x12, 0xf5, 0x89, 0x95,
0xc1, 0x39, 0x6c, 0x28, 0x71, 0x95, 0x01, 0xee,
]);
impl ProjectiveArithmetic for Secp256k1 {
type ProjectivePoint = ProjectivePoint;
}
impl PrimeCurveArithmetic for Secp256k1 {
type CurveGroup = ProjectivePoint;
}
#[derive(Clone, Copy, Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
pub struct ProjectivePoint {
x: FieldElement,
y: FieldElement,
z: FieldElement,
}
impl ProjectivePoint {
pub const IDENTITY: Self = Self {
x: FieldElement::ZERO,
y: FieldElement::ONE,
z: FieldElement::ZERO,
};
pub const GENERATOR: Self = Self {
x: AffinePoint::GENERATOR.x,
y: AffinePoint::GENERATOR.y,
z: FieldElement::ONE,
};
#[deprecated(since = "0.10.2", note = "use `ProjectivePoint::IDENTITY` instead")]
pub const fn identity() -> ProjectivePoint {
Self::IDENTITY
}
#[deprecated(since = "0.10.2", note = "use `ProjectivePoint::GENERATOR` instead")]
pub fn generator() -> ProjectivePoint {
Self::GENERATOR
}
pub fn to_affine(&self) -> AffinePoint {
self.z
.invert()
.map(|zinv| AffinePoint::new(self.x * &zinv, self.y * &zinv))
.unwrap_or_else(|| AffinePoint::IDENTITY)
}
fn neg(&self) -> ProjectivePoint {
ProjectivePoint {
x: self.x,
y: self.y.negate(1).normalize_weak(),
z: self.z,
}
}
fn add(&self, other: &ProjectivePoint) -> ProjectivePoint {
let xx = self.x * &other.x;
let yy = self.y * &other.y;
let zz = self.z * &other.z;
let n_xx_yy = (xx + &yy).negate(2);
let n_yy_zz = (yy + &zz).negate(2);
let n_xx_zz = (xx + &zz).negate(2);
let xy_pairs = ((self.x + &self.y) * &(other.x + &other.y)) + &n_xx_yy;
let yz_pairs = ((self.y + &self.z) * &(other.y + &other.z)) + &n_yy_zz;
let xz_pairs = ((self.x + &self.z) * &(other.x + &other.z)) + &n_xx_zz;
let bzz = zz.mul_single(CURVE_EQUATION_B_SINGLE);
let bzz3 = (bzz.double() + &bzz).normalize_weak();
let yy_m_bzz3 = yy + &bzz3.negate(1);
let yy_p_bzz3 = yy + &bzz3;
let byz = &yz_pairs
.mul_single(CURVE_EQUATION_B_SINGLE)
.normalize_weak();
let byz3 = (byz.double() + byz).normalize_weak();
let xx3 = xx.double() + &xx;
let bxx9 = (xx3.double() + &xx3)
.normalize_weak()
.mul_single(CURVE_EQUATION_B_SINGLE)
.normalize_weak();
let new_x = ((xy_pairs * &yy_m_bzz3) + &(byz3 * &xz_pairs).negate(1)).normalize_weak(); let new_y = ((yy_p_bzz3 * &yy_m_bzz3) + &(bxx9 * &xz_pairs)).normalize_weak();
let new_z = ((yz_pairs * &yy_p_bzz3) + &(xx3 * &xy_pairs)).normalize_weak();
ProjectivePoint {
x: new_x,
y: new_y,
z: new_z,
}
}
fn add_mixed(&self, other: &AffinePoint) -> ProjectivePoint {
let xx = self.x * &other.x;
let yy = self.y * &other.y;
let xy_pairs = ((self.x + &self.y) * &(other.x + &other.y)) + &(xx + &yy).negate(2);
let yz_pairs = (other.y * &self.z) + &self.y;
let xz_pairs = (other.x * &self.z) + &self.x;
let bzz = &self.z.mul_single(CURVE_EQUATION_B_SINGLE);
let bzz3 = (bzz.double() + bzz).normalize_weak();
let yy_m_bzz3 = yy + &bzz3.negate(1);
let yy_p_bzz3 = yy + &bzz3;
let byz = &yz_pairs
.mul_single(CURVE_EQUATION_B_SINGLE)
.normalize_weak();
let byz3 = (byz.double() + byz).normalize_weak();
let xx3 = xx.double() + &xx;
let bxx9 = &(xx3.double() + &xx3)
.normalize_weak()
.mul_single(CURVE_EQUATION_B_SINGLE)
.normalize_weak();
let mut ret = ProjectivePoint {
x: ((xy_pairs * &yy_m_bzz3) + &(byz3 * &xz_pairs).negate(1)).normalize_weak(),
y: ((yy_p_bzz3 * &yy_m_bzz3) + &(bxx9 * &xz_pairs)).normalize_weak(),
z: ((yz_pairs * &yy_p_bzz3) + &(xx3 * &xy_pairs)).normalize_weak(),
};
ret.conditional_assign(self, other.is_identity());
ret
}
#[inline]
pub fn double(&self) -> ProjectivePoint {
let yy = self.y.square();
let zz = self.z.square();
let xy2 = (self.x * &self.y).double();
let bzz = &zz.mul_single(CURVE_EQUATION_B_SINGLE);
let bzz3 = (bzz.double() + bzz).normalize_weak();
let bzz9 = (bzz3.double() + &bzz3).normalize_weak();
let yy_m_bzz9 = yy + &bzz9.negate(1);
let yy_p_bzz3 = yy + &bzz3;
let yy_zz = yy * &zz;
let yy_zz8 = yy_zz.double().double().double();
let t = (yy_zz8.double() + &yy_zz8)
.normalize_weak()
.mul_single(CURVE_EQUATION_B_SINGLE);
ProjectivePoint {
x: xy2 * &yy_m_bzz9,
y: ((yy_m_bzz9 * &yy_p_bzz3) + &t).normalize_weak(),
z: ((yy * &self.y) * &self.z)
.double()
.double()
.double()
.normalize_weak(),
}
}
fn sub(&self, other: &ProjectivePoint) -> ProjectivePoint {
self.add(&other.neg())
}
fn sub_mixed(&self, other: &AffinePoint) -> ProjectivePoint {
self.add_mixed(&other.neg())
}
pub fn endomorphism(&self) -> Self {
Self {
x: self.x * &ENDOMORPHISM_BETA,
y: self.y,
z: self.z,
}
}
pub fn eq_affine(&self, other: &AffinePoint) -> Choice {
let both_identity = self.is_identity() & other.is_identity();
let rhs_identity = other.is_identity();
let rhs_x = &other.x * &self.z;
let x_eq = rhs_x.negate(1).add(&self.x).normalizes_to_zero();
let rhs_y = &other.y * &self.z;
let y_eq = rhs_y.negate(1).add(&self.y).normalizes_to_zero();
both_identity | (!rhs_identity & x_eq & y_eq)
}
}
impl From<AffinePoint> for ProjectivePoint {
fn from(p: AffinePoint) -> Self {
let projective = ProjectivePoint {
x: p.x,
y: p.y,
z: FieldElement::one(),
};
Self::conditional_select(&projective, &Self::IDENTITY, p.is_identity())
}
}
impl From<&AffinePoint> for ProjectivePoint {
fn from(p: &AffinePoint) -> Self {
Self::from(*p)
}
}
impl From<ProjectivePoint> for AffinePoint {
fn from(p: ProjectivePoint) -> AffinePoint {
p.to_affine()
}
}
impl From<&ProjectivePoint> for AffinePoint {
fn from(p: &ProjectivePoint) -> AffinePoint {
p.to_affine()
}
}
impl FromEncodedPoint<Secp256k1> for ProjectivePoint {
fn from_encoded_point(p: &EncodedPoint) -> CtOption<Self> {
AffinePoint::from_encoded_point(p).map(ProjectivePoint::from)
}
}
impl ToEncodedPoint<Secp256k1> for ProjectivePoint {
fn to_encoded_point(&self, compress: bool) -> EncodedPoint {
self.to_affine().to_encoded_point(compress)
}
}
impl ConditionallySelectable for ProjectivePoint {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
ProjectivePoint {
x: FieldElement::conditional_select(&a.x, &b.x, choice),
y: FieldElement::conditional_select(&a.y, &b.y, choice),
z: FieldElement::conditional_select(&a.z, &b.z, choice),
}
}
}
impl ConstantTimeEq for ProjectivePoint {
fn ct_eq(&self, other: &Self) -> Choice {
let lhs_x = self.x * &other.z;
let rhs_x = other.x * &self.z;
let x_eq = rhs_x.negate(1).add(&lhs_x).normalizes_to_zero();
let lhs_y = self.y * &other.z;
let rhs_y = other.y * &self.z;
let y_eq = rhs_y.negate(1).add(&lhs_y).normalizes_to_zero();
x_eq & y_eq
}
}
impl PartialEq for ProjectivePoint {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).into()
}
}
impl PartialEq<AffinePoint> for ProjectivePoint {
fn eq(&self, other: &AffinePoint) -> bool {
self.eq_affine(other).into()
}
}
impl PartialEq<ProjectivePoint> for AffinePoint {
fn eq(&self, other: &ProjectivePoint) -> bool {
other.eq_affine(self).into()
}
}
impl Eq for ProjectivePoint {}
impl Group for ProjectivePoint {
type Scalar = Scalar;
fn random(mut rng: impl RngCore) -> Self {
Self::GENERATOR * Scalar::random(&mut rng)
}
fn identity() -> Self {
Self::IDENTITY
}
fn generator() -> Self {
Self::GENERATOR
}
fn is_identity(&self) -> Choice {
self.z.normalizes_to_zero()
}
#[must_use]
fn double(&self) -> Self {
Self::double(self)
}
}
impl GroupEncoding for ProjectivePoint {
type Repr = CompressedPoint;
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
<AffinePoint as GroupEncoding>::from_bytes(bytes).map(Into::into)
}
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
Self::from_bytes(bytes)
}
fn to_bytes(&self) -> Self::Repr {
self.to_affine().to_bytes()
}
}
impl PrimeGroup for ProjectivePoint {}
impl Curve for ProjectivePoint {
type AffineRepr = AffinePoint;
fn to_affine(&self) -> AffinePoint {
ProjectivePoint::to_affine(self)
}
}
impl PrimeCurve for ProjectivePoint {
type Affine = AffinePoint;
}
impl Default for ProjectivePoint {
fn default() -> Self {
Self::IDENTITY
}
}
impl DefaultIsZeroes for ProjectivePoint {}
impl Add<&ProjectivePoint> for &ProjectivePoint {
type Output = ProjectivePoint;
fn add(self, other: &ProjectivePoint) -> ProjectivePoint {
ProjectivePoint::add(self, other)
}
}
impl Add<ProjectivePoint> for ProjectivePoint {
type Output = ProjectivePoint;
fn add(self, other: ProjectivePoint) -> ProjectivePoint {
ProjectivePoint::add(&self, &other)
}
}
impl Add<&ProjectivePoint> for ProjectivePoint {
type Output = ProjectivePoint;
fn add(self, other: &ProjectivePoint) -> ProjectivePoint {
ProjectivePoint::add(&self, other)
}
}
impl AddAssign<ProjectivePoint> for ProjectivePoint {
fn add_assign(&mut self, rhs: ProjectivePoint) {
*self = ProjectivePoint::add(self, &rhs);
}
}
impl AddAssign<&ProjectivePoint> for ProjectivePoint {
fn add_assign(&mut self, rhs: &ProjectivePoint) {
*self = ProjectivePoint::add(self, rhs);
}
}
impl Add<AffinePoint> for ProjectivePoint {
type Output = ProjectivePoint;
fn add(self, other: AffinePoint) -> ProjectivePoint {
ProjectivePoint::add_mixed(&self, &other)
}
}
impl Add<&AffinePoint> for &ProjectivePoint {
type Output = ProjectivePoint;
fn add(self, other: &AffinePoint) -> ProjectivePoint {
ProjectivePoint::add_mixed(self, other)
}
}
impl Add<&AffinePoint> for ProjectivePoint {
type Output = ProjectivePoint;
fn add(self, other: &AffinePoint) -> ProjectivePoint {
ProjectivePoint::add_mixed(&self, other)
}
}
impl AddAssign<AffinePoint> for ProjectivePoint {
fn add_assign(&mut self, rhs: AffinePoint) {
*self = ProjectivePoint::add_mixed(self, &rhs);
}
}
impl AddAssign<&AffinePoint> for ProjectivePoint {
fn add_assign(&mut self, rhs: &AffinePoint) {
*self = ProjectivePoint::add_mixed(self, rhs);
}
}
impl Sum for ProjectivePoint {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(ProjectivePoint::IDENTITY, |a, b| a + b)
}
}
impl<'a> Sum<&'a ProjectivePoint> for ProjectivePoint {
fn sum<I: Iterator<Item = &'a ProjectivePoint>>(iter: I) -> Self {
iter.cloned().sum()
}
}
impl Sub<ProjectivePoint> for ProjectivePoint {
type Output = ProjectivePoint;
fn sub(self, other: ProjectivePoint) -> ProjectivePoint {
ProjectivePoint::sub(&self, &other)
}
}
impl Sub<&ProjectivePoint> for &ProjectivePoint {
type Output = ProjectivePoint;
fn sub(self, other: &ProjectivePoint) -> ProjectivePoint {
ProjectivePoint::sub(self, other)
}
}
impl Sub<&ProjectivePoint> for ProjectivePoint {
type Output = ProjectivePoint;
fn sub(self, other: &ProjectivePoint) -> ProjectivePoint {
ProjectivePoint::sub(&self, other)
}
}
impl SubAssign<ProjectivePoint> for ProjectivePoint {
fn sub_assign(&mut self, rhs: ProjectivePoint) {
*self = ProjectivePoint::sub(self, &rhs);
}
}
impl SubAssign<&ProjectivePoint> for ProjectivePoint {
fn sub_assign(&mut self, rhs: &ProjectivePoint) {
*self = ProjectivePoint::sub(self, rhs);
}
}
impl Sub<AffinePoint> for ProjectivePoint {
type Output = ProjectivePoint;
fn sub(self, other: AffinePoint) -> ProjectivePoint {
ProjectivePoint::sub_mixed(&self, &other)
}
}
impl Sub<&AffinePoint> for &ProjectivePoint {
type Output = ProjectivePoint;
fn sub(self, other: &AffinePoint) -> ProjectivePoint {
ProjectivePoint::sub_mixed(self, other)
}
}
impl Sub<&AffinePoint> for ProjectivePoint {
type Output = ProjectivePoint;
fn sub(self, other: &AffinePoint) -> ProjectivePoint {
ProjectivePoint::sub_mixed(&self, other)
}
}
impl SubAssign<AffinePoint> for ProjectivePoint {
fn sub_assign(&mut self, rhs: AffinePoint) {
*self = ProjectivePoint::sub_mixed(self, &rhs);
}
}
impl SubAssign<&AffinePoint> for ProjectivePoint {
fn sub_assign(&mut self, rhs: &AffinePoint) {
*self = ProjectivePoint::sub_mixed(self, rhs);
}
}
impl Neg for ProjectivePoint {
type Output = ProjectivePoint;
fn neg(self) -> ProjectivePoint {
ProjectivePoint::neg(&self)
}
}
impl<'a> Neg for &'a ProjectivePoint {
type Output = ProjectivePoint;
fn neg(self) -> ProjectivePoint {
ProjectivePoint::neg(self)
}
}
impl From<PublicKey> for ProjectivePoint {
fn from(public_key: PublicKey) -> ProjectivePoint {
AffinePoint::from(public_key).into()
}
}
impl From<&PublicKey> for ProjectivePoint {
fn from(public_key: &PublicKey) -> ProjectivePoint {
AffinePoint::from(public_key).into()
}
}
impl TryFrom<ProjectivePoint> for PublicKey {
type Error = Error;
fn try_from(point: ProjectivePoint) -> Result<PublicKey> {
AffinePoint::from(point).try_into()
}
}
impl TryFrom<&ProjectivePoint> for PublicKey {
type Error = Error;
fn try_from(point: &ProjectivePoint) -> Result<PublicKey> {
AffinePoint::from(point).try_into()
}
}
#[cfg(test)]
mod tests {
use super::{AffinePoint, ProjectivePoint};
use crate::{
test_vectors::group::{ADD_TEST_VECTORS, MUL_TEST_VECTORS},
Scalar,
};
use elliptic_curve::group::{ff::PrimeField, prime::PrimeCurveAffine};
#[test]
fn affine_to_projective() {
let basepoint_affine = AffinePoint::GENERATOR;
let basepoint_projective = ProjectivePoint::GENERATOR;
assert_eq!(
ProjectivePoint::from(basepoint_affine),
basepoint_projective,
);
assert_eq!(basepoint_projective.to_affine(), basepoint_affine);
assert!(!bool::from(basepoint_projective.to_affine().is_identity()));
assert!(bool::from(
ProjectivePoint::IDENTITY.to_affine().is_identity()
));
}
#[test]
fn projective_identity_addition() {
let identity = ProjectivePoint::IDENTITY;
let generator = ProjectivePoint::GENERATOR;
assert_eq!(identity + &generator, generator);
assert_eq!(generator + &identity, generator);
}
#[test]
fn projective_mixed_addition() {
let identity = ProjectivePoint::IDENTITY;
let basepoint_affine = AffinePoint::GENERATOR;
let basepoint_projective = ProjectivePoint::GENERATOR;
assert_eq!(identity + &basepoint_affine, basepoint_projective);
assert_eq!(
basepoint_projective + &basepoint_affine,
basepoint_projective + &basepoint_projective
);
}
#[test]
fn test_vector_repeated_add() {
let generator = ProjectivePoint::GENERATOR;
let mut p = generator;
for i in 0..ADD_TEST_VECTORS.len() {
let affine = p.to_affine();
let (expected_x, expected_y) = ADD_TEST_VECTORS[i];
assert_eq!(affine.x.to_bytes(), expected_x.into());
assert_eq!(affine.y.to_bytes(), expected_y.into());
p += &generator;
}
}
#[test]
fn test_vector_repeated_add_mixed() {
let generator = AffinePoint::GENERATOR;
let mut p = ProjectivePoint::GENERATOR;
for i in 0..ADD_TEST_VECTORS.len() {
let affine = p.to_affine();
let (expected_x, expected_y) = ADD_TEST_VECTORS[i];
assert_eq!(affine.x.to_bytes(), expected_x.into());
assert_eq!(affine.y.to_bytes(), expected_y.into());
p += &generator;
}
}
#[test]
fn test_vector_add_mixed_identity() {
let generator = ProjectivePoint::GENERATOR;
let p0 = generator + ProjectivePoint::IDENTITY;
let p1 = generator + AffinePoint::IDENTITY;
assert_eq!(p0, p1);
}
#[test]
fn test_vector_double_generator() {
let generator = ProjectivePoint::GENERATOR;
let mut p = generator;
for i in 0..2 {
let affine = p.to_affine();
let (expected_x, expected_y) = ADD_TEST_VECTORS[i];
assert_eq!(affine.x.to_bytes(), expected_x.into());
assert_eq!(affine.y.to_bytes(), expected_y.into());
p = p.double();
}
}
#[test]
fn projective_add_vs_double() {
let generator = ProjectivePoint::GENERATOR;
let r1 = generator + &generator;
let r2 = generator.double();
assert_eq!(r1, r2);
let r1 = (generator + &generator) + &(generator + &generator);
let r2 = generator.double().double();
assert_eq!(r1, r2);
}
#[test]
fn projective_add_and_sub() {
let basepoint_affine = AffinePoint::GENERATOR;
let basepoint_projective = ProjectivePoint::GENERATOR;
assert_eq!(
(basepoint_projective + &basepoint_projective) - &basepoint_projective,
basepoint_projective
);
assert_eq!(
(basepoint_projective + &basepoint_affine) - &basepoint_affine,
basepoint_projective
);
}
#[test]
fn projective_double_and_sub() {
let generator = ProjectivePoint::GENERATOR;
assert_eq!(generator.double() - &generator, generator);
}
#[test]
fn test_vector_scalar_mult() {
let generator = ProjectivePoint::GENERATOR;
for (k, coords) in ADD_TEST_VECTORS
.iter()
.enumerate()
.map(|(k, coords)| (Scalar::from(k as u32 + 1), *coords))
.chain(
MUL_TEST_VECTORS
.iter()
.cloned()
.map(|(k, x, y)| (Scalar::from_repr(k.into()).unwrap(), (x, y))),
)
{
let res = (generator * &k).to_affine();
assert_eq!(res.x.to_bytes(), coords.0.into());
assert_eq!(res.y.to_bytes(), coords.1.into());
}
}
#[test]
fn projective_equality() {
use core::ops::Neg;
assert_ne!(ProjectivePoint::GENERATOR, ProjectivePoint::IDENTITY);
assert_ne!(ProjectivePoint::IDENTITY, ProjectivePoint::GENERATOR);
assert_eq!(ProjectivePoint::IDENTITY, ProjectivePoint::IDENTITY);
assert_eq!(ProjectivePoint::IDENTITY.neg(), ProjectivePoint::IDENTITY);
assert_eq!(ProjectivePoint::GENERATOR, ProjectivePoint::GENERATOR);
assert_ne!(ProjectivePoint::GENERATOR, ProjectivePoint::GENERATOR.neg());
assert_ne!(ProjectivePoint::GENERATOR, AffinePoint::IDENTITY);
assert_ne!(ProjectivePoint::IDENTITY, AffinePoint::GENERATOR);
assert_eq!(ProjectivePoint::IDENTITY, AffinePoint::IDENTITY);
assert_eq!(ProjectivePoint::IDENTITY.neg(), AffinePoint::IDENTITY);
assert_eq!(ProjectivePoint::GENERATOR, AffinePoint::GENERATOR);
assert_ne!(ProjectivePoint::GENERATOR.neg(), AffinePoint::GENERATOR);
assert_eq!(
ProjectivePoint::GENERATOR.neg(),
AffinePoint::GENERATOR.neg()
);
}
}