1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
// -*- mode: rust; -*-
//
// This file is part of x25519-dalek.
// Copyright (c) 2017-2021 isis lovecruft
// Copyright (c) 2019-2021 DebugSteven
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - DebugSteven <debugsteven@gmail.com>
//! x25519 Diffie-Hellman key exchange
//!
//! This implements x25519 key exchange as specified by Mike Hamburg
//! and Adam Langley in [RFC7748](https://tools.ietf.org/html/rfc7748).
use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
use curve25519_dalek::montgomery::MontgomeryPoint;
use curve25519_dalek::scalar::Scalar;
use rand_core::CryptoRng;
use rand_core::RngCore;
use zeroize::Zeroize;
/// A Diffie-Hellman public key, corresponding to an [`EphemeralSecret`] or [`StaticSecret`] key.
#[cfg_attr(feature = "serde", serde(crate = "our_serde"))]
#[cfg_attr(
feature = "serde",
derive(our_serde::Serialize, our_serde::Deserialize)
)]
#[derive(PartialEq, Eq, Hash, Copy, Clone, Debug)]
pub struct PublicKey(pub(crate) MontgomeryPoint);
impl From<[u8; 32]> for PublicKey {
/// Given a byte array, construct a x25519 `PublicKey`.
fn from(bytes: [u8; 32]) -> PublicKey {
PublicKey(MontgomeryPoint(bytes))
}
}
impl PublicKey {
/// Convert this public key to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; 32] {
self.0.to_bytes()
}
/// View this public key as a byte array.
#[inline]
pub fn as_bytes(&self) -> &[u8; 32] {
self.0.as_bytes()
}
}
/// A short-lived Diffie-Hellman secret key that can only be used to compute a single
/// [`SharedSecret`].
///
/// This type is identical to the [`StaticSecret`] type, except that the
/// [`EphemeralSecret::diffie_hellman`] method consumes and then wipes the secret key, and there
/// are no serialization methods defined. This means that [`EphemeralSecret`]s can only be
/// generated from fresh randomness by [`EphemeralSecret::new`] and the compiler statically checks
/// that the resulting secret is used at most once.
#[derive(Zeroize)]
#[zeroize(drop)]
pub struct EphemeralSecret(pub(crate) Scalar);
impl EphemeralSecret {
/// Perform a Diffie-Hellman key agreement between `self` and
/// `their_public` key to produce a [`SharedSecret`].
pub fn diffie_hellman(self, their_public: &PublicKey) -> SharedSecret {
SharedSecret(self.0 * their_public.0)
}
/// Generate an x25519 [`EphemeralSecret`] key.
pub fn new<T: RngCore + CryptoRng>(mut csprng: T) -> Self {
let mut bytes = [0u8; 32];
csprng.fill_bytes(&mut bytes);
EphemeralSecret(clamp_scalar(bytes))
}
}
impl<'a> From<&'a EphemeralSecret> for PublicKey {
/// Given an x25519 [`EphemeralSecret`] key, compute its corresponding [`PublicKey`].
fn from(secret: &'a EphemeralSecret) -> PublicKey {
PublicKey((&ED25519_BASEPOINT_TABLE * &secret.0).to_montgomery())
}
}
/// A Diffie-Hellman secret key that can be used to compute multiple [`SharedSecret`]s.
///
/// This type is identical to the [`EphemeralSecret`] type, except that the
/// [`StaticSecret::diffie_hellman`] method does not consume the secret key, and the type provides
/// serialization methods to save and load key material. This means that the secret may be used
/// multiple times (but does not *have to be*).
///
/// Some protocols, such as Noise, already handle the static/ephemeral distinction, so the
/// additional guarantees provided by [`EphemeralSecret`] are not helpful or would cause duplicate
/// code paths. In this case, it may be useful to
/// ```rust,ignore
/// use x25519_dalek::StaticSecret as SecretKey;
/// ```
/// since the only difference between the two is that [`StaticSecret`] does not enforce at
/// compile-time that the key is only used once.
#[cfg_attr(feature = "serde", serde(crate = "our_serde"))]
#[cfg_attr(
feature = "serde",
derive(our_serde::Serialize, our_serde::Deserialize)
)]
#[derive(Clone, Zeroize)]
#[zeroize(drop)]
pub struct StaticSecret(
#[cfg_attr(feature = "serde", serde(with = "AllowUnreducedScalarBytes"))] pub(crate) Scalar,
);
impl StaticSecret {
/// Perform a Diffie-Hellman key agreement between `self` and
/// `their_public` key to produce a `SharedSecret`.
pub fn diffie_hellman(&self, their_public: &PublicKey) -> SharedSecret {
SharedSecret(&self.0 * their_public.0)
}
/// Generate an x25519 key.
pub fn new<T: RngCore + CryptoRng>(mut csprng: T) -> Self {
let mut bytes = [0u8; 32];
csprng.fill_bytes(&mut bytes);
StaticSecret(clamp_scalar(bytes))
}
/// Extract this key's bytes for serialization.
pub fn to_bytes(&self) -> [u8; 32] {
self.0.to_bytes()
}
}
impl From<[u8; 32]> for StaticSecret {
/// Load a secret key from a byte array.
fn from(bytes: [u8; 32]) -> StaticSecret {
StaticSecret(clamp_scalar(bytes))
}
}
impl<'a> From<&'a StaticSecret> for PublicKey {
/// Given an x25519 [`StaticSecret`] key, compute its corresponding [`PublicKey`].
fn from(secret: &'a StaticSecret) -> PublicKey {
PublicKey((&ED25519_BASEPOINT_TABLE * &secret.0).to_montgomery())
}
}
/// The result of a Diffie-Hellman key exchange.
///
/// Each party computes this using their [`EphemeralSecret`] or [`StaticSecret`] and their
/// counterparty's [`PublicKey`].
#[derive(Zeroize)]
#[zeroize(drop)]
pub struct SharedSecret(pub(crate) MontgomeryPoint);
impl SharedSecret {
/// Convert this shared secret to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; 32] {
self.0.to_bytes()
}
/// View this shared secret key as a byte array.
#[inline]
pub fn as_bytes(&self) -> &[u8; 32] {
self.0.as_bytes()
}
}
/// "Decode" a scalar from a 32-byte array.
///
/// By "decode" here, what is really meant is applying key clamping by twiddling
/// some bits.
///
/// # Returns
///
/// A `Scalar`.
fn clamp_scalar(mut scalar: [u8; 32]) -> Scalar {
scalar[0] &= 248;
scalar[31] &= 127;
scalar[31] |= 64;
Scalar::from_bits(scalar)
}
/// The bare, byte-oriented x25519 function, exactly as specified in RFC7748.
///
/// This can be used with [`X25519_BASEPOINT_BYTES`] for people who
/// cannot use the better, safer, and faster DH API.
pub fn x25519(k: [u8; 32], u: [u8; 32]) -> [u8; 32] {
(clamp_scalar(k) * MontgomeryPoint(u)).to_bytes()
}
/// The X25519 basepoint, for use with the bare, byte-oriented x25519
/// function. This is provided for people who cannot use the typed
/// DH API for some reason.
pub const X25519_BASEPOINT_BYTES: [u8; 32] = [
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
];
/// Derived serialization methods will not work on a StaticSecret because x25519 requires
/// non-canonical scalars which are rejected by curve25519-dalek. Thus we provide a way to convert
/// the bytes directly to a scalar using Serde's remote derive functionality.
#[cfg_attr(feature = "serde", serde(crate = "our_serde"))]
#[cfg_attr(
feature = "serde",
derive(our_serde::Serialize, our_serde::Deserialize)
)]
#[cfg_attr(feature = "serde", serde(remote = "Scalar"))]
struct AllowUnreducedScalarBytes(
#[cfg_attr(feature = "serde", serde(getter = "Scalar::to_bytes"))] [u8; 32],
);
impl From<AllowUnreducedScalarBytes> for Scalar {
fn from(bytes: AllowUnreducedScalarBytes) -> Scalar {
clamp_scalar(bytes.0)
}
}
#[cfg(test)]
mod test {
use super::*;
use rand_core::OsRng;
#[test]
fn byte_basepoint_matches_edwards_scalar_mul() {
let mut scalar_bytes = [0x37; 32];
for i in 0..32 {
scalar_bytes[i] += 2;
let result = x25519(scalar_bytes, X25519_BASEPOINT_BYTES);
let expected = (&ED25519_BASEPOINT_TABLE * &clamp_scalar(scalar_bytes))
.to_montgomery()
.to_bytes();
assert_eq!(result, expected);
}
}
#[test]
#[cfg(feature = "serde")]
fn serde_bincode_public_key_roundtrip() {
use bincode;
let public_key = PublicKey::from(X25519_BASEPOINT_BYTES);
let encoded = bincode::serialize(&public_key).unwrap();
let decoded: PublicKey = bincode::deserialize(&encoded).unwrap();
assert_eq!(encoded.len(), 32);
assert_eq!(decoded.as_bytes(), public_key.as_bytes());
}
#[test]
#[cfg(feature = "serde")]
fn serde_bincode_public_key_matches_from_bytes() {
use bincode;
let expected = PublicKey::from(X25519_BASEPOINT_BYTES);
let decoded: PublicKey = bincode::deserialize(&X25519_BASEPOINT_BYTES).unwrap();
assert_eq!(decoded.as_bytes(), expected.as_bytes());
}
#[test]
#[cfg(feature = "serde")]
fn serde_bincode_static_secret_roundtrip() {
use bincode;
let static_secret = StaticSecret(clamp_scalar([0x24; 32]));
let encoded = bincode::serialize(&static_secret).unwrap();
let decoded: StaticSecret = bincode::deserialize(&encoded).unwrap();
assert_eq!(encoded.len(), 32);
assert_eq!(decoded.to_bytes(), static_secret.to_bytes());
}
#[test]
#[cfg(feature = "serde")]
fn serde_bincode_static_secret_matches_from_bytes() {
use bincode;
let expected = StaticSecret(clamp_scalar([0x24; 32]));
let clamped_bytes = clamp_scalar([0x24; 32]).to_bytes();
let decoded: StaticSecret = bincode::deserialize(&clamped_bytes).unwrap();
assert_eq!(decoded.to_bytes(), expected.to_bytes());
}
fn do_rfc7748_ladder_test1(input_scalar: [u8; 32], input_point: [u8; 32], expected: [u8; 32]) {
let result = x25519(input_scalar, input_point);
assert_eq!(result, expected);
}
#[test]
fn rfc7748_ladder_test1_vectorset1() {
let input_scalar: [u8; 32] = [
0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46,
0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44,
0xba, 0x44, 0x9a, 0xc4,
];
let input_point: [u8; 32] = [
0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1,
0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6,
0xd0, 0xab, 0x1c, 0x4c,
];
let expected: [u8; 32] = [
0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90, 0x8e, 0x94, 0xea, 0x4d, 0xf2, 0x8d,
0x08, 0x4f, 0x32, 0xec, 0xcf, 0x03, 0x49, 0x1c, 0x71, 0xf7, 0x54, 0xb4, 0x07, 0x55,
0x77, 0xa2, 0x85, 0x52,
];
do_rfc7748_ladder_test1(input_scalar, input_point, expected);
}
#[test]
fn rfc7748_ladder_test1_vectorset2() {
let input_scalar: [u8; 32] = [
0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c, 0x5a, 0xd2, 0x26, 0x91, 0x95, 0x7d,
0x6a, 0xf5, 0xc1, 0x1b, 0x64, 0x21, 0xe0, 0xea, 0x01, 0xd4, 0x2c, 0xa4, 0x16, 0x9e,
0x79, 0x18, 0xba, 0x0d,
];
let input_point: [u8; 32] = [
0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3, 0xf4, 0xb7, 0x95, 0x9d, 0x05, 0x38,
0xae, 0x2c, 0x31, 0xdb, 0xe7, 0x10, 0x6f, 0xc0, 0x3c, 0x3e, 0xfc, 0x4c, 0xd5, 0x49,
0xc7, 0x15, 0xa4, 0x93,
];
let expected: [u8; 32] = [
0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad, 0xe4, 0x5c, 0xb4, 0xb8,
0x73, 0xf8, 0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f, 0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64,
0x7a, 0xac, 0x79, 0x57,
];
do_rfc7748_ladder_test1(input_scalar, input_point, expected);
}
#[test]
#[ignore] // Run only if you want to burn a lot of CPU doing 1,000,000 DH operations
fn rfc7748_ladder_test2() {
use curve25519_dalek::constants::X25519_BASEPOINT;
let mut k: [u8; 32] = X25519_BASEPOINT.0;
let mut u: [u8; 32] = X25519_BASEPOINT.0;
let mut result: [u8; 32];
macro_rules! do_iterations {
($n:expr) => {
for _ in 0..$n {
result = x25519(k, u);
// OBVIOUS THING THAT I'M GOING TO NOTE ANYWAY BECAUSE I'VE
// SEEN PEOPLE DO THIS WITH GOLANG'S STDLIB AND YOU SURE AS
// HELL SHOULDN'T DO HORRIBLY STUPID THINGS LIKE THIS WITH
// MY LIBRARY:
//
// NEVER EVER TREAT SCALARS AS POINTS AND/OR VICE VERSA.
//
// ↓↓ DON'T DO THIS ↓↓
u = k.clone();
k = result;
}
};
}
// After one iteration:
// 422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079
// After 1,000 iterations:
// 684cf59ba83309552800ef566f2f4d3c1c3887c49360e3875f2eb94d99532c51
// After 1,000,000 iterations:
// 7c3911e0ab2586fd864497297e575e6f3bc601c0883c30df5f4dd2d24f665424
do_iterations!(1);
assert_eq!(
k,
[
0x42, 0x2c, 0x8e, 0x7a, 0x62, 0x27, 0xd7, 0xbc, 0xa1, 0x35, 0x0b, 0x3e, 0x2b, 0xb7,
0x27, 0x9f, 0x78, 0x97, 0xb8, 0x7b, 0xb6, 0x85, 0x4b, 0x78, 0x3c, 0x60, 0xe8, 0x03,
0x11, 0xae, 0x30, 0x79,
]
);
do_iterations!(999);
assert_eq!(
k,
[
0x68, 0x4c, 0xf5, 0x9b, 0xa8, 0x33, 0x09, 0x55, 0x28, 0x00, 0xef, 0x56, 0x6f, 0x2f,
0x4d, 0x3c, 0x1c, 0x38, 0x87, 0xc4, 0x93, 0x60, 0xe3, 0x87, 0x5f, 0x2e, 0xb9, 0x4d,
0x99, 0x53, 0x2c, 0x51,
]
);
do_iterations!(999_000);
assert_eq!(
k,
[
0x7c, 0x39, 0x11, 0xe0, 0xab, 0x25, 0x86, 0xfd, 0x86, 0x44, 0x97, 0x29, 0x7e, 0x57,
0x5e, 0x6f, 0x3b, 0xc6, 0x01, 0xc0, 0x88, 0x3c, 0x30, 0xdf, 0x5f, 0x4d, 0xd2, 0xd2,
0x4f, 0x66, 0x54, 0x24,
]
);
}
}