1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
//! The official Rust implementation of the [BLAKE3] cryptographic hash
//! function.
//!
//! # Examples
//!
//! ```
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // Hash an input all at once.
//! let hash1 = blake3::hash(b"foobarbaz");
//!
//! // Hash an input incrementally.
//! let mut hasher = blake3::Hasher::new();
//! hasher.update(b"foo");
//! hasher.update(b"bar");
//! hasher.update(b"baz");
//! let hash2 = hasher.finalize();
//! assert_eq!(hash1, hash2);
//!
//! // Extended output. OutputReader also implements Read and Seek.
//! # #[cfg(feature = "std")] {
//! let mut output = [0; 1000];
//! let mut output_reader = hasher.finalize_xof();
//! output_reader.fill(&mut output);
//! assert_eq!(hash1, output[..32]);
//! # }
//!
//! // Print a hash as hex.
//! println!("{}", hash1);
//! # Ok(())
//! # }
//! ```
//!
//! # Cargo Features
//!
//! The `std` feature (the only feature enabled by default) is required for
//! implementations of the [`Write`] and [`Seek`] traits, and also for runtime
//! CPU feature detection on x86. If this feature is disabled, the only way to
//! use the x86 SIMD implementations is to enable the corresponding instruction
//! sets globally, with e.g. `RUSTFLAGS="-C target-cpu=native"`. The resulting
//! binary will not be portable to other machines.
//!
//! The `rayon` feature (disabled by default, but enabled for [docs.rs]) adds
//! the [`Hasher::update_rayon`] method, for multithreaded hashing. However,
//! even if this feature is enabled, all other APIs remain single-threaded.
//!
//! The NEON implementation is enabled by default for AArch64 but requires the
//! `neon` feature for other ARM targets. Not all ARMv7 CPUs support NEON, and
//! enabling this feature will produce a binary that's not portable to CPUs
//! without NEON support.
//!
//! The `traits-preview` feature enables implementations of traits from the
//! RustCrypto [`digest`] crate, and re-exports that crate as
//! `traits::digest`. However, the traits aren't stable, and they're expected to
//! change in incompatible ways before that crate reaches 1.0. For that reason,
//! this crate makes no SemVer guarantees for this feature, and callers who use
//! it should expect breaking changes between patch versions. (The "-preview"
//! feature name follows the conventions of the RustCrypto [`signature`] crate.)
//!
//! [`Hasher::update_rayon`]: struct.Hasher.html#method.update_rayon
//! [BLAKE3]: https://blake3.io
//! [Rayon]: https://github.com/rayon-rs/rayon
//! [docs.rs]: https://docs.rs/
//! [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html
//! [`Seek`]: https://doc.rust-lang.org/std/io/trait.Seek.html
//! [`digest`]: https://crates.io/crates/digest
//! [`signature`]: https://crates.io/crates/signature

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(test)]
mod test;

// The guts module is for incremental use cases like the `bao` crate that need
// to explicitly compute chunk and parent chaining values. It is semi-stable
// and likely to keep working, but largely undocumented and not intended for
// widespread use.
#[doc(hidden)]
pub mod guts;

/// Undocumented and unstable, for benchmarks only.
#[doc(hidden)]
pub mod platform;

// Platform-specific implementations of the compression function. These
// BLAKE3-specific cfg flags are set in build.rs.
#[cfg(blake3_avx2_rust)]
#[path = "rust_avx2.rs"]
mod avx2;
#[cfg(blake3_avx2_ffi)]
#[path = "ffi_avx2.rs"]
mod avx2;
#[cfg(blake3_avx512_ffi)]
#[path = "ffi_avx512.rs"]
mod avx512;
#[cfg(blake3_neon)]
#[path = "ffi_neon.rs"]
mod neon;
mod portable;
#[cfg(blake3_sse2_rust)]
#[path = "rust_sse2.rs"]
mod sse2;
#[cfg(blake3_sse2_ffi)]
#[path = "ffi_sse2.rs"]
mod sse2;
#[cfg(blake3_sse41_rust)]
#[path = "rust_sse41.rs"]
mod sse41;
#[cfg(blake3_sse41_ffi)]
#[path = "ffi_sse41.rs"]
mod sse41;

#[cfg(feature = "traits-preview")]
pub mod traits;

mod join;

use arrayref::{array_mut_ref, array_ref};
use arrayvec::{ArrayString, ArrayVec};
use core::cmp;
use core::fmt;
use platform::{Platform, MAX_SIMD_DEGREE, MAX_SIMD_DEGREE_OR_2};

/// The number of bytes in a [`Hash`](struct.Hash.html), 32.
pub const OUT_LEN: usize = 32;

/// The number of bytes in a key, 32.
pub const KEY_LEN: usize = 32;

const MAX_DEPTH: usize = 54; // 2^54 * CHUNK_LEN = 2^64
use guts::{BLOCK_LEN, CHUNK_LEN};

// While iterating the compression function within a chunk, the CV is
// represented as words, to avoid doing two extra endianness conversions for
// each compression in the portable implementation. But the hash_many interface
// needs to hash both input bytes and parent nodes, so its better for its
// output CVs to be represented as bytes.
type CVWords = [u32; 8];
type CVBytes = [u8; 32]; // little-endian

const IV: &CVWords = &[
    0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
];

const MSG_SCHEDULE: [[usize; 16]; 7] = [
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
    [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8],
    [3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1],
    [10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6],
    [12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4],
    [9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7],
    [11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13],
];

// These are the internal flags that we use to domain separate root/non-root,
// chunk/parent, and chunk beginning/middle/end. These get set at the high end
// of the block flags word in the compression function, so their values start
// high and go down.
const CHUNK_START: u8 = 1 << 0;
const CHUNK_END: u8 = 1 << 1;
const PARENT: u8 = 1 << 2;
const ROOT: u8 = 1 << 3;
const KEYED_HASH: u8 = 1 << 4;
const DERIVE_KEY_CONTEXT: u8 = 1 << 5;
const DERIVE_KEY_MATERIAL: u8 = 1 << 6;

#[inline]
fn counter_low(counter: u64) -> u32 {
    counter as u32
}

#[inline]
fn counter_high(counter: u64) -> u32 {
    (counter >> 32) as u32
}

/// An output of the default size, 32 bytes, which provides constant-time
/// equality checking.
///
/// `Hash` implements [`From`] and [`Into`] for `[u8; 32]`, and it provides an
/// explicit [`as_bytes`] method returning `&[u8; 32]`. However, byte arrays
/// and slices don't provide constant-time equality checking, which is often a
/// security requirement in software that handles private data. `Hash` doesn't
/// implement [`Deref`] or [`AsRef`], to avoid situations where a type
/// conversion happens implicitly and the constant-time property is
/// accidentally lost.
///
/// `Hash` provides the [`to_hex`] and [`from_hex`] methods for converting to
/// and from hexadecimal. It also implements [`Display`] and [`FromStr`].
///
/// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html
/// [`Into`]: https://doc.rust-lang.org/std/convert/trait.Into.html
/// [`as_bytes`]: #method.as_bytes
/// [`Deref`]: https://doc.rust-lang.org/stable/std/ops/trait.Deref.html
/// [`AsRef`]: https://doc.rust-lang.org/std/convert/trait.AsRef.html
/// [`to_hex`]: #method.to_hex
/// [`from_hex`]: #method.from_hex
/// [`Display`]: https://doc.rust-lang.org/std/fmt/trait.Display.html
/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
#[derive(Clone, Copy, Hash)]
pub struct Hash([u8; OUT_LEN]);

impl Hash {
    /// The raw bytes of the `Hash`. Note that byte arrays don't provide
    /// constant-time equality checking, so if  you need to compare hashes,
    /// prefer the `Hash` type.
    #[inline]
    pub fn as_bytes(&self) -> &[u8; OUT_LEN] {
        &self.0
    }

    /// Encode a `Hash` in lowercase hexadecimal.
    ///
    /// The returned [`ArrayString`] is a fixed size and doesn't allocate memory
    /// on the heap. Note that [`ArrayString`] doesn't provide constant-time
    /// equality checking, so if you need to compare hashes, prefer the `Hash`
    /// type.
    ///
    /// [`ArrayString`]: https://docs.rs/arrayvec/0.5.1/arrayvec/struct.ArrayString.html
    pub fn to_hex(&self) -> ArrayString<{ 2 * OUT_LEN }> {
        let mut s = ArrayString::new();
        let table = b"0123456789abcdef";
        for &b in self.0.iter() {
            s.push(table[(b >> 4) as usize] as char);
            s.push(table[(b & 0xf) as usize] as char);
        }
        s
    }

    /// Decode a `Hash` from hexadecimal. Both uppercase and lowercase ASCII
    /// bytes are supported.
    ///
    /// Any byte outside the ranges `'0'...'9'`, `'a'...'f'`, and `'A'...'F'`
    /// results in an error. An input length other than 64 also results in an
    /// error.
    ///
    /// Note that `Hash` also implements `FromStr`, so `Hash::from_hex("...")`
    /// is equivalent to `"...".parse()`.
    pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Self, HexError> {
        fn hex_val(byte: u8) -> Result<u8, HexError> {
            match byte {
                b'A'..=b'F' => Ok(byte - b'A' + 10),
                b'a'..=b'f' => Ok(byte - b'a' + 10),
                b'0'..=b'9' => Ok(byte - b'0'),
                _ => Err(HexError(HexErrorInner::InvalidByte(byte))),
            }
        }
        let hex_bytes: &[u8] = hex.as_ref();
        if hex_bytes.len() != OUT_LEN * 2 {
            return Err(HexError(HexErrorInner::InvalidLen(hex_bytes.len())));
        }
        let mut hash_bytes: [u8; OUT_LEN] = [0; OUT_LEN];
        for i in 0..OUT_LEN {
            hash_bytes[i] = 16 * hex_val(hex_bytes[2 * i])? + hex_val(hex_bytes[2 * i + 1])?;
        }
        Ok(Hash::from(hash_bytes))
    }
}

impl From<[u8; OUT_LEN]> for Hash {
    #[inline]
    fn from(bytes: [u8; OUT_LEN]) -> Self {
        Self(bytes)
    }
}

impl From<Hash> for [u8; OUT_LEN] {
    #[inline]
    fn from(hash: Hash) -> Self {
        hash.0
    }
}

impl core::str::FromStr for Hash {
    type Err = HexError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Hash::from_hex(s)
    }
}

/// This implementation is constant-time.
impl PartialEq for Hash {
    #[inline]
    fn eq(&self, other: &Hash) -> bool {
        constant_time_eq::constant_time_eq_32(&self.0, &other.0)
    }
}

/// This implementation is constant-time.
impl PartialEq<[u8; OUT_LEN]> for Hash {
    #[inline]
    fn eq(&self, other: &[u8; OUT_LEN]) -> bool {
        constant_time_eq::constant_time_eq_32(&self.0, other)
    }
}

/// This implementation is constant-time if the target is 32 bytes long.
impl PartialEq<[u8]> for Hash {
    #[inline]
    fn eq(&self, other: &[u8]) -> bool {
        constant_time_eq::constant_time_eq(&self.0, other)
    }
}

impl Eq for Hash {}

impl fmt::Display for Hash {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // Formatting field as `&str` to reduce code size since the `Debug`
        // dynamic dispatch table for `&str` is likely needed elsewhere already,
        // but that for `ArrayString<[u8; 64]>` is not.
        let hex = self.to_hex();
        let hex: &str = hex.as_str();

        f.write_str(hex)
    }
}

impl fmt::Debug for Hash {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // Formatting field as `&str` to reduce code size since the `Debug`
        // dynamic dispatch table for `&str` is likely needed elsewhere already,
        // but that for `ArrayString<[u8; 64]>` is not.
        let hex = self.to_hex();
        let hex: &str = hex.as_str();

        f.debug_tuple("Hash").field(&hex).finish()
    }
}

/// The error type for [`Hash::from_hex`].
///
/// The `.to_string()` representation of this error currently distinguishes between bad length
/// errors and bad character errors. This is to help with logging and debugging, but it isn't a
/// stable API detail, and it may change at any time.
#[derive(Clone, Debug)]
pub struct HexError(HexErrorInner);

#[derive(Clone, Debug)]
enum HexErrorInner {
    InvalidByte(u8),
    InvalidLen(usize),
}

impl fmt::Display for HexError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.0 {
            HexErrorInner::InvalidByte(byte) => {
                if byte < 128 {
                    write!(f, "invalid hex character: {:?}", byte as char)
                } else {
                    write!(f, "invalid hex character: 0x{:x}", byte)
                }
            }
            HexErrorInner::InvalidLen(len) => {
                write!(f, "expected 64 hex bytes, received {}", len)
            }
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for HexError {}

// Each chunk or parent node can produce either a 32-byte chaining value or, by
// setting the ROOT flag, any number of final output bytes. The Output struct
// captures the state just prior to choosing between those two possibilities.
#[derive(Clone)]
struct Output {
    input_chaining_value: CVWords,
    block: [u8; 64],
    block_len: u8,
    counter: u64,
    flags: u8,
    platform: Platform,
}

impl Output {
    fn chaining_value(&self) -> CVBytes {
        let mut cv = self.input_chaining_value;
        self.platform.compress_in_place(
            &mut cv,
            &self.block,
            self.block_len,
            self.counter,
            self.flags,
        );
        platform::le_bytes_from_words_32(&cv)
    }

    fn root_hash(&self) -> Hash {
        debug_assert_eq!(self.counter, 0);
        let mut cv = self.input_chaining_value;
        self.platform
            .compress_in_place(&mut cv, &self.block, self.block_len, 0, self.flags | ROOT);
        Hash(platform::le_bytes_from_words_32(&cv))
    }

    fn root_output_block(&self) -> [u8; 2 * OUT_LEN] {
        self.platform.compress_xof(
            &self.input_chaining_value,
            &self.block,
            self.block_len,
            self.counter,
            self.flags | ROOT,
        )
    }
}

#[derive(Clone)]
struct ChunkState {
    cv: CVWords,
    chunk_counter: u64,
    buf: [u8; BLOCK_LEN],
    buf_len: u8,
    blocks_compressed: u8,
    flags: u8,
    platform: Platform,
}

impl ChunkState {
    fn new(key: &CVWords, chunk_counter: u64, flags: u8, platform: Platform) -> Self {
        Self {
            cv: *key,
            chunk_counter,
            buf: [0; BLOCK_LEN],
            buf_len: 0,
            blocks_compressed: 0,
            flags,
            platform,
        }
    }

    fn len(&self) -> usize {
        BLOCK_LEN * self.blocks_compressed as usize + self.buf_len as usize
    }

    fn fill_buf(&mut self, input: &mut &[u8]) {
        let want = BLOCK_LEN - self.buf_len as usize;
        let take = cmp::min(want, input.len());
        self.buf[self.buf_len as usize..][..take].copy_from_slice(&input[..take]);
        self.buf_len += take as u8;
        *input = &input[take..];
    }

    fn start_flag(&self) -> u8 {
        if self.blocks_compressed == 0 {
            CHUNK_START
        } else {
            0
        }
    }

    // Try to avoid buffering as much as possible, by compressing directly from
    // the input slice when full blocks are available.
    fn update(&mut self, mut input: &[u8]) -> &mut Self {
        if self.buf_len > 0 {
            self.fill_buf(&mut input);
            if !input.is_empty() {
                debug_assert_eq!(self.buf_len as usize, BLOCK_LEN);
                let block_flags = self.flags | self.start_flag(); // borrowck
                self.platform.compress_in_place(
                    &mut self.cv,
                    &self.buf,
                    BLOCK_LEN as u8,
                    self.chunk_counter,
                    block_flags,
                );
                self.buf_len = 0;
                self.buf = [0; BLOCK_LEN];
                self.blocks_compressed += 1;
            }
        }

        while input.len() > BLOCK_LEN {
            debug_assert_eq!(self.buf_len, 0);
            let block_flags = self.flags | self.start_flag(); // borrowck
            self.platform.compress_in_place(
                &mut self.cv,
                array_ref!(input, 0, BLOCK_LEN),
                BLOCK_LEN as u8,
                self.chunk_counter,
                block_flags,
            );
            self.blocks_compressed += 1;
            input = &input[BLOCK_LEN..];
        }

        self.fill_buf(&mut input);
        debug_assert!(input.is_empty());
        debug_assert!(self.len() <= CHUNK_LEN);
        self
    }

    fn output(&self) -> Output {
        let block_flags = self.flags | self.start_flag() | CHUNK_END;
        Output {
            input_chaining_value: self.cv,
            block: self.buf,
            block_len: self.buf_len,
            counter: self.chunk_counter,
            flags: block_flags,
            platform: self.platform,
        }
    }
}

// Don't derive(Debug), because the state may be secret.
impl fmt::Debug for ChunkState {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("ChunkState")
            .field("len", &self.len())
            .field("chunk_counter", &self.chunk_counter)
            .field("flags", &self.flags)
            .field("platform", &self.platform)
            .finish()
    }
}

// IMPLEMENTATION NOTE
// ===================
// The recursive function compress_subtree_wide(), implemented below, is the
// basis of high-performance BLAKE3. We use it both for all-at-once hashing,
// and for the incremental input with Hasher (though we have to be careful with
// subtree boundaries in the incremental case). compress_subtree_wide() applies
// several optimizations at the same time:
// - Multithreading with Rayon.
// - Parallel chunk hashing with SIMD.
// - Parallel parent hashing with SIMD. Note that while SIMD chunk hashing
//   maxes out at MAX_SIMD_DEGREE*CHUNK_LEN, parallel parent hashing continues
//   to benefit from larger inputs, because more levels of the tree benefit can
//   use full-width SIMD vectors for parent hashing. Without parallel parent
//   hashing, we lose about 10% of overall throughput on AVX2 and AVX-512.

/// Undocumented and unstable, for benchmarks only.
#[doc(hidden)]
#[derive(Clone, Copy)]
pub enum IncrementCounter {
    Yes,
    No,
}

impl IncrementCounter {
    #[inline]
    fn yes(&self) -> bool {
        match self {
            IncrementCounter::Yes => true,
            IncrementCounter::No => false,
        }
    }
}

// The largest power of two less than or equal to `n`, used for left_len()
// immediately below, and also directly in Hasher::update().
fn largest_power_of_two_leq(n: usize) -> usize {
    ((n / 2) + 1).next_power_of_two()
}

// Given some input larger than one chunk, return the number of bytes that
// should go in the left subtree. This is the largest power-of-2 number of
// chunks that leaves at least 1 byte for the right subtree.
fn left_len(content_len: usize) -> usize {
    debug_assert!(content_len > CHUNK_LEN);
    // Subtract 1 to reserve at least one byte for the right side.
    let full_chunks = (content_len - 1) / CHUNK_LEN;
    largest_power_of_two_leq(full_chunks) * CHUNK_LEN
}

// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
// on a single thread. Write out the chunk chaining values and return the
// number of chunks hashed. These chunks are never the root and never empty;
// those cases use a different codepath.
fn compress_chunks_parallel(
    input: &[u8],
    key: &CVWords,
    chunk_counter: u64,
    flags: u8,
    platform: Platform,
    out: &mut [u8],
) -> usize {
    debug_assert!(!input.is_empty(), "empty chunks below the root");
    debug_assert!(input.len() <= MAX_SIMD_DEGREE * CHUNK_LEN);

    let mut chunks_exact = input.chunks_exact(CHUNK_LEN);
    let mut chunks_array = ArrayVec::<&[u8; CHUNK_LEN], MAX_SIMD_DEGREE>::new();
    for chunk in &mut chunks_exact {
        chunks_array.push(array_ref!(chunk, 0, CHUNK_LEN));
    }
    platform.hash_many(
        &chunks_array,
        key,
        chunk_counter,
        IncrementCounter::Yes,
        flags,
        CHUNK_START,
        CHUNK_END,
        out,
    );

    // Hash the remaining partial chunk, if there is one. Note that the empty
    // chunk (meaning the empty message) is a different codepath.
    let chunks_so_far = chunks_array.len();
    if !chunks_exact.remainder().is_empty() {
        let counter = chunk_counter + chunks_so_far as u64;
        let mut chunk_state = ChunkState::new(key, counter, flags, platform);
        chunk_state.update(chunks_exact.remainder());
        *array_mut_ref!(out, chunks_so_far * OUT_LEN, OUT_LEN) =
            chunk_state.output().chaining_value();
        chunks_so_far + 1
    } else {
        chunks_so_far
    }
}

// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
// on a single thread. Write out the parent chaining values and return the
// number of parents hashed. (If there's an odd input chaining value left over,
// return it as an additional output.) These parents are never the root and
// never empty; those cases use a different codepath.
fn compress_parents_parallel(
    child_chaining_values: &[u8],
    key: &CVWords,
    flags: u8,
    platform: Platform,
    out: &mut [u8],
) -> usize {
    debug_assert_eq!(child_chaining_values.len() % OUT_LEN, 0, "wacky hash bytes");
    let num_children = child_chaining_values.len() / OUT_LEN;
    debug_assert!(num_children >= 2, "not enough children");
    debug_assert!(num_children <= 2 * MAX_SIMD_DEGREE_OR_2, "too many");

    let mut parents_exact = child_chaining_values.chunks_exact(BLOCK_LEN);
    // Use MAX_SIMD_DEGREE_OR_2 rather than MAX_SIMD_DEGREE here, because of
    // the requirements of compress_subtree_wide().
    let mut parents_array = ArrayVec::<&[u8; BLOCK_LEN], MAX_SIMD_DEGREE_OR_2>::new();
    for parent in &mut parents_exact {
        parents_array.push(array_ref!(parent, 0, BLOCK_LEN));
    }
    platform.hash_many(
        &parents_array,
        key,
        0, // Parents always use counter 0.
        IncrementCounter::No,
        flags | PARENT,
        0, // Parents have no start flags.
        0, // Parents have no end flags.
        out,
    );

    // If there's an odd child left over, it becomes an output.
    let parents_so_far = parents_array.len();
    if !parents_exact.remainder().is_empty() {
        out[parents_so_far * OUT_LEN..][..OUT_LEN].copy_from_slice(parents_exact.remainder());
        parents_so_far + 1
    } else {
        parents_so_far
    }
}

// The wide helper function returns (writes out) an array of chaining values
// and returns the length of that array. The number of chaining values returned
// is the dynamically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
// if the input is shorter than that many chunks. The reason for maintaining a
// wide array of chaining values going back up the tree, is to allow the
// implementation to hash as many parents in parallel as possible.
//
// As a special case when the SIMD degree is 1, this function will still return
// at least 2 outputs. This guarantees that this function doesn't perform the
// root compression. (If it did, it would use the wrong flags, and also we
// wouldn't be able to implement exendable output.) Note that this function is
// not used when the whole input is only 1 chunk long; that's a different
// codepath.
//
// Why not just have the caller split the input on the first update(), instead
// of implementing this special rule? Because we don't want to limit SIMD or
// multithreading parallelism for that update().
fn compress_subtree_wide<J: join::Join>(
    input: &[u8],
    key: &CVWords,
    chunk_counter: u64,
    flags: u8,
    platform: Platform,
    out: &mut [u8],
) -> usize {
    // Note that the single chunk case does *not* bump the SIMD degree up to 2
    // when it is 1. This allows Rayon the option of multithreading even the
    // 2-chunk case, which can help performance on smaller platforms.
    if input.len() <= platform.simd_degree() * CHUNK_LEN {
        return compress_chunks_parallel(input, key, chunk_counter, flags, platform, out);
    }

    // With more than simd_degree chunks, we need to recurse. Start by dividing
    // the input into left and right subtrees. (Note that this is only optimal
    // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
    // of 3 or something, we'll need a more complicated strategy.)
    debug_assert_eq!(platform.simd_degree().count_ones(), 1, "power of 2");
    let (left, right) = input.split_at(left_len(input.len()));
    let right_chunk_counter = chunk_counter + (left.len() / CHUNK_LEN) as u64;

    // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
    // account for the special case of returning 2 outputs when the SIMD degree
    // is 1.
    let mut cv_array = [0; 2 * MAX_SIMD_DEGREE_OR_2 * OUT_LEN];
    let degree = if left.len() == CHUNK_LEN {
        // The "simd_degree=1 and we're at the leaf nodes" case.
        debug_assert_eq!(platform.simd_degree(), 1);
        1
    } else {
        cmp::max(platform.simd_degree(), 2)
    };
    let (left_out, right_out) = cv_array.split_at_mut(degree * OUT_LEN);

    // Recurse! For update_rayon(), this is where we take advantage of RayonJoin and use multiple
    // threads.
    let (left_n, right_n) = J::join(
        || compress_subtree_wide::<J>(left, key, chunk_counter, flags, platform, left_out),
        || compress_subtree_wide::<J>(right, key, right_chunk_counter, flags, platform, right_out),
    );

    // The special case again. If simd_degree=1, then we'll have left_n=1 and
    // right_n=1. Rather than compressing them into a single output, return
    // them directly, to make sure we always have at least two outputs.
    debug_assert_eq!(left_n, degree);
    debug_assert!(right_n >= 1 && right_n <= left_n);
    if left_n == 1 {
        out[..2 * OUT_LEN].copy_from_slice(&cv_array[..2 * OUT_LEN]);
        return 2;
    }

    // Otherwise, do one layer of parent node compression.
    let num_children = left_n + right_n;
    compress_parents_parallel(
        &cv_array[..num_children * OUT_LEN],
        key,
        flags,
        platform,
        out,
    )
}

// Hash a subtree with compress_subtree_wide(), and then condense the resulting
// list of chaining values down to a single parent node. Don't compress that
// last parent node, however. Instead, return its message bytes (the
// concatenated chaining values of its children). This is necessary when the
// first call to update() supplies a complete subtree, because the topmost
// parent node of that subtree could end up being the root. It's also necessary
// for extended output in the general case.
//
// As with compress_subtree_wide(), this function is not used on inputs of 1
// chunk or less. That's a different codepath.
fn compress_subtree_to_parent_node<J: join::Join>(
    input: &[u8],
    key: &CVWords,
    chunk_counter: u64,
    flags: u8,
    platform: Platform,
) -> [u8; BLOCK_LEN] {
    debug_assert!(input.len() > CHUNK_LEN);
    let mut cv_array = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN];
    let mut num_cvs =
        compress_subtree_wide::<J>(input, &key, chunk_counter, flags, platform, &mut cv_array);
    debug_assert!(num_cvs >= 2);

    // If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
    // compress_subtree_wide() returns more than 2 chaining values. Condense
    // them into 2 by forming parent nodes repeatedly.
    let mut out_array = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN / 2];
    while num_cvs > 2 {
        let cv_slice = &cv_array[..num_cvs * OUT_LEN];
        num_cvs = compress_parents_parallel(cv_slice, key, flags, platform, &mut out_array);
        cv_array[..num_cvs * OUT_LEN].copy_from_slice(&out_array[..num_cvs * OUT_LEN]);
    }
    *array_ref!(cv_array, 0, 2 * OUT_LEN)
}

// Hash a complete input all at once. Unlike compress_subtree_wide() and
// compress_subtree_to_parent_node(), this function handles the 1 chunk case.
fn hash_all_at_once<J: join::Join>(input: &[u8], key: &CVWords, flags: u8) -> Output {
    let platform = Platform::detect();

    // If the whole subtree is one chunk, hash it directly with a ChunkState.
    if input.len() <= CHUNK_LEN {
        return ChunkState::new(key, 0, flags, platform)
            .update(input)
            .output();
    }

    // Otherwise construct an Output object from the parent node returned by
    // compress_subtree_to_parent_node().
    Output {
        input_chaining_value: *key,
        block: compress_subtree_to_parent_node::<J>(input, key, 0, flags, platform),
        block_len: BLOCK_LEN as u8,
        counter: 0,
        flags: flags | PARENT,
        platform,
    }
}

/// The default hash function.
///
/// For an incremental version that accepts multiple writes, see
/// [`Hasher::update`].
///
/// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`] and
/// [`OutputReader`].
///
/// This function is always single-threaded. For multithreading support, see
/// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon).
pub fn hash(input: &[u8]) -> Hash {
    hash_all_at_once::<join::SerialJoin>(input, IV, 0).root_hash()
}

/// The keyed hash function.
///
/// This is suitable for use as a message authentication code, for example to
/// replace an HMAC instance. In that use case, the constant-time equality
/// checking provided by [`Hash`](struct.Hash.html) is almost always a security
/// requirement, and callers need to be careful not to compare MACs as raw
/// bytes.
///
/// For output sizes other than 32 bytes, see [`Hasher::new_keyed`],
/// [`Hasher::finalize_xof`], and [`OutputReader`].
///
/// This function is always single-threaded. For multithreading support, see
/// [`Hasher::new_keyed`] and
/// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon).
pub fn keyed_hash(key: &[u8; KEY_LEN], input: &[u8]) -> Hash {
    let key_words = platform::words_from_le_bytes_32(key);
    hash_all_at_once::<join::SerialJoin>(input, &key_words, KEYED_HASH).root_hash()
}

/// The key derivation function.
///
/// Given cryptographic key material of any length and a context string of any
/// length, this function outputs a 32-byte derived subkey. **The context string
/// should be hardcoded, globally unique, and application-specific.** A good
/// default format for such strings is `"[application] [commit timestamp]
/// [purpose]"`, e.g., `"example.com 2019-12-25 16:18:03 session tokens v1"`.
///
/// Key derivation is important when you want to use the same key in multiple
/// algorithms or use cases. Using the same key with different cryptographic
/// algorithms is generally forbidden, and deriving a separate subkey for each
/// use case protects you from bad interactions. Derived keys also mitigate the
/// damage from one part of your application accidentally leaking its key.
///
/// As a rare exception to that general rule, however, it is possible to use
/// `derive_key` itself with key material that you are already using with
/// another algorithm. You might need to do this if you're adding features to
/// an existing application, which does not yet use key derivation internally.
/// However, you still must not share key material with algorithms that forbid
/// key reuse entirely, like a one-time pad. For more on this, see sections 6.2
/// and 7.8 of the [BLAKE3 paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf).
///
/// Note that BLAKE3 is not a password hash, and **`derive_key` should never be
/// used with passwords.** Instead, use a dedicated password hash like
/// [Argon2]. Password hashes are entirely different from generic hash
/// functions, with opposite design requirements.
///
/// For output sizes other than 32 bytes, see [`Hasher::new_derive_key`],
/// [`Hasher::finalize_xof`], and [`OutputReader`].
///
/// This function is always single-threaded. For multithreading support, see
/// [`Hasher::new_derive_key`] and
/// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon).
///
/// [Argon2]: https://en.wikipedia.org/wiki/Argon2
pub fn derive_key(context: &str, key_material: &[u8]) -> [u8; OUT_LEN] {
    let context_key =
        hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT)
            .root_hash();
    let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes());
    hash_all_at_once::<join::SerialJoin>(key_material, &context_key_words, DERIVE_KEY_MATERIAL)
        .root_hash()
        .0
}

fn parent_node_output(
    left_child: &CVBytes,
    right_child: &CVBytes,
    key: &CVWords,
    flags: u8,
    platform: Platform,
) -> Output {
    let mut block = [0; BLOCK_LEN];
    block[..32].copy_from_slice(left_child);
    block[32..].copy_from_slice(right_child);
    Output {
        input_chaining_value: *key,
        block,
        block_len: BLOCK_LEN as u8,
        counter: 0,
        flags: flags | PARENT,
        platform,
    }
}

/// An incremental hash state that can accept any number of writes.
///
/// When the `traits-preview` Cargo feature is enabled, this type implements
/// several commonly used traits from the
/// [`digest`](https://crates.io/crates/digest) crate. However, those
/// traits aren't stable, and they're expected to change in incompatible ways
/// before that crate reaches 1.0. For that reason, this crate makes no SemVer
/// guarantees for this feature, and callers who use it should expect breaking
/// changes between patch versions.
///
/// When the `rayon` Cargo feature is enabled, the
/// [`update_rayon`](#method.update_rayon) method is available for multithreaded
/// hashing.
///
/// **Performance note:** The [`update`](#method.update) method can't take full
/// advantage of SIMD optimizations if its input buffer is too small or oddly
/// sized. Using a 16 KiB buffer, or any multiple of that, enables all currently
/// supported SIMD instruction sets.
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // Hash an input incrementally.
/// let mut hasher = blake3::Hasher::new();
/// hasher.update(b"foo");
/// hasher.update(b"bar");
/// hasher.update(b"baz");
/// assert_eq!(hasher.finalize(), blake3::hash(b"foobarbaz"));
///
/// // Extended output. OutputReader also implements Read and Seek.
/// # #[cfg(feature = "std")] {
/// let mut output = [0; 1000];
/// let mut output_reader = hasher.finalize_xof();
/// output_reader.fill(&mut output);
/// assert_eq!(&output[..32], blake3::hash(b"foobarbaz").as_bytes());
/// # }
/// # Ok(())
/// # }
/// ```
#[derive(Clone)]
pub struct Hasher {
    key: CVWords,
    chunk_state: ChunkState,
    // The stack size is MAX_DEPTH + 1 because we do lazy merging. For example,
    // with 7 chunks, we have 3 entries in the stack. Adding an 8th chunk
    // requires a 4th entry, rather than merging everything down to 1, because
    // we don't know whether more input is coming. This is different from how
    // the reference implementation does things.
    cv_stack: ArrayVec<CVBytes, { MAX_DEPTH + 1 }>,
}

impl Hasher {
    fn new_internal(key: &CVWords, flags: u8) -> Self {
        Self {
            key: *key,
            chunk_state: ChunkState::new(key, 0, flags, Platform::detect()),
            cv_stack: ArrayVec::new(),
        }
    }

    /// Construct a new `Hasher` for the regular hash function.
    pub fn new() -> Self {
        Self::new_internal(IV, 0)
    }

    /// Construct a new `Hasher` for the keyed hash function. See
    /// [`keyed_hash`].
    ///
    /// [`keyed_hash`]: fn.keyed_hash.html
    pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self {
        let key_words = platform::words_from_le_bytes_32(key);
        Self::new_internal(&key_words, KEYED_HASH)
    }

    /// Construct a new `Hasher` for the key derivation function. See
    /// [`derive_key`]. The context string should be hardcoded, globally
    /// unique, and application-specific.
    ///
    /// [`derive_key`]: fn.derive_key.html
    pub fn new_derive_key(context: &str) -> Self {
        let context_key =
            hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT)
                .root_hash();
        let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes());
        Self::new_internal(&context_key_words, DERIVE_KEY_MATERIAL)
    }

    /// Reset the `Hasher` to its initial state.
    ///
    /// This is functionally the same as overwriting the `Hasher` with a new
    /// one, using the same key or context string if any.
    pub fn reset(&mut self) -> &mut Self {
        self.chunk_state = ChunkState::new(
            &self.key,
            0,
            self.chunk_state.flags,
            self.chunk_state.platform,
        );
        self.cv_stack.clear();
        self
    }

    // As described in push_cv() below, we do "lazy merging", delaying merges
    // until right before the next CV is about to be added. This is different
    // from the reference implementation. Another difference is that we aren't
    // always merging 1 chunk at a time. Instead, each CV might represent any
    // power-of-two number of chunks, as long as the smaller-above-larger stack
    // order is maintained. Instead of the "count the trailing 0-bits"
    // algorithm described in the spec, we use a "count the total number of
    // 1-bits" variant that doesn't require us to retain the subtree size of
    // the CV on top of the stack. The principle is the same: each CV that
    // should remain in the stack is represented by a 1-bit in the total number
    // of chunks (or bytes) so far.
    fn merge_cv_stack(&mut self, total_len: u64) {
        let post_merge_stack_len = total_len.count_ones() as usize;
        while self.cv_stack.len() > post_merge_stack_len {
            let right_child = self.cv_stack.pop().unwrap();
            let left_child = self.cv_stack.pop().unwrap();
            let parent_output = parent_node_output(
                &left_child,
                &right_child,
                &self.key,
                self.chunk_state.flags,
                self.chunk_state.platform,
            );
            self.cv_stack.push(parent_output.chaining_value());
        }
    }

    // In reference_impl.rs, we merge the new CV with existing CVs from the
    // stack before pushing it. We can do that because we know more input is
    // coming, so we know none of the merges are root.
    //
    // This setting is different. We want to feed as much input as possible to
    // compress_subtree_wide(), without setting aside anything for the
    // chunk_state. If the user gives us 64 KiB, we want to parallelize over
    // all 64 KiB at once as a single subtree, if at all possible.
    //
    // This leads to two problems:
    // 1) This 64 KiB input might be the only call that ever gets made to
    //    update. In this case, the root node of the 64 KiB subtree would be
    //    the root node of the whole tree, and it would need to be ROOT
    //    finalized. We can't compress it until we know.
    // 2) This 64 KiB input might complete a larger tree, whose root node is
    //    similarly going to be the the root of the whole tree. For example,
    //    maybe we have 196 KiB (that is, 128 + 64) hashed so far. We can't
    //    compress the node at the root of the 256 KiB subtree until we know
    //    how to finalize it.
    //
    // The second problem is solved with "lazy merging". That is, when we're
    // about to add a CV to the stack, we don't merge it with anything first,
    // as the reference impl does. Instead we do merges using the *previous* CV
    // that was added, which is sitting on top of the stack, and we put the new
    // CV (unmerged) on top of the stack afterwards. This guarantees that we
    // never merge the root node until finalize().
    //
    // Solving the first problem requires an additional tool,
    // compress_subtree_to_parent_node(). That function always returns the top
    // *two* chaining values of the subtree it's compressing. We then do lazy
    // merging with each of them separately, so that the second CV will always
    // remain unmerged. (That also helps us support extendable output when
    // we're hashing an input all-at-once.)
    fn push_cv(&mut self, new_cv: &CVBytes, chunk_counter: u64) {
        self.merge_cv_stack(chunk_counter);
        self.cv_stack.push(*new_cv);
    }

    /// Add input bytes to the hash state. You can call this any number of
    /// times.
    ///
    /// This method is always single-threaded. For multithreading support, see
    /// [`update_rayon`](#method.update_rayon) below (enabled with the `rayon`
    /// Cargo feature).
    ///
    /// Note that the degree of SIMD parallelism that `update` can use is
    /// limited by the size of this input buffer. The 8 KiB buffer currently
    /// used by [`std::io::copy`] is enough to leverage AVX2, for example, but
    /// not enough to leverage AVX-512. A 16 KiB buffer is large enough to
    /// leverage all currently supported SIMD instruction sets.
    ///
    /// [`std::io::copy`]: https://doc.rust-lang.org/std/io/fn.copy.html
    pub fn update(&mut self, input: &[u8]) -> &mut Self {
        self.update_with_join::<join::SerialJoin>(input)
    }

    /// Identical to [`update`](Hasher::update), but using Rayon-based
    /// multithreading internally.
    ///
    /// This method is gated by the `rayon` Cargo feature, which is disabled by
    /// default but enabled on [docs.rs](https://docs.rs).
    ///
    /// To get any performance benefit from multithreading, the input buffer
    /// needs to be large. As a rule of thumb on x86_64, `update_rayon` is
    /// _slower_ than `update` for inputs under 128 KiB. That threshold varies
    /// quite a lot across different processors, and it's important to benchmark
    /// your specific use case.
    ///
    /// Memory mapping an entire input file is a simple way to take advantage of
    /// multithreading without needing to carefully tune your buffer size or
    /// offload IO. However, on spinning disks where random access is expensive,
    /// that approach can lead to disk thrashing and terrible IO performance.
    /// Note that OS page caching can mask this problem, in which case it might
    /// only appear for files larger than available RAM. Again, benchmarking
    /// your specific use case is important.
    #[cfg(feature = "rayon")]
    pub fn update_rayon(&mut self, input: &[u8]) -> &mut Self {
        self.update_with_join::<join::RayonJoin>(input)
    }

    fn update_with_join<J: join::Join>(&mut self, mut input: &[u8]) -> &mut Self {
        // If we have some partial chunk bytes in the internal chunk_state, we
        // need to finish that chunk first.
        if self.chunk_state.len() > 0 {
            let want = CHUNK_LEN - self.chunk_state.len();
            let take = cmp::min(want, input.len());
            self.chunk_state.update(&input[..take]);
            input = &input[take..];
            if !input.is_empty() {
                // We've filled the current chunk, and there's more input
                // coming, so we know it's not the root and we can finalize it.
                // Then we'll proceed to hashing whole chunks below.
                debug_assert_eq!(self.chunk_state.len(), CHUNK_LEN);
                let chunk_cv = self.chunk_state.output().chaining_value();
                self.push_cv(&chunk_cv, self.chunk_state.chunk_counter);
                self.chunk_state = ChunkState::new(
                    &self.key,
                    self.chunk_state.chunk_counter + 1,
                    self.chunk_state.flags,
                    self.chunk_state.platform,
                );
            } else {
                return self;
            }
        }

        // Now the chunk_state is clear, and we have more input. If there's
        // more than a single chunk (so, definitely not the root chunk), hash
        // the largest whole subtree we can, with the full benefits of SIMD and
        // multithreading parallelism. Two restrictions:
        // - The subtree has to be a power-of-2 number of chunks. Only subtrees
        //   along the right edge can be incomplete, and we don't know where
        //   the right edge is going to be until we get to finalize().
        // - The subtree must evenly divide the total number of chunks up until
        //   this point (if total is not 0). If the current incomplete subtree
        //   is only waiting for 1 more chunk, we can't hash a subtree of 4
        //   chunks. We have to complete the current subtree first.
        // Because we might need to break up the input to form powers of 2, or
        // to evenly divide what we already have, this part runs in a loop.
        while input.len() > CHUNK_LEN {
            debug_assert_eq!(self.chunk_state.len(), 0, "no partial chunk data");
            debug_assert_eq!(CHUNK_LEN.count_ones(), 1, "power of 2 chunk len");
            let mut subtree_len = largest_power_of_two_leq(input.len());
            let count_so_far = self.chunk_state.chunk_counter * CHUNK_LEN as u64;
            // Shrink the subtree_len until it evenly divides the count so far.
            // We know that subtree_len itself is a power of 2, so we can use a
            // bitmasking trick instead of an actual remainder operation. (Note
            // that if the caller consistently passes power-of-2 inputs of the
            // same size, as is hopefully typical, this loop condition will
            // always fail, and subtree_len will always be the full length of
            // the input.)
            //
            // An aside: We don't have to shrink subtree_len quite this much.
            // For example, if count_so_far is 1, we could pass 2 chunks to
            // compress_subtree_to_parent_node. Since we'll get 2 CVs back,
            // we'll still get the right answer in the end, and we might get to
            // use 2-way SIMD parallelism. The problem with this optimization,
            // is that it gets us stuck always hashing 2 chunks. The total
            // number of chunks will remain odd, and we'll never graduate to
            // higher degrees of parallelism. See
            // https://github.com/BLAKE3-team/BLAKE3/issues/69.
            while (subtree_len - 1) as u64 & count_so_far != 0 {
                subtree_len /= 2;
            }
            // The shrunken subtree_len might now be 1 chunk long. If so, hash
            // that one chunk by itself. Otherwise, compress the subtree into a
            // pair of CVs.
            let subtree_chunks = (subtree_len / CHUNK_LEN) as u64;
            if subtree_len <= CHUNK_LEN {
                debug_assert_eq!(subtree_len, CHUNK_LEN);
                self.push_cv(
                    &ChunkState::new(
                        &self.key,
                        self.chunk_state.chunk_counter,
                        self.chunk_state.flags,
                        self.chunk_state.platform,
                    )
                    .update(&input[..subtree_len])
                    .output()
                    .chaining_value(),
                    self.chunk_state.chunk_counter,
                );
            } else {
                // This is the high-performance happy path, though getting here
                // depends on the caller giving us a long enough input.
                let cv_pair = compress_subtree_to_parent_node::<J>(
                    &input[..subtree_len],
                    &self.key,
                    self.chunk_state.chunk_counter,
                    self.chunk_state.flags,
                    self.chunk_state.platform,
                );
                let left_cv = array_ref!(cv_pair, 0, 32);
                let right_cv = array_ref!(cv_pair, 32, 32);
                // Push the two CVs we received into the CV stack in order. Because
                // the stack merges lazily, this guarantees we aren't merging the
                // root.
                self.push_cv(left_cv, self.chunk_state.chunk_counter);
                self.push_cv(
                    right_cv,
                    self.chunk_state.chunk_counter + (subtree_chunks / 2),
                );
            }
            self.chunk_state.chunk_counter += subtree_chunks;
            input = &input[subtree_len..];
        }

        // What remains is 1 chunk or less. Add it to the chunk state.
        debug_assert!(input.len() <= CHUNK_LEN);
        if !input.is_empty() {
            self.chunk_state.update(input);
            // Having added some input to the chunk_state, we know what's in
            // the CV stack won't become the root node, and we can do an extra
            // merge. This simplifies finalize().
            self.merge_cv_stack(self.chunk_state.chunk_counter);
        }

        self
    }

    fn final_output(&self) -> Output {
        // If the current chunk is the only chunk, that makes it the root node
        // also. Convert it directly into an Output. Otherwise, we need to
        // merge subtrees below.
        if self.cv_stack.is_empty() {
            debug_assert_eq!(self.chunk_state.chunk_counter, 0);
            return self.chunk_state.output();
        }

        // If there are any bytes in the ChunkState, finalize that chunk and
        // merge its CV with everything in the CV stack. In that case, the work
        // we did at the end of update() above guarantees that the stack
        // doesn't contain any unmerged subtrees that need to be merged first.
        // (This is important, because if there were two chunk hashes sitting
        // on top of the stack, they would need to merge with each other, and
        // merging a new chunk hash into them would be incorrect.)
        //
        // If there are no bytes in the ChunkState, we'll merge what's already
        // in the stack. In this case it's fine if there are unmerged chunks on
        // top, because we'll merge them with each other. Note that the case of
        // the empty chunk is taken care of above.
        let mut output: Output;
        let mut num_cvs_remaining = self.cv_stack.len();
        if self.chunk_state.len() > 0 {
            debug_assert_eq!(
                self.cv_stack.len(),
                self.chunk_state.chunk_counter.count_ones() as usize,
                "cv stack does not need a merge"
            );
            output = self.chunk_state.output();
        } else {
            debug_assert!(self.cv_stack.len() >= 2);
            output = parent_node_output(
                &self.cv_stack[num_cvs_remaining - 2],
                &self.cv_stack[num_cvs_remaining - 1],
                &self.key,
                self.chunk_state.flags,
                self.chunk_state.platform,
            );
            num_cvs_remaining -= 2;
        }
        while num_cvs_remaining > 0 {
            output = parent_node_output(
                &self.cv_stack[num_cvs_remaining - 1],
                &output.chaining_value(),
                &self.key,
                self.chunk_state.flags,
                self.chunk_state.platform,
            );
            num_cvs_remaining -= 1;
        }
        output
    }

    /// Finalize the hash state and return the [`Hash`](struct.Hash.html) of
    /// the input.
    ///
    /// This method is idempotent. Calling it twice will give the same result.
    /// You can also add more input and finalize again.
    pub fn finalize(&self) -> Hash {
        self.final_output().root_hash()
    }

    /// Finalize the hash state and return an [`OutputReader`], which can
    /// supply any number of output bytes.
    ///
    /// This method is idempotent. Calling it twice will give the same result.
    /// You can also add more input and finalize again.
    ///
    /// [`OutputReader`]: struct.OutputReader.html
    pub fn finalize_xof(&self) -> OutputReader {
        OutputReader::new(self.final_output())
    }

    /// Return the total number of bytes hashed so far.
    pub fn count(&self) -> u64 {
        self.chunk_state.chunk_counter * CHUNK_LEN as u64 + self.chunk_state.len() as u64
    }
}

// Don't derive(Debug), because the state may be secret.
impl fmt::Debug for Hasher {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Hasher")
            .field("flags", &self.chunk_state.flags)
            .field("platform", &self.chunk_state.platform)
            .finish()
    }
}

impl Default for Hasher {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(feature = "std")]
impl std::io::Write for Hasher {
    /// This is equivalent to [`update`](#method.update).
    #[inline]
    fn write(&mut self, input: &[u8]) -> std::io::Result<usize> {
        self.update(input);
        Ok(input.len())
    }

    #[inline]
    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}

/// An incremental reader for extended output, returned by
/// [`Hasher::finalize_xof`](struct.Hasher.html#method.finalize_xof).
///
/// Shorter BLAKE3 outputs are prefixes of longer ones, and explicitly requesting a short output is
/// equivalent to truncating the default-length output. Note that this is a difference between
/// BLAKE2 and BLAKE3.
///
/// # Security notes
///
/// Outputs shorter than the default length of 32 bytes (256 bits) provide less security. An N-bit
/// BLAKE3 output is intended to provide N bits of first and second preimage resistance and N/2
/// bits of collision resistance, for any N up to 256. Longer outputs don't provide any additional
/// security.
///
/// Avoid relying on the secrecy of the output offset, that is, the number of output bytes read or
/// the arguments to [`seek`](struct.OutputReader.html#method.seek) or
/// [`set_position`](struct.OutputReader.html#method.set_position). [_Block-Cipher-Based Tree
/// Hashing_ by Aldo Gunsing](https://eprint.iacr.org/2022/283) shows that an attacker who knows
/// both the message and the key (if any) can easily determine the offset of an extended output.
/// For comparison, AES-CTR has a similar property: if you know the key, you can decrypt a block
/// from an unknown position in the output stream to recover its block index. Callers with strong
/// secret keys aren't affected in practice, but secret offsets are a [design
/// smell](https://en.wikipedia.org/wiki/Design_smell) in any case.
#[derive(Clone)]
pub struct OutputReader {
    inner: Output,
    position_within_block: u8,
}

impl OutputReader {
    fn new(inner: Output) -> Self {
        Self {
            inner,
            position_within_block: 0,
        }
    }

    /// Fill a buffer with output bytes and advance the position of the
    /// `OutputReader`. This is equivalent to [`Read::read`], except that it
    /// doesn't return a `Result`. Both methods always fill the entire buffer.
    ///
    /// Note that `OutputReader` doesn't buffer output bytes internally, so
    /// calling `fill` repeatedly with a short-length or odd-length slice will
    /// end up performing the same compression multiple times. If you're
    /// reading output in a loop, prefer a slice length that's a multiple of
    /// 64.
    ///
    /// The maximum output size of BLAKE3 is 2<sup>64</sup>-1 bytes. If you try
    /// to extract more than that, for example by seeking near the end and
    /// reading further, the behavior is unspecified.
    ///
    /// [`Read::read`]: #method.read
    pub fn fill(&mut self, mut buf: &mut [u8]) {
        while !buf.is_empty() {
            let block: [u8; BLOCK_LEN] = self.inner.root_output_block();
            let output_bytes = &block[self.position_within_block as usize..];
            let take = cmp::min(buf.len(), output_bytes.len());
            buf[..take].copy_from_slice(&output_bytes[..take]);
            buf = &mut buf[take..];
            self.position_within_block += take as u8;
            if self.position_within_block == BLOCK_LEN as u8 {
                self.inner.counter += 1;
                self.position_within_block = 0;
            }
        }
    }

    /// Return the current read position in the output stream. This is
    /// equivalent to [`Seek::stream_position`], except that it doesn't return
    /// a `Result`. The position of a new `OutputReader` starts at 0, and each
    /// call to [`fill`] or [`Read::read`] moves the position forward by the
    /// number of bytes read.
    ///
    /// [`Seek::stream_position`]: #method.stream_position
    /// [`fill`]: #method.fill
    /// [`Read::read`]: #method.read
    pub fn position(&self) -> u64 {
        self.inner.counter * BLOCK_LEN as u64 + self.position_within_block as u64
    }

    /// Seek to a new read position in the output stream. This is equivalent to
    /// calling [`Seek::seek`] with [`SeekFrom::Start`], except that it doesn't
    /// return a `Result`.
    ///
    /// [`Seek::seek`]: #method.seek
    /// [`SeekFrom::Start`]: https://doc.rust-lang.org/std/io/enum.SeekFrom.html
    pub fn set_position(&mut self, position: u64) {
        self.position_within_block = (position % BLOCK_LEN as u64) as u8;
        self.inner.counter = position / BLOCK_LEN as u64;
    }
}

// Don't derive(Debug), because the state may be secret.
impl fmt::Debug for OutputReader {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("OutputReader")
            .field("position", &self.position())
            .finish()
    }
}

#[cfg(feature = "std")]
impl std::io::Read for OutputReader {
    #[inline]
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        self.fill(buf);
        Ok(buf.len())
    }
}

#[cfg(feature = "std")]
impl std::io::Seek for OutputReader {
    fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
        let max_position = u64::max_value() as i128;
        let target_position: i128 = match pos {
            std::io::SeekFrom::Start(x) => x as i128,
            std::io::SeekFrom::Current(x) => self.position() as i128 + x as i128,
            std::io::SeekFrom::End(_) => {
                return Err(std::io::Error::new(
                    std::io::ErrorKind::InvalidInput,
                    "seek from end not supported",
                ));
            }
        };
        if target_position < 0 {
            return Err(std::io::Error::new(
                std::io::ErrorKind::InvalidInput,
                "seek before start",
            ));
        }
        self.set_position(cmp::min(target_position, max_position) as u64);
        Ok(self.position())
    }
}