1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright 2019 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::iter;

use proc_macro2::Ident;
use syn::{
	spanned::Spanned,
	visit::{self, Visit},
	Generics, Result, Type, TypePath,
};

use crate::utils::{self, CustomTraitBound};

/// Visits the ast and checks if one of the given idents is found.
struct ContainIdents<'a> {
	result: bool,
	idents: &'a [Ident],
}

impl<'a, 'ast> Visit<'ast> for ContainIdents<'a> {
	fn visit_ident(&mut self, i: &'ast Ident) {
		if self.idents.iter().any(|id| id == i) {
			self.result = true;
		}
	}
}

/// Checks if the given type contains one of the given idents.
fn type_contain_idents(ty: &Type, idents: &[Ident]) -> bool {
	let mut visitor = ContainIdents { result: false, idents };
	visitor.visit_type(ty);
	visitor.result
}

/// Visits the ast and checks if the a type path starts with the given ident.
struct TypePathStartsWithIdent<'a> {
	result: bool,
	ident: &'a Ident,
}

impl<'a, 'ast> Visit<'ast> for TypePathStartsWithIdent<'a> {
	fn visit_type_path(&mut self, i: &'ast TypePath) {
		if let Some(segment) = i.path.segments.first() {
			if &segment.ident == self.ident {
				self.result = true;
				return
			}
		}

		visit::visit_type_path(self, i);
	}
}

/// Checks if the given type path or any containing type path starts with the given ident.
fn type_path_or_sub_starts_with_ident(ty: &TypePath, ident: &Ident) -> bool {
	let mut visitor = TypePathStartsWithIdent { result: false, ident };
	visitor.visit_type_path(ty);
	visitor.result
}

/// Checks if the given type or any containing type path starts with the given ident.
fn type_or_sub_type_path_starts_with_ident(ty: &Type, ident: &Ident) -> bool {
	let mut visitor = TypePathStartsWithIdent { result: false, ident };
	visitor.visit_type(ty);
	visitor.result
}

/// Visits the ast and collects all type paths that do not start or contain the given ident.
///
/// Returns `T`, `N`, `A` for `Vec<(Recursive<T, N>, A)>` with `Recursive` as ident.
struct FindTypePathsNotStartOrContainIdent<'a> {
	result: Vec<TypePath>,
	ident: &'a Ident,
}

impl<'a, 'ast> Visit<'ast> for FindTypePathsNotStartOrContainIdent<'a> {
	fn visit_type_path(&mut self, i: &'ast TypePath) {
		if type_path_or_sub_starts_with_ident(i, &self.ident) {
			visit::visit_type_path(self, i);
		} else {
			self.result.push(i.clone());
		}
	}
}

/// Collects all type paths that do not start or contain the given ident in the given type.
///
/// Returns `T`, `N`, `A` for `Vec<(Recursive<T, N>, A)>` with `Recursive` as ident.
fn find_type_paths_not_start_or_contain_ident(ty: &Type, ident: &Ident) -> Vec<TypePath> {
	let mut visitor = FindTypePathsNotStartOrContainIdent { result: Vec::new(), ident };
	visitor.visit_type(ty);
	visitor.result
}

/// Add required trait bounds to all generic types.
pub fn add<N>(
	input_ident: &Ident,
	generics: &mut Generics,
	data: &syn::Data,
	custom_trait_bound: Option<CustomTraitBound<N>>,
	codec_bound: syn::Path,
	codec_skip_bound: Option<syn::Path>,
	dumb_trait_bounds: bool,
	crate_path: &syn::Path,
) -> Result<()> {
	let skip_type_params = match custom_trait_bound {
		Some(CustomTraitBound::SpecifiedBounds { bounds, .. }) => {
			generics.make_where_clause().predicates.extend(bounds);
			return Ok(())
		},
		Some(CustomTraitBound::SkipTypeParams { type_names, .. }) =>
			type_names.into_iter().collect::<Vec<_>>(),
		None => Vec::new(),
	};

	let ty_params = generics
		.type_params()
		.filter_map(|tp| {
			skip_type_params.iter().all(|skip| skip != &tp.ident).then(|| tp.ident.clone())
		})
		.collect::<Vec<_>>();
	if ty_params.is_empty() {
		return Ok(())
	}

	let codec_types =
		get_types_to_add_trait_bound(input_ident, data, &ty_params, dumb_trait_bounds)?;

	let compact_types = collect_types(&data, utils::is_compact)?
		.into_iter()
		// Only add a bound if the type uses a generic
		.filter(|ty| type_contain_idents(ty, &ty_params))
		.collect::<Vec<_>>();

	let skip_types = if codec_skip_bound.is_some() {
		let needs_default_bound = |f: &syn::Field| utils::should_skip(&f.attrs);
		collect_types(&data, needs_default_bound)?
			.into_iter()
			// Only add a bound if the type uses a generic
			.filter(|ty| type_contain_idents(ty, &ty_params))
			.collect::<Vec<_>>()
	} else {
		Vec::new()
	};

	if !codec_types.is_empty() || !compact_types.is_empty() || !skip_types.is_empty() {
		let where_clause = generics.make_where_clause();

		codec_types
			.into_iter()
			.for_each(|ty| where_clause.predicates.push(parse_quote!(#ty : #codec_bound)));

		let has_compact_bound: syn::Path = parse_quote!(#crate_path::HasCompact);
		compact_types
			.into_iter()
			.for_each(|ty| where_clause.predicates.push(parse_quote!(#ty : #has_compact_bound)));

		skip_types.into_iter().for_each(|ty| {
			let codec_skip_bound = codec_skip_bound.as_ref();
			where_clause.predicates.push(parse_quote!(#ty : #codec_skip_bound))
		});
	}

	Ok(())
}

/// Returns all types that must be added to the where clause with the respective trait bound.
fn get_types_to_add_trait_bound(
	input_ident: &Ident,
	data: &syn::Data,
	ty_params: &[Ident],
	dumb_trait_bound: bool,
) -> Result<Vec<Type>> {
	if dumb_trait_bound {
		Ok(ty_params.iter().map(|t| parse_quote!( #t )).collect())
	} else {
		let needs_codec_bound = |f: &syn::Field| {
			!utils::is_compact(f) &&
				utils::get_encoded_as_type(f).is_none() &&
				!utils::should_skip(&f.attrs)
		};
		let res = collect_types(&data, needs_codec_bound)?
			.into_iter()
			// Only add a bound if the type uses a generic
			.filter(|ty| type_contain_idents(ty, &ty_params))
			// If a struct contains itself as field type, we can not add this type into the where
			// clause. This is required to work a round the following compiler bug: https://github.com/rust-lang/rust/issues/47032
			.flat_map(|ty| {
				find_type_paths_not_start_or_contain_ident(&ty, input_ident)
					.into_iter()
					.map(|ty| Type::Path(ty.clone()))
					// Remove again types that do not contain any of our generic parameters
					.filter(|ty| type_contain_idents(ty, &ty_params))
					// Add back the original type, as we don't want to loose it.
					.chain(iter::once(ty))
			})
			// Remove all remaining types that start/contain the input ident to not have them in the
			// where clause.
			.filter(|ty| !type_or_sub_type_path_starts_with_ident(ty, input_ident))
			.collect();

		Ok(res)
	}
}

fn collect_types(data: &syn::Data, type_filter: fn(&syn::Field) -> bool) -> Result<Vec<syn::Type>> {
	use syn::*;

	let types = match *data {
		Data::Struct(ref data) => match &data.fields {
			| Fields::Named(FieldsNamed { named: fields, .. }) |
			Fields::Unnamed(FieldsUnnamed { unnamed: fields, .. }) =>
				fields.iter().filter(|f| type_filter(f)).map(|f| f.ty.clone()).collect(),

			Fields::Unit => Vec::new(),
		},

		Data::Enum(ref data) => data
			.variants
			.iter()
			.filter(|variant| !utils::should_skip(&variant.attrs))
			.flat_map(|variant| match &variant.fields {
				| Fields::Named(FieldsNamed { named: fields, .. }) |
				Fields::Unnamed(FieldsUnnamed { unnamed: fields, .. }) =>
					fields.iter().filter(|f| type_filter(f)).map(|f| f.ty.clone()).collect(),

				Fields::Unit => Vec::new(),
			})
			.collect(),

		Data::Union(ref data) =>
			return Err(Error::new(data.union_token.span(), "Union types are not supported.")),
	};

	Ok(types)
}