1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
//! Implementation of a vanilla ABI, shared between several machines. The
//! implementation here assumes that arguments will be passed in registers
//! first, then additional args on the stack; that the stack grows downward,
//! contains a standard frame (return address and frame pointer), and the
//! compiler is otherwise free to allocate space below that with its choice of
//! layout; and that the machine has some notion of caller- and callee-save
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
//! mold and thus both of these backends use this shared implementation.
//!
//! See the documentation in specific machine backends for the "instantiation"
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
//! and return values, and any other special requirements.
//!
//! For now the implementation here assumes a 64-bit machine, but we intend to
//! make this 32/64-bit-generic shortly.
//!
//! # Vanilla ABI
//!
//! First, arguments and return values are passed in registers up to a certain
//! fixed count, after which they overflow onto the stack. Multiple return
//! values either fit in registers, or are returned in a separate return-value
//! area on the stack, given by a hidden extra parameter.
//!
//! Note that the exact stack layout is up to us. We settled on the
//! below design based on several requirements. In particular, we need
//! to be able to generate instructions (or instruction sequences) to
//! access arguments, stack slots, and spill slots before we know how
//! many spill slots or clobber-saves there will be, because of our
//! pass structure. We also prefer positive offsets to negative
//! offsets because of an asymmetry in some machines' addressing modes
//! (e.g., on AArch64, positive offsets have a larger possible range
//! without a long-form sequence to synthesize an arbitrary
//! offset). We also need clobber-save registers to be "near" the
//! frame pointer: Windows unwind information requires it to be within
//! 240 bytes of RBP. Finally, it is not allowed to access memory
//! below the current SP value.
//!
//! We assume that a prologue first pushes the frame pointer (and
//! return address above that, if the machine does not do that in
//! hardware). We set FP to point to this two-word frame record. We
//! store all other frame slots below this two-word frame record, with
//! the stack pointer remaining at or below this fixed frame storage
//! for the rest of the function. We can then access frame storage
//! slots using positive offsets from SP. In order to allow codegen
//! for the latter before knowing how SP might be adjusted around
//! callsites, we implement a "nominal SP" tracking feature by which a
//! fixup (distance between actual SP and a "nominal" SP) is known at
//! each instruction.
//!
//! Note that if we ever support dynamic stack-space allocation (for
//! `alloca`), we will need a way to reference spill slots and stack
//! slots without "nominal SP", because we will no longer be able to
//! know a static offset from SP to the slots at any particular
//! program point. Probably the best solution at that point will be to
//! revert to using the frame pointer as the reference for all slots,
//! and creating a "nominal FP" synthetic addressing mode (analogous
//! to "nominal SP" today) to allow generating spill/reload and
//! stackslot accesses before we know how large the clobber-saves will
//! be.
//!
//! # Stack Layout
//!
//! The stack looks like:
//!
//! ```plain
//!   (high address)
//!
//!                              +---------------------------+
//!                              |          ...              |
//!                              | stack args                |
//!                              | (accessed via FP)         |
//!                              +---------------------------+
//! SP at function entry ----->  | return address            |
//!                              +---------------------------+
//! FP after prologue -------->  | FP (pushed by prologue)   |
//!                              +---------------------------+
//!                              |          ...              |
//!                              | clobbered callee-saves    |
//! unwind-frame base     ---->  | (pushed by prologue)      |
//!                              +---------------------------+
//!                              |          ...              |
//!                              | spill slots               |
//!                              | (accessed via nominal SP) |
//!                              |          ...              |
//!                              | stack slots               |
//!                              | (accessed via nominal SP) |
//! nominal SP --------------->  | (alloc'd by prologue)     |
//! (SP at end of prologue)      +---------------------------+
//!                              | [alignment as needed]     |
//!                              |          ...              |
//!                              | args for call             |
//! SP before making a call -->  | (pushed at callsite)      |
//!                              +---------------------------+
//!
//!   (low address)
//! ```
//!
//! # Multi-value Returns
//!
//! We support multi-value returns by using multiple return-value
//! registers. In some cases this is an extension of the base system
//! ABI. See each platform's `abi.rs` implementation for details.

use crate::binemit::StackMap;
use crate::entity::{PrimaryMap, SecondaryMap};
use crate::fx::FxHashMap;
use crate::ir::types::*;
use crate::ir::{ArgumentExtension, ArgumentPurpose, DynamicStackSlot, Signature, StackSlot};
use crate::isa::TargetIsa;
use crate::settings;
use crate::settings::ProbestackStrategy;
use crate::CodegenResult;
use crate::{ir, isa};
use crate::{machinst::*, trace};
use alloc::vec::Vec;
use regalloc2::{PReg, PRegSet};
use smallvec::{smallvec, SmallVec};
use std::collections::HashMap;
use std::convert::TryFrom;
use std::marker::PhantomData;
use std::mem;

/// A small vector of instructions (with some reasonable size); appropriate for
/// a small fixed sequence implementing one operation.
pub type SmallInstVec<I> = SmallVec<[I; 4]>;

/// A location for (part of) an argument or return value. These "storage slots"
/// are specified for each register-sized part of an argument.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ABIArgSlot {
    /// In a real register.
    Reg {
        /// Register that holds this arg.
        reg: RealReg,
        /// Value type of this arg.
        ty: ir::Type,
        /// Should this arg be zero- or sign-extended?
        extension: ir::ArgumentExtension,
    },
    /// Arguments only: on stack, at given offset from SP at entry.
    Stack {
        /// Offset of this arg relative to the base of stack args.
        offset: i64,
        /// Value type of this arg.
        ty: ir::Type,
        /// Should this arg be zero- or sign-extended?
        extension: ir::ArgumentExtension,
    },
}

impl ABIArgSlot {
    /// The type of the value that will be stored in this slot.
    pub fn get_type(&self) -> ir::Type {
        match self {
            ABIArgSlot::Reg { ty, .. } => *ty,
            ABIArgSlot::Stack { ty, .. } => *ty,
        }
    }
}

/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
/// super rare (and never happen with Wasm).
pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;

/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
/// Value to be passed with its parts in more than one location at the ABI
/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
/// number of "parts" should correspond to the number of registers used to store
/// this type according to the machine backend.
///
/// As an invariant, the `purpose` for every part must match. As a further
/// invariant, a `StructArg` part cannot appear with any other part.
#[derive(Clone, Debug)]
pub enum ABIArg {
    /// Storage slots (registers or stack locations) for each part of the
    /// argument value. The number of slots must equal the number of register
    /// parts used to store a value of this type.
    Slots {
        /// Slots, one per register part.
        slots: ABIArgSlotVec,
        /// Purpose of this arg.
        purpose: ir::ArgumentPurpose,
    },
    /// Structure argument. We reserve stack space for it, but the CLIF-level
    /// semantics are a little weird: the value passed to the call instruction,
    /// and received in the corresponding block param, is a *pointer*. On the
    /// caller side, we memcpy the data from the passed-in pointer to the stack
    /// area; on the callee side, we compute a pointer to this stack area and
    /// provide that as the argument's value.
    StructArg {
        /// Register or stack slot holding a pointer to the buffer as passed
        /// by the caller to the callee.  If None, the ABI defines the buffer
        /// to reside at a well-known location (i.e. at `offset` below).
        pointer: Option<ABIArgSlot>,
        /// Offset of this arg relative to base of stack args.
        offset: i64,
        /// Size of this arg on the stack.
        size: u64,
        /// Purpose of this arg.
        purpose: ir::ArgumentPurpose,
    },
    /// Implicit argument. Similar to a StructArg, except that we have the
    /// target type, not a pointer type, at the CLIF-level. This argument is
    /// still being passed via reference implicitly.
    ImplicitPtrArg {
        /// Register or stack slot holding a pointer to the buffer.
        pointer: ABIArgSlot,
        /// Offset of the argument buffer.
        offset: i64,
        /// Type of the implicit argument.
        ty: Type,
        /// Purpose of this arg.
        purpose: ir::ArgumentPurpose,
    },
}

impl ABIArg {
    /// Create an ABIArg from one register.
    pub fn reg(
        reg: RealReg,
        ty: ir::Type,
        extension: ir::ArgumentExtension,
        purpose: ir::ArgumentPurpose,
    ) -> ABIArg {
        ABIArg::Slots {
            slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
            purpose,
        }
    }

    /// Create an ABIArg from one stack slot.
    pub fn stack(
        offset: i64,
        ty: ir::Type,
        extension: ir::ArgumentExtension,
        purpose: ir::ArgumentPurpose,
    ) -> ABIArg {
        ABIArg::Slots {
            slots: smallvec![ABIArgSlot::Stack {
                offset,
                ty,
                extension,
            }],
            purpose,
        }
    }
}

/// Are we computing information about arguments or return values? Much of the
/// handling is factored out into common routines; this enum allows us to
/// distinguish which case we're handling.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ArgsOrRets {
    /// Arguments.
    Args,
    /// Return values.
    Rets,
}

/// Abstract location for a machine-specific ABI impl to translate into the
/// appropriate addressing mode.
#[derive(Clone, Copy, Debug)]
pub enum StackAMode {
    /// Offset from the frame pointer, possibly making use of a specific type
    /// for a scaled indexing operation.
    FPOffset(i64, ir::Type),
    /// Offset from the nominal stack pointer, possibly making use of a specific
    /// type for a scaled indexing operation.
    NominalSPOffset(i64, ir::Type),
    /// Offset from the real stack pointer, possibly making use of a specific
    /// type for a scaled indexing operation.
    SPOffset(i64, ir::Type),
}

impl StackAMode {
    /// Offset by an addend.
    pub fn offset(self, addend: i64) -> Self {
        match self {
            StackAMode::FPOffset(off, ty) => StackAMode::FPOffset(off + addend, ty),
            StackAMode::NominalSPOffset(off, ty) => StackAMode::NominalSPOffset(off + addend, ty),
            StackAMode::SPOffset(off, ty) => StackAMode::SPOffset(off + addend, ty),
        }
    }
}

/// Trait implemented by machine-specific backend to represent ISA flags.
pub trait IsaFlags: Clone {}

/// Trait implemented by machine-specific backend to provide information about
/// register assignments and to allow generating the specific instructions for
/// stack loads/saves, prologues/epilogues, etc.
pub trait ABIMachineSpec {
    /// The instruction type.
    type I: VCodeInst;

    /// The ISA flags type.
    type F: IsaFlags;

    /// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
    fn word_bits() -> u32;

    /// Returns the number of bytes in a word.
    fn word_bytes() -> u32 {
        return Self::word_bits() / 8;
    }

    /// Returns word-size integer type.
    fn word_type() -> Type {
        match Self::word_bits() {
            32 => I32,
            64 => I64,
            _ => unreachable!(),
        }
    }

    /// Returns word register class.
    fn word_reg_class() -> RegClass {
        RegClass::Int
    }

    /// Returns required stack alignment in bytes.
    fn stack_align(call_conv: isa::CallConv) -> u32;

    /// Process a list of parameters or return values and allocate them to registers
    /// and stack slots.
    ///
    /// Returns the list of argument locations, the stack-space used (rounded up
    /// to as alignment requires), and if `add_ret_area_ptr` was passed, the
    /// index of the extra synthetic arg that was added.
    fn compute_arg_locs(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        params: &[ir::AbiParam],
        args_or_rets: ArgsOrRets,
        add_ret_area_ptr: bool,
    ) -> CodegenResult<(ABIArgVec, i64, Option<usize>)>;

    /// Returns the offset from FP to the argument area, i.e., jumping over the saved FP, return
    /// address, and maybe other standard elements depending on ABI (e.g. Wasm TLS reg).
    fn fp_to_arg_offset(call_conv: isa::CallConv, flags: &settings::Flags) -> i64;

    /// Generate a load from the stack.
    fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;

    /// Generate a store to the stack.
    fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;

    /// Generate a move.
    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;

    /// Generate an integer-extend operation.
    fn gen_extend(
        to_reg: Writable<Reg>,
        from_reg: Reg,
        is_signed: bool,
        from_bits: u8,
        to_bits: u8,
    ) -> Self::I;

    /// Generate a return instruction.
    fn gen_ret(setup_frame: bool, isa_flags: &Self::F, rets: Vec<Reg>) -> Self::I;

    /// Generate an add-with-immediate. Note that even if this uses a scratch
    /// register, it must satisfy two requirements:
    ///
    /// - The add-imm sequence must only clobber caller-save registers, because
    ///   it will be placed in the prologue before the clobbered callee-save
    ///   registers are saved.
    ///
    /// - The add-imm sequence must work correctly when `from_reg` and/or
    ///   `into_reg` are the register returned by `get_stacklimit_reg()`.
    fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Self::I>;

    /// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
    /// the stack pointer is less than the given limit register (assuming the
    /// stack grows downward).
    fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;

    /// Generate an instruction to compute an address of a stack slot (FP- or
    /// SP-based offset).
    fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;

    /// Get a fixed register to use to compute a stack limit. This is needed for
    /// certain sequences generated after the register allocator has already
    /// run. This must satisfy two requirements:
    ///
    /// - It must be a caller-save register, because it will be clobbered in the
    ///   prologue before the clobbered callee-save registers are saved.
    ///
    /// - It must be safe to pass as an argument and/or destination to
    ///   `gen_add_imm()`. This is relevant when an addition with a large
    ///   immediate needs its own temporary; it cannot use the same fixed
    ///   temporary as this one.
    fn get_stacklimit_reg() -> Reg;

    /// Generate a store to the given [base+offset] address.
    fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;

    /// Generate a load from the given [base+offset] address.
    fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;

    /// Adjust the stack pointer up or down.
    fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;

    /// Generate a meta-instruction that adjusts the nominal SP offset.
    fn gen_nominal_sp_adj(amount: i32) -> Self::I;

    /// Generates the mandatory part of the prologue, irrespective of whether
    /// the usual frame-setup sequence for this architecture is required or not,
    /// e.g. extra unwind instructions.
    fn gen_prologue_start(
        _setup_frame: bool,
        _call_conv: isa::CallConv,
        _flags: &settings::Flags,
        _isa_flags: &Self::F,
    ) -> SmallInstVec<Self::I> {
        // By default, generates nothing.
        smallvec![]
    }

    /// Generate the usual frame-setup sequence for this architecture: e.g.,
    /// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
    /// AArch64.
    fn gen_prologue_frame_setup(flags: &settings::Flags) -> SmallInstVec<Self::I>;

    /// Generate the usual frame-restore sequence for this architecture.
    fn gen_epilogue_frame_restore(flags: &settings::Flags) -> SmallInstVec<Self::I>;

    /// Generate a probestack call.
    fn gen_probestack(_frame_size: u32) -> SmallInstVec<Self::I>;

    /// Generate a inline stack probe.
    fn gen_inline_probestack(_frame_size: u32, _guard_size: u32) -> SmallInstVec<Self::I>;

    /// Get all clobbered registers that are callee-saved according to the ABI; the result
    /// contains the registers in a sorted order.
    fn get_clobbered_callee_saves(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        sig: &Signature,
        regs: &[Writable<RealReg>],
    ) -> Vec<Writable<RealReg>>;

    /// Determine whether it is necessary to generate the usual frame-setup
    /// sequence (refer to gen_prologue_frame_setup()).
    fn is_frame_setup_needed(
        is_leaf: bool,
        stack_args_size: u32,
        num_clobbered_callee_saves: usize,
        fixed_frame_storage_size: u32,
    ) -> bool;

    /// Generate a clobber-save sequence. The implementation here should return
    /// a sequence of instructions that "push" or otherwise save to the stack all
    /// registers written/modified by the function body that are callee-saved.
    /// The sequence of instructions should adjust the stack pointer downward,
    /// and should align as necessary according to ABI requirements.
    ///
    /// Returns stack bytes used as well as instructions. Does not adjust
    /// nominal SP offset; caller will do that.
    fn gen_clobber_save(
        call_conv: isa::CallConv,
        setup_frame: bool,
        flags: &settings::Flags,
        clobbered_callee_saves: &[Writable<RealReg>],
        fixed_frame_storage_size: u32,
        outgoing_args_size: u32,
    ) -> (u64, SmallVec<[Self::I; 16]>);

    /// Generate a clobber-restore sequence. This sequence should perform the
    /// opposite of the clobber-save sequence generated above, assuming that SP
    /// going into the sequence is at the same point that it was left when the
    /// clobber-save sequence finished.
    fn gen_clobber_restore(
        call_conv: isa::CallConv,
        sig: &Signature,
        flags: &settings::Flags,
        clobbers: &[Writable<RealReg>],
        fixed_frame_storage_size: u32,
        outgoing_args_size: u32,
    ) -> SmallVec<[Self::I; 16]>;

    /// Generate a call instruction/sequence. This method is provided one
    /// temporary register to use to synthesize the called address, if needed.
    fn gen_call(
        dest: &CallDest,
        uses: SmallVec<[Reg; 8]>,
        defs: SmallVec<[Writable<Reg>; 8]>,
        clobbers: PRegSet,
        opcode: ir::Opcode,
        tmp: Writable<Reg>,
        callee_conv: isa::CallConv,
        callee_conv: isa::CallConv,
    ) -> SmallVec<[Self::I; 2]>;

    /// Generate a memcpy invocation. Used to set up struct args. May clobber
    /// caller-save registers; we only memcpy before we start to set up args for
    /// a call.
    fn gen_memcpy(
        call_conv: isa::CallConv,
        dst: Reg,
        src: Reg,
        size: usize,
    ) -> SmallVec<[Self::I; 8]>;

    /// Get the number of spillslots required for the given register-class.
    fn get_number_of_spillslots_for_value(rc: RegClass, target_vector_bytes: u32) -> u32;

    /// Get the current virtual-SP offset from an instruction-emission state.
    fn get_virtual_sp_offset_from_state(s: &<Self::I as MachInstEmit>::State) -> i64;

    /// Get the "nominal SP to FP" offset from an instruction-emission state.
    fn get_nominal_sp_to_fp(s: &<Self::I as MachInstEmit>::State) -> i64;

    /// Get all caller-save registers, that is, registers that we expect
    /// not to be saved across a call to a callee with the given ABI.
    fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet;

    /// Get the needed extension mode, given the mode attached to the argument
    /// in the signature and the calling convention. The input (the attribute in
    /// the signature) specifies what extension type should be done *if* the ABI
    /// requires extension to the full register; this method's return value
    /// indicates whether the extension actually *will* be done.
    fn get_ext_mode(
        call_conv: isa::CallConv,
        specified: ir::ArgumentExtension,
    ) -> ir::ArgumentExtension;
}

// A vector of `ABIArg`s with inline capacity, since they are typically small.
pub type ABIArgVec = SmallVec<[ABIArg; 6]>;

/// The id of an ABI signature within the `SigSet`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Sig(u32);
cranelift_entity::entity_impl!(Sig);

/// ABI information shared between body (callee) and caller.
#[derive(Clone)]
pub struct SigData {
    /// Argument locations (regs or stack slots). Stack offsets are relative to
    /// SP on entry to function.
    args: ABIArgVec,
    /// Return-value locations. Stack offsets are relative to the return-area
    /// pointer.
    rets: ABIArgVec,
    /// Space on stack used to store arguments.
    sized_stack_arg_space: i64,
    /// Space on stack used to store return values.
    sized_stack_ret_space: i64,
    /// Index in `args` of the stack-return-value-area argument.
    stack_ret_arg: Option<usize>,
    /// Calling convention used.
    call_conv: isa::CallConv,
}

impl SigData {
    pub fn from_func_sig<M: ABIMachineSpec>(
        sig: &ir::Signature,
        flags: &settings::Flags,
    ) -> CodegenResult<SigData> {
        let sig = ensure_struct_return_ptr_is_returned(sig);

        // Compute args and retvals from signature. Handle retvals first,
        // because we may need to add a return-area arg to the args.
        let (rets, sized_stack_ret_space, _) = M::compute_arg_locs(
            sig.call_conv,
            flags,
            &sig.returns,
            ArgsOrRets::Rets,
            /* extra ret-area ptr = */ false,
        )?;
        let need_stack_return_area = sized_stack_ret_space > 0;
        let (args, sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
            sig.call_conv,
            flags,
            &sig.params,
            ArgsOrRets::Args,
            need_stack_return_area,
        )?;

        trace!(
            "ABISig: sig {:?} => args = {:?} rets = {:?} arg stack = {} ret stack = {} stack_ret_arg = {:?}",
            sig,
            args,
            rets,
            sized_stack_arg_space,
            sized_stack_ret_space,
            stack_ret_arg,
        );

        Ok(SigData {
            args,
            rets,
            sized_stack_arg_space,
            sized_stack_ret_space,
            stack_ret_arg,
            call_conv: sig.call_conv,
        })
    }

    /// Return all uses (i.e, function args), defs (i.e., return values
    /// and caller-saved registers), and clobbers for the callsite.
    pub fn call_uses_defs_clobbers<M: ABIMachineSpec>(
        &self,
    ) -> (SmallVec<[Reg; 8]>, SmallVec<[Writable<Reg>; 8]>, PRegSet) {
        // Compute uses: all arg regs.
        let mut uses = smallvec![];
        for arg in &self.args {
            match arg {
                &ABIArg::Slots { ref slots, .. } => {
                    for slot in slots {
                        match slot {
                            &ABIArgSlot::Reg { reg, .. } => {
                                uses.push(Reg::from(reg));
                            }
                            _ => {}
                        }
                    }
                }
                &ABIArg::StructArg { ref pointer, .. } => {
                    if let Some(slot) = pointer {
                        match slot {
                            &ABIArgSlot::Reg { reg, .. } => {
                                uses.push(Reg::from(reg));
                            }
                            _ => {}
                        }
                    }
                }
                &ABIArg::ImplicitPtrArg { ref pointer, .. } => match pointer {
                    &ABIArgSlot::Reg { reg, .. } => {
                        uses.push(Reg::from(reg));
                    }
                    _ => {}
                },
            }
        }

        // Get clobbers: all caller-saves. These may include return value
        // regs, which we will remove from the clobber set below.
        let mut clobbers = M::get_regs_clobbered_by_call(self.call_conv);

        // Compute defs: all retval regs, and all caller-save (clobbered) regs.
        let mut defs = smallvec![];
        for ret in &self.rets {
            if let &ABIArg::Slots { ref slots, .. } = ret {
                for slot in slots {
                    match slot {
                        &ABIArgSlot::Reg { reg, .. } => {
                            defs.push(Writable::from_reg(Reg::from(reg)));
                            clobbers.remove(PReg::from(reg));
                        }
                        _ => {}
                    }
                }
            }
        }

        (uses, defs, clobbers)
    }

    /// Get the number of arguments expected.
    pub fn num_args(&self) -> usize {
        if self.stack_ret_arg.is_some() {
            self.args.len() - 1
        } else {
            self.args.len()
        }
    }

    /// Get information specifying how to pass one argument.
    pub fn get_arg(&self, idx: usize) -> ABIArg {
        self.args[idx].clone()
    }

    /// Get total stack space required for arguments.
    pub fn sized_stack_arg_space(&self) -> i64 {
        self.sized_stack_arg_space
    }

    /// Get the number of return values expected.
    pub fn num_rets(&self) -> usize {
        self.rets.len()
    }

    /// Get information specifying how to pass one return value.
    pub fn get_ret(&self, idx: usize) -> ABIArg {
        self.rets[idx].clone()
    }

    /// Get total stack space required for return values.
    pub fn sized_stack_ret_space(&self) -> i64 {
        self.sized_stack_ret_space
    }

    /// Get information specifying how to pass the implicit pointer
    /// to the return-value area on the stack, if required.
    pub fn get_ret_arg(&self) -> Option<ABIArg> {
        let ret_arg = self.stack_ret_arg?;
        Some(self.args[ret_arg].clone())
    }

    /// Get calling convention used.
    pub fn call_conv(&self) -> isa::CallConv {
        self.call_conv
    }
}

/// A (mostly) deduplicated set of ABI signatures.
///
/// We say "mostly" because we do not dedupe between signatures interned via
/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
/// this final bit of deduplication would require filling out the
/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
/// hash map itself but params and returns vecs in each signature) that we want
/// to avoid.
///
/// In general, prefer using the `ir::SigRef`-taking methods to the
/// `ir::Signature`-taking methods when you can get away with it, as they don't
/// require cloning non-copy types that will trigger heap allocations.
///
/// This type can be indexed by `Sig` to access its associated `SigData`.
pub struct SigSet {
    /// Interned `ir::Signature`s that we already have an ABI signature for.
    ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,

    /// Interned `ir::SigRef`s that we already have an ABI signature for.
    ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,

    /// The actual ABI signatures, keyed by `Sig`.
    sigs: PrimaryMap<Sig, SigData>,
}

impl SigSet {
    /// Construct a new `SigSet`, interning all of the signatures used by the
    /// given function.
    pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
    where
        M: ABIMachineSpec,
    {
        let mut sigs = SigSet {
            ir_signature_to_abi_sig: FxHashMap::default(),
            ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
            sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
        };

        sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
        for sig_ref in func.dfg.signatures.keys() {
            sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
        }

        Ok(sigs)
    }

    /// Have we already interned an ABI signature for the given `ir::Signature`?
    pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
        self.ir_signature_to_abi_sig.contains_key(signature)
    }

    /// Construct and intern an ABI signature for the given `ir::Signature`.
    pub fn make_abi_sig_from_ir_signature<M>(
        &mut self,
        signature: ir::Signature,
        flags: &settings::Flags,
    ) -> CodegenResult<Sig>
    where
        M: ABIMachineSpec,
    {
        // Because the `HashMap` entry API requires taking ownership of the
        // lookup key -- and we want to avoid unnecessary clones of
        // `ir::Signature`s, even at the cost of duplicate lookups -- we can't
        // have a single, get-or-create-style method for interning
        // `ir::Signature`s into ABI signatures. So at least (debug) assert that
        // we aren't creating duplicate ABI signatures for the same
        // `ir::Signature`.
        debug_assert!(!self.have_abi_sig_for_signature(&signature));

        let legalized_signature = crate::machinst::ensure_struct_return_ptr_is_returned(&signature);
        let sig_data = SigData::from_func_sig::<M>(&legalized_signature, flags)?;
        let sig = self.sigs.push(sig_data);
        self.ir_signature_to_abi_sig.insert(signature, sig);
        Ok(sig)
    }

    fn make_abi_sig_from_ir_sig_ref<M>(
        &mut self,
        sig_ref: ir::SigRef,
        dfg: &ir::DataFlowGraph,
        flags: &settings::Flags,
    ) -> CodegenResult<Sig>
    where
        M: ABIMachineSpec,
    {
        if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
            return Ok(sig);
        }
        let signature = &dfg.signatures[sig_ref];
        let legalized_signature = crate::machinst::ensure_struct_return_ptr_is_returned(&signature);
        let sig_data = SigData::from_func_sig::<M>(&legalized_signature, flags)?;
        let sig = self.sigs.push(sig_data);
        self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
        Ok(sig)
    }

    /// Get the already-interned ABI signature id for the given `ir::SigRef`.
    pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
        self.ir_sig_ref_to_abi_sig
            .get(sig_ref)
            // Should have a secondary map entry...
            .expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
            // ...and that entry should be initialized.
            .expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
    }

    /// Get the already-interned ABI signature id for the given `ir::Signature`.
    pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
        self.ir_signature_to_abi_sig
            .get(signature)
            .copied()
            .expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
    }
}

// NB: we do _not_ implement `IndexMut` because these signatures are
// deduplicated and shared!
impl std::ops::Index<Sig> for SigSet {
    type Output = SigData;

    fn index(&self, sig: Sig) -> &Self::Output {
        &self.sigs[sig]
    }
}

/// ABI object for a function body.
pub struct Callee<M: ABIMachineSpec> {
    /// CLIF-level signature, possibly normalized.
    ir_sig: ir::Signature,
    /// Signature: arg and retval regs.
    sig: Sig,
    /// Defined dynamic types.
    dynamic_type_sizes: HashMap<Type, u32>,
    /// Offsets to each dynamic stackslot.
    dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
    /// Offsets to each sized stackslot.
    sized_stackslots: PrimaryMap<StackSlot, u32>,
    /// Total stack size of all stackslots
    stackslots_size: u32,
    /// Stack size to be reserved for outgoing arguments.
    outgoing_args_size: u32,
    /// Clobbered registers, from regalloc.
    clobbered: Vec<Writable<RealReg>>,
    /// Total number of spillslots, including for 'dynamic' types, from regalloc.
    spillslots: Option<usize>,
    /// Storage allocated for the fixed part of the stack frame.  This is
    /// usually the same as the total frame size below.
    fixed_frame_storage_size: u32,
    /// "Total frame size", as defined by "distance between FP and nominal SP".
    /// Some items are pushed below nominal SP, so the function may actually use
    /// more stack than this would otherwise imply. It is simply the initial
    /// frame/allocation size needed for stackslots and spillslots.
    total_frame_size: Option<u32>,
    /// The register holding the return-area pointer, if needed.
    ret_area_ptr: Option<Writable<Reg>>,
    /// Temp registers required for argument setup, if needed.
    arg_temp_reg: Vec<Option<Writable<Reg>>>,
    /// Calling convention this function expects.
    call_conv: isa::CallConv,
    /// The settings controlling this function's compilation.
    flags: settings::Flags,
    /// The ISA-specific flag values controlling this function's compilation.
    isa_flags: M::F,
    /// Whether or not this function is a "leaf", meaning it calls no other
    /// functions
    is_leaf: bool,
    /// If this function has a stack limit specified, then `Reg` is where the
    /// stack limit will be located after the instructions specified have been
    /// executed.
    ///
    /// Note that this is intended for insertion into the prologue, if
    /// present. Also note that because the instructions here execute in the
    /// prologue this happens after legalization/register allocation/etc so we
    /// need to be extremely careful with each instruction. The instructions are
    /// manually register-allocated and carefully only use caller-saved
    /// registers and keep nothing live after this sequence of instructions.
    stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
    /// Are we to invoke the probestack function in the prologue? If so,
    /// what is the minimum size at which we must invoke it?
    probestack_min_frame: Option<u32>,
    /// Whether it is necessary to generate the usual frame-setup sequence.
    setup_frame: bool,

    _mach: PhantomData<M>,
}

fn get_special_purpose_param_register(
    f: &ir::Function,
    abi: &SigData,
    purpose: ir::ArgumentPurpose,
) -> Option<Reg> {
    let idx = f.signature.special_param_index(purpose)?;
    match &abi.args[idx] {
        &ABIArg::Slots { ref slots, .. } => match &slots[0] {
            &ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
            _ => None,
        },
        _ => None,
    }
}

impl<M: ABIMachineSpec> Callee<M> {
    /// Create a new body ABI instance.
    pub fn new<'a>(
        f: &ir::Function,
        isa: &dyn TargetIsa,
        isa_flags: &M::F,
        sigs: &SigSet,
    ) -> CodegenResult<Self> {
        trace!("ABI: func signature {:?}", f.signature);

        let flags = isa.flags().clone();
        let sig = sigs.abi_sig_for_signature(&f.signature);

        let call_conv = f.signature.call_conv;
        // Only these calling conventions are supported.
        debug_assert!(
            call_conv == isa::CallConv::SystemV
                || call_conv == isa::CallConv::Fast
                || call_conv == isa::CallConv::Cold
                || call_conv.extends_windows_fastcall()
                || call_conv == isa::CallConv::AppleAarch64
                || call_conv == isa::CallConv::WasmtimeSystemV
                || call_conv == isa::CallConv::WasmtimeAppleAarch64,
            "Unsupported calling convention: {:?}",
            call_conv
        );

        // Compute sized stackslot locations and total stackslot size.
        let mut sized_stack_offset: u32 = 0;
        let mut sized_stackslots = PrimaryMap::new();
        for (stackslot, data) in f.sized_stack_slots.iter() {
            let off = sized_stack_offset;
            sized_stack_offset += data.size;
            let mask = M::word_bytes() - 1;
            sized_stack_offset = (sized_stack_offset + mask) & !mask;
            debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
            sized_stackslots.push(off);
        }

        // Compute dynamic stackslot locations and total stackslot size.
        let mut dynamic_stackslots = PrimaryMap::new();
        let mut dynamic_stack_offset: u32 = sized_stack_offset;
        for (stackslot, data) in f.dynamic_stack_slots.iter() {
            debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
            let off = dynamic_stack_offset;
            let ty = f
                .get_concrete_dynamic_ty(data.dyn_ty)
                .unwrap_or_else(|| panic!("invalid dynamic vector type: {}", data.dyn_ty));
            dynamic_stack_offset += isa.dynamic_vector_bytes(ty);
            let mask = M::word_bytes() - 1;
            dynamic_stack_offset = (dynamic_stack_offset + mask) & !mask;
            dynamic_stackslots.push(off);
        }
        let stackslots_size = dynamic_stack_offset;

        let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
        for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
            let ty = f
                .get_concrete_dynamic_ty(dyn_ty)
                .unwrap_or_else(|| panic!("invalid dynamic vector type: {}", dyn_ty));
            let size = isa.dynamic_vector_bytes(ty);
            dynamic_type_sizes.insert(ty, size);
        }

        // Figure out what instructions, if any, will be needed to check the
        // stack limit. This can either be specified as a special-purpose
        // argument or as a global value which often calculates the stack limit
        // from the arguments.
        let stack_limit =
            get_special_purpose_param_register(f, &sigs[sig], ir::ArgumentPurpose::StackLimit)
                .map(|reg| (reg, smallvec![]))
                .or_else(|| {
                    f.stack_limit
                        .map(|gv| gen_stack_limit::<M>(f, &sigs[sig], gv))
                });

        // Determine whether a probestack call is required for large enough
        // frames (and the minimum frame size if so).
        let probestack_min_frame = if flags.enable_probestack() {
            assert!(
                !flags.probestack_func_adjusts_sp(),
                "SP-adjusting probestack not supported in new backends"
            );
            Some(1 << flags.probestack_size_log2())
        } else {
            None
        };

        Ok(Self {
            ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
            sig,
            dynamic_stackslots,
            dynamic_type_sizes,
            sized_stackslots,
            stackslots_size,
            outgoing_args_size: 0,
            clobbered: vec![],
            spillslots: None,
            fixed_frame_storage_size: 0,
            total_frame_size: None,
            ret_area_ptr: None,
            arg_temp_reg: vec![],
            call_conv,
            flags,
            isa_flags: isa_flags.clone(),
            is_leaf: f.is_leaf(),
            stack_limit,
            probestack_min_frame,
            setup_frame: true,
            _mach: PhantomData,
        })
    }

    /// Inserts instructions necessary for checking the stack limit into the
    /// prologue.
    ///
    /// This function will generate instructions necessary for perform a stack
    /// check at the header of a function. The stack check is intended to trap
    /// if the stack pointer goes below a particular threshold, preventing stack
    /// overflow in wasm or other code. The `stack_limit` argument here is the
    /// register which holds the threshold below which we're supposed to trap.
    /// This function is known to allocate `stack_size` bytes and we'll push
    /// instructions onto `insts`.
    ///
    /// Note that the instructions generated here are special because this is
    /// happening so late in the pipeline (e.g. after register allocation). This
    /// means that we need to do manual register allocation here and also be
    /// careful to not clobber any callee-saved or argument registers. For now
    /// this routine makes do with the `spilltmp_reg` as one temporary
    /// register, and a second register of `tmp2` which is caller-saved. This
    /// should be fine for us since no spills should happen in this sequence of
    /// instructions, so our register won't get accidentally clobbered.
    ///
    /// No values can be live after the prologue, but in this case that's ok
    /// because we just need to perform a stack check before progressing with
    /// the rest of the function.
    fn insert_stack_check(
        &self,
        stack_limit: Reg,
        stack_size: u32,
        insts: &mut SmallInstVec<M::I>,
    ) {
        // With no explicit stack allocated we can just emit the simple check of
        // the stack registers against the stack limit register, and trap if
        // it's out of bounds.
        if stack_size == 0 {
            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
            return;
        }

        // Note that the 32k stack size here is pretty special. See the
        // documentation in x86/abi.rs for why this is here. The general idea is
        // that we're protecting against overflow in the addition that happens
        // below.
        if stack_size >= 32 * 1024 {
            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
        }

        // Add the `stack_size` to `stack_limit`, placing the result in
        // `scratch`.
        //
        // Note though that `stack_limit`'s register may be the same as
        // `scratch`. If our stack size doesn't fit into an immediate this
        // means we need a second scratch register for loading the stack size
        // into a register.
        let scratch = Writable::from_reg(M::get_stacklimit_reg());
        insts.extend(M::gen_add_imm(scratch, stack_limit, stack_size).into_iter());
        insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
    }
}

/// Generates the instructions necessary for the `gv` to be materialized into a
/// register.
///
/// This function will return a register that will contain the result of
/// evaluating `gv`. It will also return any instructions necessary to calculate
/// the value of the register.
///
/// Note that global values are typically lowered to instructions via the
/// standard legalization pass. Unfortunately though prologue generation happens
/// so late in the pipeline that we can't use these legalization passes to
/// generate the instructions for `gv`. As a result we duplicate some lowering
/// of `gv` here and support only some global values. This is similar to what
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
/// in the future too!
///
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
/// temporary register to store values in if necessary. Currently after we write
/// to this register there's guaranteed to be no spilled values between where
/// it's used, because we're not participating in register allocation anyway!
fn gen_stack_limit<M: ABIMachineSpec>(
    f: &ir::Function,
    abi: &SigData,
    gv: ir::GlobalValue,
) -> (Reg, SmallInstVec<M::I>) {
    let mut insts = smallvec![];
    let reg = generate_gv::<M>(f, abi, gv, &mut insts);
    return (reg, insts);
}

fn generate_gv<M: ABIMachineSpec>(
    f: &ir::Function,
    abi: &SigData,
    gv: ir::GlobalValue,
    insts: &mut SmallInstVec<M::I>,
) -> Reg {
    match f.global_values[gv] {
        // Return the direct register the vmcontext is in
        ir::GlobalValueData::VMContext => {
            get_special_purpose_param_register(f, abi, ir::ArgumentPurpose::VMContext)
                .expect("no vmcontext parameter found")
        }
        // Load our base value into a register, then load from that register
        // in to a temporary register.
        ir::GlobalValueData::Load {
            base,
            offset,
            global_type: _,
            readonly: _,
        } => {
            let base = generate_gv::<M>(f, abi, base, insts);
            let into_reg = Writable::from_reg(M::get_stacklimit_reg());
            insts.push(M::gen_load_base_offset(
                into_reg,
                base,
                offset.into(),
                M::word_type(),
            ));
            return into_reg.to_reg();
        }
        ref other => panic!("global value for stack limit not supported: {}", other),
    }
}

fn gen_load_stack_multi<M: ABIMachineSpec>(
    from: StackAMode,
    dst: ValueRegs<Writable<Reg>>,
    ty: Type,
) -> SmallInstVec<M::I> {
    let mut ret = smallvec![];
    let (_, tys) = M::I::rc_for_type(ty).unwrap();
    let mut offset = 0;
    // N.B.: registers are given in the `ValueRegs` in target endian order.
    for (&dst, &ty) in dst.regs().iter().zip(tys.iter()) {
        ret.push(M::gen_load_stack(from.offset(offset), dst, ty));
        offset += ty.bytes() as i64;
    }
    ret
}

fn gen_store_stack_multi<M: ABIMachineSpec>(
    from: StackAMode,
    src: ValueRegs<Reg>,
    ty: Type,
) -> SmallInstVec<M::I> {
    let mut ret = smallvec![];
    let (_, tys) = M::I::rc_for_type(ty).unwrap();
    let mut offset = 0;
    // N.B.: registers are given in the `ValueRegs` in target endian order.
    for (&src, &ty) in src.regs().iter().zip(tys.iter()) {
        ret.push(M::gen_store_stack(from.offset(offset), src, ty));
        offset += ty.bytes() as i64;
    }
    ret
}

pub(crate) fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
    let params_structret = sig
        .params
        .iter()
        .find(|p| p.purpose == ArgumentPurpose::StructReturn);
    let rets_have_structret = sig.returns.len() > 0
        && sig
            .returns
            .iter()
            .any(|arg| arg.purpose == ArgumentPurpose::StructReturn);
    let mut sig = sig.clone();
    if params_structret.is_some() && !rets_have_structret {
        sig.returns.insert(0, params_structret.unwrap().clone());
    }
    sig
}

/// ### Pre-Regalloc Functions
///
/// These methods of `Callee` may only be called before regalloc.
impl<M: ABIMachineSpec> Callee<M> {
    /// Access the (possibly legalized) signature.
    pub fn signature(&self) -> &ir::Signature {
        &self.ir_sig
    }

    /// Does the ABI-body code need temp registers (and if so, of what type)?
    /// They will be provided to `init()` as the `temps` arg if so.
    pub fn temps_needed(&self, sigs: &SigSet) -> Vec<Type> {
        let mut temp_tys = vec![];
        for arg in &sigs[self.sig].args {
            match arg {
                &ABIArg::ImplicitPtrArg { pointer, .. } => match &pointer {
                    &ABIArgSlot::Reg { .. } => {}
                    &ABIArgSlot::Stack { ty, .. } => {
                        temp_tys.push(ty);
                    }
                },
                _ => {}
            }
        }
        if sigs[self.sig].stack_ret_arg.is_some() {
            temp_tys.push(M::word_type());
        }
        temp_tys
    }

    /// Initialize. This is called after the Callee is constructed because it
    /// may be provided with a vector of temp vregs, which can only be allocated
    /// once the lowering context exists.
    pub fn init(&mut self, sigs: &SigSet, temps: Vec<Writable<Reg>>) {
        let mut temps_iter = temps.into_iter();
        for arg in &sigs[self.sig].args {
            let temp = match arg {
                &ABIArg::ImplicitPtrArg { pointer, .. } => match &pointer {
                    &ABIArgSlot::Reg { .. } => None,
                    &ABIArgSlot::Stack { .. } => Some(temps_iter.next().unwrap()),
                },
                _ => None,
            };
            self.arg_temp_reg.push(temp);
        }
        if sigs[self.sig].stack_ret_arg.is_some() {
            self.ret_area_ptr = Some(temps_iter.next().unwrap());
        }
    }

    /// Accumulate outgoing arguments.
    ///
    /// This ensures that at least `size` bytes are allocated in the prologue to
    /// be available for use in function calls to hold arguments and/or return
    /// values. If this function is called multiple times, the maximum of all
    /// `size` values will be available.
    pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
        if size > self.outgoing_args_size {
            self.outgoing_args_size = size;
        }
    }

    /// Get the calling convention implemented by this ABI object.
    pub fn call_conv(&self, sigs: &SigSet) -> isa::CallConv {
        sigs[self.sig].call_conv
    }

    /// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
    pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
        &self.sized_stackslots
    }

    /// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
    pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
        &self.dynamic_stackslots
    }

    /// Generate an instruction which copies an argument to a destination
    /// register.
    pub fn gen_copy_arg_to_regs(
        &self,
        sigs: &SigSet,
        idx: usize,
        into_regs: ValueRegs<Writable<Reg>>,
    ) -> SmallInstVec<M::I> {
        let mut insts = smallvec![];
        let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
            match slot {
                &ABIArgSlot::Reg { reg, ty, .. } => {
                    // Extension mode doesn't matter (we're copying out, not in; we
                    // ignore high bits by convention).
                    insts.push(M::gen_move(*into_reg, reg.into(), ty));
                }
                &ABIArgSlot::Stack {
                    offset,
                    ty,
                    extension,
                    ..
                } => {
                    // However, we have to respect the extention mode for stack
                    // slots, or else we grab the wrong bytes on big-endian.
                    let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
                    let ty = match (ext, ty_bits(ty) as u32) {
                        (ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
                            if n < M::word_bits() =>
                        {
                            M::word_type()
                        }
                        _ => ty,
                    };
                    insts.push(M::gen_load_stack(
                        StackAMode::FPOffset(
                            M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
                            ty,
                        ),
                        *into_reg,
                        ty,
                    ));
                }
            }
        };

        match &sigs[self.sig].args[idx] {
            &ABIArg::Slots { ref slots, .. } => {
                assert_eq!(into_regs.len(), slots.len());
                for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
                    copy_arg_slot_to_reg(&slot, &into_reg);
                }
            }
            &ABIArg::StructArg {
                pointer, offset, ..
            } => {
                let into_reg = into_regs.only_reg().unwrap();
                if let Some(slot) = pointer {
                    // Buffer address is passed in a register or stack slot.
                    copy_arg_slot_to_reg(&slot, &into_reg);
                } else {
                    // Buffer address is implicitly defined by the ABI.
                    insts.push(M::gen_get_stack_addr(
                        StackAMode::FPOffset(
                            M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
                            I8,
                        ),
                        into_reg,
                        I8,
                    ));
                }
            }
            &ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
                let into_reg = into_regs.only_reg().unwrap();
                // We need to dereference the pointer.
                let base = match &pointer {
                    &ABIArgSlot::Reg { reg, .. } => Reg::from(reg),
                    &ABIArgSlot::Stack { offset, ty, .. } => {
                        // In this case we need a temp register to hold the address.
                        // This was allocated in the `init` routine.
                        let addr_reg = self.arg_temp_reg[idx].unwrap();
                        insts.push(M::gen_load_stack(
                            StackAMode::FPOffset(
                                M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
                                ty,
                            ),
                            addr_reg,
                            ty,
                        ));
                        addr_reg.to_reg()
                    }
                };
                insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
            }
        }
        insts
    }

    /// Is the given argument needed in the body (as opposed to, e.g., serving
    /// only as a special ABI-specific placeholder)? This controls whether
    /// lowering will copy it to a virtual reg use by CLIF instructions.
    pub fn arg_is_needed_in_body(&self, _idx: usize) -> bool {
        true
    }

    /// Generate an instruction which copies a source register to a return value slot.
    pub fn gen_copy_regs_to_retval(
        &self,
        sigs: &SigSet,
        idx: usize,
        from_regs: ValueRegs<Writable<Reg>>,
    ) -> SmallInstVec<M::I> {
        let mut ret = smallvec![];
        let word_bits = M::word_bits() as u8;
        match &sigs[self.sig].rets[idx] {
            &ABIArg::Slots { ref slots, .. } => {
                assert_eq!(from_regs.len(), slots.len());
                for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
                    match slot {
                        &ABIArgSlot::Reg {
                            reg, ty, extension, ..
                        } => {
                            let from_bits = ty_bits(ty) as u8;
                            let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
                            let reg: Writable<Reg> = Writable::from_reg(Reg::from(reg));
                            match (ext, from_bits) {
                                (ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
                                    if n < word_bits =>
                                {
                                    let signed = ext == ArgumentExtension::Sext;
                                    ret.push(M::gen_extend(
                                        reg,
                                        from_reg.to_reg(),
                                        signed,
                                        from_bits,
                                        /* to_bits = */ word_bits,
                                    ));
                                }
                                _ => {
                                    ret.push(M::gen_move(reg, from_reg.to_reg(), ty));
                                }
                            };
                        }
                        &ABIArgSlot::Stack {
                            offset,
                            ty,
                            extension,
                            ..
                        } => {
                            let mut ty = ty;
                            let from_bits = ty_bits(ty) as u8;
                            // A machine ABI implementation should ensure that stack frames
                            // have "reasonable" size. All current ABIs for machinst
                            // backends (aarch64 and x64) enforce a 128MB limit.
                            let off = i32::try_from(offset).expect(
                                "Argument stack offset greater than 2GB; should hit impl limit first",
                                );
                            let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
                            // Trash the from_reg; it should be its last use.
                            match (ext, from_bits) {
                                (ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
                                    if n < word_bits =>
                                {
                                    assert_eq!(M::word_reg_class(), from_reg.to_reg().class());
                                    let signed = ext == ArgumentExtension::Sext;
                                    ret.push(M::gen_extend(
                                        Writable::from_reg(from_reg.to_reg()),
                                        from_reg.to_reg(),
                                        signed,
                                        from_bits,
                                        /* to_bits = */ word_bits,
                                    ));
                                    // Store the extended version.
                                    ty = M::word_type();
                                }
                                _ => {}
                            };
                            ret.push(M::gen_store_base_offset(
                                self.ret_area_ptr.unwrap().to_reg(),
                                off,
                                from_reg.to_reg(),
                                ty,
                            ));
                        }
                    }
                }
            }
            &ABIArg::StructArg { .. } => {
                panic!("StructArg in return position is unsupported");
            }
            &ABIArg::ImplicitPtrArg { .. } => {
                panic!("ImplicitPtrArg in return position is unsupported");
            }
        }
        ret
    }

    /// Generate any setup instruction needed to save values to the
    /// return-value area. This is usually used when were are multiple return
    /// values or an otherwise large return value that must be passed on the
    /// stack; typically the ABI specifies an extra hidden argument that is a
    /// pointer to that memory.
    pub fn gen_retval_area_setup(&self, sigs: &SigSet) -> Option<M::I> {
        if let Some(i) = sigs[self.sig].stack_ret_arg {
            let insts =
                self.gen_copy_arg_to_regs(sigs, i, ValueRegs::one(self.ret_area_ptr.unwrap()));
            let inst = insts.into_iter().next().unwrap();
            trace!(
                "gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
                inst,
                self.ret_area_ptr.unwrap().to_reg()
            );
            Some(inst)
        } else {
            trace!("gen_retval_area_setup: not needed");
            None
        }
    }

    /// Generate a return instruction.
    pub fn gen_ret(&self, sigs: &SigSet) -> M::I {
        let mut rets = vec![];
        for ret in &sigs[self.sig].rets {
            match ret {
                ABIArg::Slots { slots, .. } => {
                    for slot in slots {
                        match slot {
                            ABIArgSlot::Reg { reg, .. } => rets.push(Reg::from(*reg)),
                            _ => {}
                        }
                    }
                }
                _ => {}
            }
        }

        M::gen_ret(self.setup_frame, &self.isa_flags, rets)
    }

    /// Produce an instruction that computes a sized stackslot address.
    pub fn sized_stackslot_addr(
        &self,
        slot: StackSlot,
        offset: u32,
        into_reg: Writable<Reg>,
    ) -> M::I {
        // Offset from beginning of stackslot area, which is at nominal SP (see
        // [MemArg::NominalSPOffset] for more details on nominal SP tracking).
        let stack_off = self.sized_stackslots[slot] as i64;
        let sp_off: i64 = stack_off + (offset as i64);
        M::gen_get_stack_addr(StackAMode::NominalSPOffset(sp_off, I8), into_reg, I8)
    }

    /// Produce an instruction that computes a dynamic stackslot address.
    pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
        let stack_off = self.dynamic_stackslots[slot] as i64;
        M::gen_get_stack_addr(
            StackAMode::NominalSPOffset(stack_off, I64X2XN),
            into_reg,
            I64X2XN,
        )
    }

    /// Load from a spillslot.
    pub fn load_spillslot(
        &self,
        slot: SpillSlot,
        ty: Type,
        into_regs: ValueRegs<Writable<Reg>>,
    ) -> SmallInstVec<M::I> {
        // Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
        let islot = slot.index() as i64;
        let spill_off = islot * M::word_bytes() as i64;
        let sp_off = self.stackslots_size as i64 + spill_off;
        trace!("load_spillslot: slot {:?} -> sp_off {}", slot, sp_off);

        gen_load_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), into_regs, ty)
    }

    /// Store to a spillslot.
    pub fn store_spillslot(
        &self,
        slot: SpillSlot,
        ty: Type,
        from_regs: ValueRegs<Reg>,
    ) -> SmallInstVec<M::I> {
        // Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
        let islot = slot.index() as i64;
        let spill_off = islot * M::word_bytes() as i64;
        let sp_off = self.stackslots_size as i64 + spill_off;
        trace!("store_spillslot: slot {:?} -> sp_off {}", slot, sp_off);

        gen_store_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), from_regs, ty)
    }
}

/// ### Post-Regalloc Functions
///
/// These methods of `Callee` may only be called after
/// regalloc.
impl<M: ABIMachineSpec> Callee<M> {
    /// Update with the number of spillslots, post-regalloc.
    pub fn set_num_spillslots(&mut self, slots: usize) {
        self.spillslots = Some(slots);
    }

    /// Update with the clobbered registers, post-regalloc.
    pub fn set_clobbered(&mut self, clobbered: Vec<Writable<RealReg>>) {
        self.clobbered = clobbered;
    }

    /// Generate a stack map, given a list of spillslots and the emission state
    /// at a given program point (prior to emission of the safepointing
    /// instruction).
    pub fn spillslots_to_stack_map(
        &self,
        slots: &[SpillSlot],
        state: &<M::I as MachInstEmit>::State,
    ) -> StackMap {
        let virtual_sp_offset = M::get_virtual_sp_offset_from_state(state);
        let nominal_sp_to_fp = M::get_nominal_sp_to_fp(state);
        assert!(virtual_sp_offset >= 0);
        trace!(
            "spillslots_to_stackmap: slots = {:?}, state = {:?}",
            slots,
            state
        );
        let map_size = (virtual_sp_offset + nominal_sp_to_fp) as u32;
        let bytes = M::word_bytes();
        let map_words = (map_size + bytes - 1) / bytes;
        let mut bits = std::iter::repeat(false)
            .take(map_words as usize)
            .collect::<Vec<bool>>();

        let first_spillslot_word =
            ((self.stackslots_size + virtual_sp_offset as u32) / bytes) as usize;
        for &slot in slots {
            let slot = slot.index();
            bits[first_spillslot_word + slot] = true;
        }

        StackMap::from_slice(&bits[..])
    }

    /// Generate a prologue, post-regalloc.
    ///
    /// This should include any stack frame or other setup necessary to use the
    /// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
    /// `self` is mutable so that we can store information in it which will be
    /// useful when creating the epilogue.
    pub fn gen_prologue(&mut self, sigs: &SigSet) -> SmallInstVec<M::I> {
        let bytes = M::word_bytes();
        let total_stacksize = self.stackslots_size + bytes * self.spillslots.unwrap() as u32;
        let mask = M::stack_align(self.call_conv) - 1;
        let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
        let clobbered_callee_saves = M::get_clobbered_callee_saves(
            self.call_conv,
            &self.flags,
            self.signature(),
            &self.clobbered,
        );
        let mut insts = smallvec![];

        self.fixed_frame_storage_size += total_stacksize;
        self.setup_frame = self.flags.preserve_frame_pointers()
            || M::is_frame_setup_needed(
                self.is_leaf,
                self.stack_args_size(sigs),
                clobbered_callee_saves.len(),
                self.fixed_frame_storage_size,
            );

        insts.extend(
            M::gen_prologue_start(
                self.setup_frame,
                self.call_conv,
                &self.flags,
                &self.isa_flags,
            )
            .into_iter(),
        );

        if self.setup_frame {
            // set up frame
            insts.extend(M::gen_prologue_frame_setup(&self.flags).into_iter());
        }

        // Leaf functions with zero stack don't need a stack check if one's
        // specified, otherwise always insert the stack check.
        if total_stacksize > 0 || !self.is_leaf {
            if let Some((reg, stack_limit_load)) = &self.stack_limit {
                insts.extend(stack_limit_load.clone());
                self.insert_stack_check(*reg, total_stacksize, &mut insts);
            }

            let needs_probestack = self
                .probestack_min_frame
                .map_or(false, |min_frame| total_stacksize >= min_frame);

            if needs_probestack {
                insts.extend(
                    if self.flags.probestack_strategy() == ProbestackStrategy::Inline {
                        let guard_size = 1 << self.flags.probestack_size_log2();
                        M::gen_inline_probestack(total_stacksize, guard_size)
                    } else {
                        M::gen_probestack(total_stacksize)
                    },
                );
            }
        }

        // Save clobbered registers.
        let (clobber_size, clobber_insts) = M::gen_clobber_save(
            self.call_conv,
            self.setup_frame,
            &self.flags,
            &clobbered_callee_saves,
            self.fixed_frame_storage_size,
            self.outgoing_args_size,
        );
        insts.extend(clobber_insts);

        // N.B.: "nominal SP", which we use to refer to stackslots and
        // spillslots, is defined to be equal to the stack pointer at this point
        // in the prologue.
        //
        // If we push any further data onto the stack in the function
        // body, we emit a virtual-SP adjustment meta-instruction so
        // that the nominal SP references behave as if SP were still
        // at this point. See documentation for
        // [crate::machinst::abi](this module) for more details
        // on stackframe layout and nominal SP maintenance.

        self.total_frame_size = Some(total_stacksize + clobber_size as u32);
        insts
    }

    /// Generate an epilogue, post-regalloc.
    ///
    /// Note that this must generate the actual return instruction (rather than
    /// emitting this in the lowering logic), because the epilogue code comes
    /// before the return and the two are likely closely related.
    pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
        let mut insts = smallvec![];

        // Restore clobbered registers.
        insts.extend(M::gen_clobber_restore(
            self.call_conv,
            self.signature(),
            &self.flags,
            &self.clobbered,
            self.fixed_frame_storage_size,
            self.outgoing_args_size,
        ));

        // N.B.: we do *not* emit a nominal SP adjustment here, because (i) there will be no
        // references to nominal SP offsets before the return below, and (ii) the instruction
        // emission tracks running SP offset linearly (in straight-line order), not according to
        // the CFG, so early returns in the middle of function bodies would cause an incorrect
        // offset for the rest of the body.

        if self.setup_frame {
            insts.extend(M::gen_epilogue_frame_restore(&self.flags));
        }

        // This `ret` doesn't need any return registers attached
        // because we are post-regalloc and don't need to
        // represent the implicit uses anymore.
        insts.push(M::gen_ret(self.setup_frame, &self.isa_flags, vec![]));

        trace!("Epilogue: {:?}", insts);
        insts
    }

    /// Returns the full frame size for the given function, after prologue
    /// emission has run. This comprises the spill slots and stack-storage slots
    /// (but not storage for clobbered callee-save registers, arguments pushed
    /// at callsites within this function, or other ephemeral pushes).
    pub fn frame_size(&self) -> u32 {
        self.total_frame_size
            .expect("frame size not computed before prologue generation")
    }

    /// Returns the size of arguments expected on the stack.
    pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
        sigs[self.sig].sized_stack_arg_space as u32
    }

    /// Get the spill-slot size.
    pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
        let max = if self.dynamic_type_sizes.len() == 0 {
            16
        } else {
            *self
                .dynamic_type_sizes
                .iter()
                .max_by(|x, y| x.1.cmp(&y.1))
                .map(|(_k, v)| v)
                .unwrap()
        };
        M::get_number_of_spillslots_for_value(rc, max)
    }

    /// Generate a spill.
    pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
        let ty = M::I::canonical_type_for_rc(Reg::from(from_reg).class());
        self.store_spillslot(to_slot, ty, ValueRegs::one(Reg::from(from_reg)))
            .into_iter()
            .next()
            .unwrap()
    }

    /// Generate a reload (fill).
    pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
        let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
        self.load_spillslot(
            from_slot,
            ty,
            writable_value_regs(ValueRegs::one(Reg::from(to_reg.to_reg()))),
        )
        .into_iter()
        .next()
        .unwrap()
    }
}

/// ABI object for a callsite.
pub struct Caller<M: ABIMachineSpec> {
    /// The called function's signature.
    sig: Sig,
    /// All uses for the callsite, i.e., function args.
    uses: SmallVec<[Reg; 8]>,
    /// All defs for the callsite, i.e., return values.
    defs: SmallVec<[Writable<Reg>; 8]>,
    /// Caller-save clobbers.
    clobbers: PRegSet,
    /// Call destination.
    dest: CallDest,
    /// Actual call opcode; used to distinguish various types of calls.
    opcode: ir::Opcode,
    /// Caller's calling convention.
    caller_conv: isa::CallConv,
    /// The settings controlling this compilation.
    flags: settings::Flags,

    _mach: PhantomData<M>,
}

/// Destination for a call.
#[derive(Debug, Clone)]
pub enum CallDest {
    /// Call to an ExtName (named function symbol).
    ExtName(ir::ExternalName, RelocDistance),
    /// Indirect call to a function pointer in a register.
    Reg(Reg),
}

impl<M: ABIMachineSpec> Caller<M> {
    /// Create a callsite ABI object for a call directly to the specified function.
    pub fn from_func(
        sigs: &SigSet,
        sig_ref: ir::SigRef,
        extname: &ir::ExternalName,
        dist: RelocDistance,
        caller_conv: isa::CallConv,
        flags: settings::Flags,
    ) -> CodegenResult<Caller<M>> {
        let sig = sigs.abi_sig_for_sig_ref(sig_ref);
        let (uses, defs, clobbers) = sigs[sig].call_uses_defs_clobbers::<M>();
        Ok(Caller {
            sig,
            uses,
            defs,
            clobbers,
            dest: CallDest::ExtName(extname.clone(), dist),
            opcode: ir::Opcode::Call,
            caller_conv,
            flags,
            _mach: PhantomData,
        })
    }

    /// Create a callsite ABI object for a call directly to the specified
    /// libcall.
    pub fn from_libcall(
        sigs: &SigSet,
        sig: &ir::Signature,
        extname: &ir::ExternalName,
        dist: RelocDistance,
        caller_conv: isa::CallConv,
        flags: settings::Flags,
    ) -> CodegenResult<Caller<M>> {
        let sig = sigs.abi_sig_for_signature(sig);
        let (uses, defs, clobbers) = sigs[sig].call_uses_defs_clobbers::<M>();
        Ok(Caller {
            sig,
            uses,
            defs,
            clobbers,
            dest: CallDest::ExtName(extname.clone(), dist),
            opcode: ir::Opcode::Call,
            caller_conv,
            flags,
            _mach: PhantomData,
        })
    }

    /// Create a callsite ABI object for a call to a function pointer with the
    /// given signature.
    pub fn from_ptr(
        sigs: &SigSet,
        sig_ref: ir::SigRef,
        ptr: Reg,
        opcode: ir::Opcode,
        caller_conv: isa::CallConv,
        flags: settings::Flags,
    ) -> CodegenResult<Caller<M>> {
        let sig = sigs.abi_sig_for_sig_ref(sig_ref);
        let (uses, defs, clobbers) = sigs[sig].call_uses_defs_clobbers::<M>();
        Ok(Caller {
            sig,
            uses,
            defs,
            clobbers,
            dest: CallDest::Reg(ptr),
            opcode,
            caller_conv,
            flags,
            _mach: PhantomData,
        })
    }
}

fn adjust_stack_and_nominal_sp<M: ABIMachineSpec>(ctx: &mut Lower<M::I>, off: i32, is_sub: bool) {
    if off == 0 {
        return;
    }
    let amt = if is_sub { -off } else { off };
    for inst in M::gen_sp_reg_adjust(amt) {
        ctx.emit(inst);
    }
    ctx.emit(M::gen_nominal_sp_adj(-amt));
}

impl<M: ABIMachineSpec> Caller<M> {
    /// Get the number of arguments expected.
    pub fn num_args(&self, sigs: &SigSet) -> usize {
        let data = &sigs[self.sig];
        if data.stack_ret_arg.is_some() {
            data.args.len() - 1
        } else {
            data.args.len()
        }
    }

    /// Emit code to pre-adjust the stack, prior to argument copies and call.
    pub fn emit_stack_pre_adjust(&self, ctx: &mut Lower<M::I>) {
        let off =
            ctx.sigs()[self.sig].sized_stack_arg_space + ctx.sigs()[self.sig].sized_stack_ret_space;
        adjust_stack_and_nominal_sp::<M>(ctx, off as i32, /* is_sub = */ true)
    }

    /// Emit code to post-adjust the satck, after call return and return-value copies.
    pub fn emit_stack_post_adjust(&self, ctx: &mut Lower<M::I>) {
        let off =
            ctx.sigs()[self.sig].sized_stack_arg_space + ctx.sigs()[self.sig].sized_stack_ret_space;
        adjust_stack_and_nominal_sp::<M>(ctx, off as i32, /* is_sub = */ false)
    }

    /// Emit a copy of a large argument into its associated stack buffer, if any.
    /// We must be careful to perform all these copies (as necessary) before setting
    /// up the argument registers, since we may have to invoke memcpy(), which could
    /// clobber any registers already set up.  The back-end should call this routine
    /// for all arguments before calling emit_copy_regs_to_arg for all arguments.
    pub fn emit_copy_regs_to_buffer(
        &self,
        ctx: &mut Lower<M::I>,
        idx: usize,
        from_regs: ValueRegs<Reg>,
    ) {
        match &ctx.sigs()[self.sig].args[idx] {
            &ABIArg::Slots { .. } => {}
            &ABIArg::StructArg { offset, size, .. } => {
                let src_ptr = from_regs.only_reg().unwrap();
                let dst_ptr = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
                ctx.emit(M::gen_get_stack_addr(
                    StackAMode::SPOffset(offset, I8),
                    dst_ptr,
                    I8,
                ));
                // Emit a memcpy from `src_ptr` to `dst_ptr` of `size` bytes.
                // N.B.: because we process StructArg params *first*, this is
                // safe w.r.t. clobbers: we have not yet filled in any other
                // arg regs.
                let memcpy_call_conv =
                    isa::CallConv::for_libcall(&self.flags, ctx.sigs()[self.sig].call_conv);
                for insn in
                    M::gen_memcpy(memcpy_call_conv, dst_ptr.to_reg(), src_ptr, size as usize)
                        .into_iter()
                {
                    ctx.emit(insn);
                }
            }
            &ABIArg::ImplicitPtrArg { .. } => unimplemented!(), // Only supported via ISLE.
        }
    }

    /// Generate a copy of an argument value from a source register, prior to
    /// the call.  For large arguments with associated stack buffer, this may
    /// load the address of the buffer into the argument register, if required
    /// by the ABI.
    pub fn gen_copy_regs_to_arg(
        &self,
        ctx: &Lower<M::I>,
        idx: usize,
        from_regs: ValueRegs<Reg>,
    ) -> SmallInstVec<M::I> {
        let mut insts = smallvec![];
        let word_rc = M::word_reg_class();
        let word_bits = M::word_bits() as usize;
        match &ctx.sigs()[self.sig].args[idx] {
            &ABIArg::Slots { ref slots, .. } => {
                assert_eq!(from_regs.len(), slots.len());
                for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
                    match slot {
                        &ABIArgSlot::Reg {
                            reg, ty, extension, ..
                        } => {
                            let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
                            if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
                                assert_eq!(word_rc, reg.class());
                                let signed = match ext {
                                    ir::ArgumentExtension::Uext => false,
                                    ir::ArgumentExtension::Sext => true,
                                    _ => unreachable!(),
                                };
                                insts.push(M::gen_extend(
                                    Writable::from_reg(Reg::from(reg)),
                                    *from_reg,
                                    signed,
                                    ty_bits(ty) as u8,
                                    word_bits as u8,
                                ));
                            } else {
                                insts.push(M::gen_move(
                                    Writable::from_reg(Reg::from(reg)),
                                    *from_reg,
                                    ty,
                                ));
                            }
                        }
                        &ABIArgSlot::Stack {
                            offset,
                            ty,
                            extension,
                            ..
                        } => {
                            let mut ty = ty;
                            let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
                            if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
                                assert_eq!(word_rc, from_reg.class());
                                let signed = match ext {
                                    ir::ArgumentExtension::Uext => false,
                                    ir::ArgumentExtension::Sext => true,
                                    _ => unreachable!(),
                                };
                                // Extend in place in the source register. Our convention is to
                                // treat high bits as undefined for values in registers, so this
                                // is safe, even for an argument that is nominally read-only.
                                insts.push(M::gen_extend(
                                    Writable::from_reg(*from_reg),
                                    *from_reg,
                                    signed,
                                    ty_bits(ty) as u8,
                                    word_bits as u8,
                                ));
                                // Store the extended version.
                                ty = M::word_type();
                            }
                            insts.push(M::gen_store_stack(
                                StackAMode::SPOffset(offset, ty),
                                *from_reg,
                                ty,
                            ));
                        }
                    }
                }
            }
            &ABIArg::StructArg { pointer, .. } => {
                assert!(pointer.is_none()); // Only supported via ISLE.
            }
            &ABIArg::ImplicitPtrArg { .. } => unimplemented!(), // Only supported via ISLE.
        }
        insts
    }

    /// Emit a copy a return value into a destination register, after the call returns.
    pub fn gen_copy_retval_to_regs(
        &self,
        ctx: &Lower<M::I>,
        idx: usize,
        into_regs: ValueRegs<Writable<Reg>>,
    ) -> SmallInstVec<M::I> {
        let mut insts = smallvec![];
        match &ctx.sigs()[self.sig].rets[idx] {
            &ABIArg::Slots { ref slots, .. } => {
                assert_eq!(into_regs.len(), slots.len());
                for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
                    match slot {
                        // Extension mode doesn't matter because we're copying out, not in,
                        // and we ignore high bits in our own registers by convention.
                        &ABIArgSlot::Reg { reg, ty, .. } => {
                            insts.push(M::gen_move(*into_reg, Reg::from(reg), ty));
                        }
                        &ABIArgSlot::Stack { offset, ty, .. } => {
                            let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space;
                            insts.push(M::gen_load_stack(
                                StackAMode::SPOffset(offset + ret_area_base, ty),
                                *into_reg,
                                ty,
                            ));
                        }
                    }
                }
            }
            &ABIArg::StructArg { .. } => {
                panic!("StructArg not supported in return position");
            }
            &ABIArg::ImplicitPtrArg { .. } => {
                panic!("ImplicitPtrArg not supported in return position");
            }
        }
        insts
    }

    /// Emit the call itself.
    ///
    /// The returned instruction should have proper use- and def-sets according
    /// to the argument registers, return-value registers, and clobbered
    /// registers for this function signature in this ABI.
    ///
    /// (Arg registers are uses, and retval registers are defs. Clobbered
    /// registers are also logically defs, but should never be read; their
    /// values are "defined" (to the regalloc) but "undefined" in every other
    /// sense.)
    ///
    /// This function should only be called once, as it is allowed to re-use
    /// parts of the `Caller` object in emitting instructions.
    pub fn emit_call(&mut self, ctx: &mut Lower<M::I>) {
        let (uses, defs) = (
            mem::replace(&mut self.uses, Default::default()),
            mem::replace(&mut self.defs, Default::default()),
        );
        let word_type = M::word_type();
        if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg {
            let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
            let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space;
            ctx.emit(M::gen_get_stack_addr(
                StackAMode::SPOffset(ret_area_base, I8),
                rd,
                I8,
            ));
            for inst in self.gen_copy_regs_to_arg(ctx, i, ValueRegs::one(rd.to_reg())) {
                ctx.emit(inst);
            }
        }
        let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();
        for inst in M::gen_call(
            &self.dest,
            uses,
            defs,
            self.clobbers,
            self.opcode,
            tmp,
            ctx.sigs()[self.sig].call_conv,
            self.caller_conv,
        )
        .into_iter()
        {
            ctx.emit(inst);
        }
    }
}