1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
//! Cranelift compilation context and main entry point.
//!
//! When compiling many small functions, it is important to avoid repeatedly allocating and
//! deallocating the data structures needed for compilation. The `Context` struct is used to hold
//! on to memory allocations between function compilations.
//!
//! The context does not hold a `TargetIsa` instance which has to be provided as an argument
//! instead. This is because an ISA instance is immutable and can be used by multiple compilation
//! contexts concurrently. Typically, you would have one context per compilation thread and only a
//! single ISA instance.
use crate::alias_analysis::AliasAnalysis;
use crate::dce::do_dce;
use crate::dominator_tree::DominatorTree;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::Function;
use crate::isa::TargetIsa;
use crate::legalizer::simple_legalize;
use crate::licm::do_licm;
use crate::loop_analysis::LoopAnalysis;
use crate::machinst::{CompiledCode, CompiledCodeStencil};
use crate::nan_canonicalization::do_nan_canonicalization;
use crate::remove_constant_phis::do_remove_constant_phis;
use crate::result::{CodegenResult, CompileResult};
use crate::settings::{FlagsOrIsa, OptLevel};
use crate::simple_gvn::do_simple_gvn;
use crate::simple_preopt::do_preopt;
use crate::unreachable_code::eliminate_unreachable_code;
use crate::verifier::{verify_context, VerifierErrors, VerifierResult};
use crate::{timing, CompileError};
#[cfg(feature = "souper-harvest")]
use alloc::string::String;
use alloc::vec::Vec;
#[cfg(feature = "souper-harvest")]
use crate::souper_harvest::do_souper_harvest;
/// Persistent data structures and compilation pipeline.
pub struct Context {
/// The function we're compiling.
pub func: Function,
/// The control flow graph of `func`.
pub cfg: ControlFlowGraph,
/// Dominator tree for `func`.
pub domtree: DominatorTree,
/// Loop analysis of `func`.
pub loop_analysis: LoopAnalysis,
/// Result of MachBackend compilation, if computed.
pub(crate) compiled_code: Option<CompiledCode>,
/// Flag: do we want a disassembly with the CompiledCode?
pub want_disasm: bool,
}
impl Context {
/// Allocate a new compilation context.
///
/// The returned instance should be reused for compiling multiple functions in order to avoid
/// needless allocator thrashing.
pub fn new() -> Self {
Self::for_function(Function::new())
}
/// Allocate a new compilation context with an existing Function.
///
/// The returned instance should be reused for compiling multiple functions in order to avoid
/// needless allocator thrashing.
pub fn for_function(func: Function) -> Self {
Self {
func,
cfg: ControlFlowGraph::new(),
domtree: DominatorTree::new(),
loop_analysis: LoopAnalysis::new(),
compiled_code: None,
want_disasm: false,
}
}
/// Clear all data structures in this context.
pub fn clear(&mut self) {
self.func.clear();
self.cfg.clear();
self.domtree.clear();
self.loop_analysis.clear();
self.compiled_code = None;
self.want_disasm = false;
}
/// Returns the compilation result for this function, available after any `compile` function
/// has been called.
pub fn compiled_code(&self) -> Option<&CompiledCode> {
self.compiled_code.as_ref()
}
/// Set the flag to request a disassembly when compiling with a
/// `MachBackend` backend.
pub fn set_disasm(&mut self, val: bool) {
self.want_disasm = val;
}
/// Compile the function, and emit machine code into a `Vec<u8>`.
///
/// Run the function through all the passes necessary to generate code for the target ISA
/// represented by `isa`, as well as the final step of emitting machine code into a
/// `Vec<u8>`. The machine code is not relocated. Instead, any relocations can be obtained
/// from `compiled_code()`.
///
/// This function calls `compile`, taking care to resize `mem` as
/// needed, so it provides a safe interface.
///
/// Returns information about the function's code and read-only data.
pub fn compile_and_emit(
&mut self,
isa: &dyn TargetIsa,
mem: &mut Vec<u8>,
) -> CompileResult<&CompiledCode> {
let compiled_code = self.compile(isa)?;
let code_info = compiled_code.code_info();
let old_len = mem.len();
mem.resize(old_len + code_info.total_size as usize, 0);
mem[old_len..].copy_from_slice(compiled_code.code_buffer());
Ok(compiled_code)
}
/// Internally compiles the function into a stencil.
///
/// Public only for testing and fuzzing purposes.
pub fn compile_stencil(&mut self, isa: &dyn TargetIsa) -> CodegenResult<CompiledCodeStencil> {
let _tt = timing::compile();
self.verify_if(isa)?;
let opt_level = isa.flags().opt_level();
log::trace!(
"Compiling (opt level {:?}):\n{}",
opt_level,
self.func.display()
);
self.compute_cfg();
if opt_level != OptLevel::None {
self.preopt(isa)?;
}
if isa.flags().enable_nan_canonicalization() {
self.canonicalize_nans(isa)?;
}
self.legalize(isa)?;
if opt_level != OptLevel::None {
self.compute_domtree();
self.compute_loop_analysis();
self.licm(isa)?;
self.simple_gvn(isa)?;
}
self.compute_domtree();
self.eliminate_unreachable_code(isa)?;
if opt_level != OptLevel::None {
self.dce(isa)?;
}
self.remove_constant_phis(isa)?;
if opt_level != OptLevel::None && isa.flags().enable_alias_analysis() {
self.replace_redundant_loads()?;
self.simple_gvn(isa)?;
}
isa.compile_function(&self.func, self.want_disasm)
}
/// Compile the function.
///
/// Run the function through all the passes necessary to generate code for the target ISA
/// represented by `isa`. This does not include the final step of emitting machine code into a
/// code sink.
///
/// Returns information about the function's code and read-only data.
pub fn compile(&mut self, isa: &dyn TargetIsa) -> CompileResult<&CompiledCode> {
let _tt = timing::compile();
let stencil = self.compile_stencil(isa).map_err(|error| CompileError {
inner: error,
func: &self.func,
})?;
Ok(self
.compiled_code
.insert(stencil.apply_params(&self.func.params)))
}
/// If available, return information about the code layout in the
/// final machine code: the offsets (in bytes) of each basic-block
/// start, and all basic-block edges.
pub fn get_code_bb_layout(&self) -> Option<(Vec<usize>, Vec<(usize, usize)>)> {
if let Some(result) = self.compiled_code.as_ref() {
Some((
result.bb_starts.iter().map(|&off| off as usize).collect(),
result
.bb_edges
.iter()
.map(|&(from, to)| (from as usize, to as usize))
.collect(),
))
} else {
None
}
}
/// Creates unwind information for the function.
///
/// Returns `None` if the function has no unwind information.
#[cfg(feature = "unwind")]
pub fn create_unwind_info(
&self,
isa: &dyn TargetIsa,
) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
let unwind_info_kind = isa.unwind_info_kind();
let result = self.compiled_code.as_ref().unwrap();
isa.emit_unwind_info(result, unwind_info_kind)
}
/// Run the verifier on the function.
///
/// Also check that the dominator tree and control flow graph are consistent with the function.
pub fn verify<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> VerifierResult<()> {
let mut errors = VerifierErrors::default();
let _ = verify_context(&self.func, &self.cfg, &self.domtree, fisa, &mut errors);
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
/// Run the verifier only if the `enable_verifier` setting is true.
pub fn verify_if<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> CodegenResult<()> {
let fisa = fisa.into();
if fisa.flags.enable_verifier() {
self.verify(fisa)?;
}
Ok(())
}
/// Perform dead-code elimination on the function.
pub fn dce<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
do_dce(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform constant-phi removal on the function.
pub fn remove_constant_phis<'a, FOI: Into<FlagsOrIsa<'a>>>(
&mut self,
fisa: FOI,
) -> CodegenResult<()> {
do_remove_constant_phis(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform pre-legalization rewrites on the function.
pub fn preopt(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_preopt(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)?;
Ok(())
}
/// Perform NaN canonicalizing rewrites on the function.
pub fn canonicalize_nans(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_nan_canonicalization(&mut self.func);
self.verify_if(isa)
}
/// Run the legalizer for `isa` on the function.
pub fn legalize(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
// Legalization invalidates the domtree and loop_analysis by mutating the CFG.
// TODO: Avoid doing this when legalization doesn't actually mutate the CFG.
self.domtree.clear();
self.loop_analysis.clear();
// Run some specific legalizations only.
simple_legalize(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)
}
/// Compute the control flow graph.
pub fn compute_cfg(&mut self) {
self.cfg.compute(&self.func)
}
/// Compute dominator tree.
pub fn compute_domtree(&mut self) {
self.domtree.compute(&self.func, &self.cfg)
}
/// Compute the loop analysis.
pub fn compute_loop_analysis(&mut self) {
self.loop_analysis
.compute(&self.func, &self.cfg, &self.domtree)
}
/// Compute the control flow graph and dominator tree.
pub fn flowgraph(&mut self) {
self.compute_cfg();
self.compute_domtree()
}
/// Perform simple GVN on the function.
pub fn simple_gvn<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
do_simple_gvn(&mut self.func, &mut self.domtree);
self.verify_if(fisa)
}
/// Perform LICM on the function.
pub fn licm(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_licm(
&mut self.func,
&mut self.cfg,
&mut self.domtree,
&mut self.loop_analysis,
);
self.verify_if(isa)
}
/// Perform unreachable code elimination.
pub fn eliminate_unreachable_code<'a, FOI>(&mut self, fisa: FOI) -> CodegenResult<()>
where
FOI: Into<FlagsOrIsa<'a>>,
{
eliminate_unreachable_code(&mut self.func, &mut self.cfg, &self.domtree);
self.verify_if(fisa)
}
/// Replace all redundant loads with the known values in
/// memory. These are loads whose values were already loaded by
/// other loads earlier, as well as loads whose values were stored
/// by a store instruction to the same instruction (so-called
/// "store-to-load forwarding").
pub fn replace_redundant_loads(&mut self) -> CodegenResult<()> {
let mut analysis = AliasAnalysis::new(&mut self.func, &self.domtree);
analysis.compute_and_update_aliases();
Ok(())
}
/// Harvest candidate left-hand sides for superoptimization with Souper.
#[cfg(feature = "souper-harvest")]
pub fn souper_harvest(
&mut self,
out: &mut std::sync::mpsc::Sender<String>,
) -> CodegenResult<()> {
do_souper_harvest(&self.func, out);
Ok(())
}
}