1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
#[cfg(feature = "arbitrary")]
use crate::base::dimension::U4;
#[cfg(feature = "arbitrary")]
use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};

#[cfg(feature = "rand-no-std")]
use rand::{
    distributions::{uniform::SampleUniform, Distribution, OpenClosed01, Standard, Uniform},
    Rng,
};

use num::{One, Zero};

use simba::scalar::{RealField, SupersetOf};
use simba::simd::SimdBool;

use crate::base::dimension::U3;
use crate::base::storage::Storage;
use crate::base::{Matrix3, Matrix4, Unit, Vector, Vector3, Vector4};
use crate::{Scalar, SimdRealField};

use crate::geometry::{Quaternion, Rotation3, UnitQuaternion};

impl<T> Quaternion<T> {
    /// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w`
    /// vector component.
    #[inline]
    // #[deprecated(note = "Use `::from` instead.")] // Don't deprecate because this one can be a const-fn.
    pub const fn from_vector(vector: Vector4<T>) -> Self {
        Self { coords: vector }
    }

    /// Creates a new quaternion from its individual components. Note that the arguments order does
    /// **not** follow the storage order.
    ///
    /// The storage order is `[ i, j, k, w ]` while the arguments for this functions are in the
    /// order `(w, i, j, k)`.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Quaternion, Vector4};
    /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
    /// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
    /// ```
    #[inline]
    pub const fn new(w: T, i: T, j: T, k: T) -> Self {
        Self::from_vector(Vector4::new(i, j, k, w))
    }

    /// Cast the components of `self` to another type.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::Quaternion;
    /// let q = Quaternion::new(1.0f64, 2.0, 3.0, 4.0);
    /// let q2 = q.cast::<f32>();
    /// assert_eq!(q2, Quaternion::new(1.0f32, 2.0, 3.0, 4.0));
    /// ```
    pub fn cast<To: Scalar>(self) -> Quaternion<To>
    where
        T: Scalar,
        To: SupersetOf<T>,
    {
        crate::convert(self)
    }
}

impl<T: SimdRealField> Quaternion<T> {
    /// Constructs a pure quaternion.
    #[inline]
    pub fn from_imag(vector: Vector3<T>) -> Self {
        Self::from_parts(T::zero(), vector)
    }

    /// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does
    /// **not** follow the storage order.
    ///
    /// The storage order is [ vector, scalar ].
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Quaternion, Vector3, Vector4};
    /// let w = 1.0;
    /// let ijk = Vector3::new(2.0, 3.0, 4.0);
    /// let q = Quaternion::from_parts(w, ijk);
    /// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
    /// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
    /// ```
    #[inline]
    // TODO: take a reference to `vector`?
    pub fn from_parts<SB>(scalar: T, vector: Vector<T, U3, SB>) -> Self
    where
        SB: Storage<T, U3>,
    {
        Self::new(scalar, vector[0], vector[1], vector[2])
    }

    /// Constructs a real quaternion.
    #[inline]
    pub fn from_real(r: T) -> Self {
        Self::from_parts(r, Vector3::zero())
    }

    /// The quaternion multiplicative identity.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::Quaternion;
    /// let q = Quaternion::identity();
    /// let q2 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    ///
    /// assert_eq!(q * q2, q2);
    /// assert_eq!(q2 * q, q2);
    /// ```
    #[inline]
    pub fn identity() -> Self {
        Self::from_real(T::one())
    }
}

// TODO: merge with the previous block.
impl<T: SimdRealField> Quaternion<T>
where
    T::Element: SimdRealField,
{
    /// Creates a new quaternion from its polar decomposition.
    ///
    /// Note that `axis` is assumed to be a unit vector.
    // TODO: take a reference to `axis`?
    pub fn from_polar_decomposition<SB>(scale: T, theta: T, axis: Unit<Vector<T, U3, SB>>) -> Self
    where
        SB: Storage<T, U3>,
    {
        let rot = UnitQuaternion::<T>::from_axis_angle(&axis, theta * crate::convert(2.0f64));

        rot.into_inner() * scale
    }
}

impl<T: SimdRealField> One for Quaternion<T>
where
    T::Element: SimdRealField,
{
    #[inline]
    fn one() -> Self {
        Self::identity()
    }
}

impl<T: SimdRealField> Zero for Quaternion<T>
where
    T::Element: SimdRealField,
{
    #[inline]
    fn zero() -> Self {
        Self::from(Vector4::zero())
    }

    #[inline]
    fn is_zero(&self) -> bool {
        self.coords.is_zero()
    }
}

#[cfg(feature = "rand-no-std")]
impl<T: SimdRealField> Distribution<Quaternion<T>> for Standard
where
    Standard: Distribution<T>,
{
    #[inline]
    fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> Quaternion<T> {
        Quaternion::new(rng.gen(), rng.gen(), rng.gen(), rng.gen())
    }
}

#[cfg(feature = "arbitrary")]
impl<T: SimdRealField + Arbitrary> Arbitrary for Quaternion<T>
where
    Owned<T, U4>: Send,
{
    #[inline]
    fn arbitrary(g: &mut Gen) -> Self {
        Self::new(
            T::arbitrary(g),
            T::arbitrary(g),
            T::arbitrary(g),
            T::arbitrary(g),
        )
    }
}

impl<T: SimdRealField> UnitQuaternion<T>
where
    T::Element: SimdRealField,
{
    /// The rotation identity.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{UnitQuaternion, Vector3, Point3};
    /// let q = UnitQuaternion::identity();
    /// let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0));
    /// let v = Vector3::new_random();
    /// let p = Point3::from(v);
    ///
    /// assert_eq!(q * q2, q2);
    /// assert_eq!(q2 * q, q2);
    /// assert_eq!(q * v, v);
    /// assert_eq!(q * p, p);
    /// ```
    #[inline]
    pub fn identity() -> Self {
        Self::new_unchecked(Quaternion::identity())
    }

    /// Cast the components of `self` to another type.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::UnitQuaternion;
    /// # use approx::assert_relative_eq;
    /// let q = UnitQuaternion::from_euler_angles(1.0f64, 2.0, 3.0);
    /// let q2 = q.cast::<f32>();
    /// assert_relative_eq!(q2, UnitQuaternion::from_euler_angles(1.0f32, 2.0, 3.0), epsilon = 1.0e-6);
    /// ```
    pub fn cast<To: Scalar>(self) -> UnitQuaternion<To>
    where
        To: SupersetOf<T>,
    {
        crate::convert(self)
    }

    /// Creates a new quaternion from a unit vector (the rotation axis) and an angle
    /// (the rotation angle).
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{UnitQuaternion, Point3, Vector3};
    /// let axis = Vector3::y_axis();
    /// let angle = f32::consts::FRAC_PI_2;
    /// // Point and vector being transformed in the tests.
    /// let pt = Point3::new(4.0, 5.0, 6.0);
    /// let vec = Vector3::new(4.0, 5.0, 6.0);
    /// let q = UnitQuaternion::from_axis_angle(&axis, angle);
    ///
    /// assert_eq!(q.axis().unwrap(), axis);
    /// assert_eq!(q.angle(), angle);
    /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    ///
    /// // A zero vector yields an identity.
    /// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
    /// ```
    #[inline]
    pub fn from_axis_angle<SB>(axis: &Unit<Vector<T, U3, SB>>, angle: T) -> Self
    where
        SB: Storage<T, U3>,
    {
        let (sang, cang) = (angle / crate::convert(2.0f64)).simd_sin_cos();

        let q = Quaternion::from_parts(cang, axis.as_ref() * sang);
        Self::new_unchecked(q)
    }

    /// Creates a new unit quaternion from a quaternion.
    ///
    /// The input quaternion will be normalized.
    #[inline]
    pub fn from_quaternion(q: Quaternion<T>) -> Self {
        Self::new_normalize(q)
    }

    /// Creates a new unit quaternion from Euler angles.
    ///
    /// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::UnitQuaternion;
    /// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
    /// let euler = rot.euler_angles();
    /// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
    /// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
    /// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self {
        let (sr, cr) = (roll * crate::convert(0.5f64)).simd_sin_cos();
        let (sp, cp) = (pitch * crate::convert(0.5f64)).simd_sin_cos();
        let (sy, cy) = (yaw * crate::convert(0.5f64)).simd_sin_cos();

        let q = Quaternion::new(
            cr * cp * cy + sr * sp * sy,
            sr * cp * cy - cr * sp * sy,
            cr * sp * cy + sr * cp * sy,
            cr * cp * sy - sr * sp * cy,
        );

        Self::new_unchecked(q)
    }

    /// Builds an unit quaternion from a basis assumed to be orthonormal.
    ///
    /// In order to get a valid unit-quaternion, the input must be an
    /// orthonormal basis, i.e., all vectors are normalized, and the are
    /// all orthogonal to each other. These invariants are not checked
    /// by this method.
    pub fn from_basis_unchecked(basis: &[Vector3<T>; 3]) -> Self {
        let rot = Rotation3::from_basis_unchecked(basis);
        Self::from_rotation_matrix(&rot)
    }

    /// Builds an unit quaternion from a rotation matrix.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Rotation3, UnitQuaternion, Vector3};
    /// let axis = Vector3::y_axis();
    /// let angle = 0.1;
    /// let rot = Rotation3::from_axis_angle(&axis, angle);
    /// let q = UnitQuaternion::from_rotation_matrix(&rot);
    /// assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6);
    /// assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6);
    /// assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn from_rotation_matrix(rotmat: &Rotation3<T>) -> Self {
        // Robust matrix to quaternion transformation.
        // See https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion
        let tr = rotmat[(0, 0)] + rotmat[(1, 1)] + rotmat[(2, 2)];
        let quarter: T = crate::convert(0.25);

        let res = tr.simd_gt(T::zero()).if_else3(
            || {
                let denom = (tr + T::one()).simd_sqrt() * crate::convert(2.0);
                Quaternion::new(
                    quarter * denom,
                    (rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
                    (rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
                    (rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
                )
            },
            (
                || rotmat[(0, 0)].simd_gt(rotmat[(1, 1)]) & rotmat[(0, 0)].simd_gt(rotmat[(2, 2)]),
                || {
                    let denom = (T::one() + rotmat[(0, 0)] - rotmat[(1, 1)] - rotmat[(2, 2)])
                        .simd_sqrt()
                        * crate::convert(2.0);
                    Quaternion::new(
                        (rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
                        quarter * denom,
                        (rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
                        (rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
                    )
                },
            ),
            (
                || rotmat[(1, 1)].simd_gt(rotmat[(2, 2)]),
                || {
                    let denom = (T::one() + rotmat[(1, 1)] - rotmat[(0, 0)] - rotmat[(2, 2)])
                        .simd_sqrt()
                        * crate::convert(2.0);
                    Quaternion::new(
                        (rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
                        (rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
                        quarter * denom,
                        (rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
                    )
                },
            ),
            || {
                let denom = (T::one() + rotmat[(2, 2)] - rotmat[(0, 0)] - rotmat[(1, 1)])
                    .simd_sqrt()
                    * crate::convert(2.0);
                Quaternion::new(
                    (rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
                    (rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
                    (rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
                    quarter * denom,
                )
            },
        );

        Self::new_unchecked(res)
    }

    /// Builds an unit quaternion by extracting the rotation part of the given transformation `m`.
    ///
    /// This is an iterative method. See `.from_matrix_eps` to provide mover
    /// convergence parameters and starting solution.
    /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
    pub fn from_matrix(m: &Matrix3<T>) -> Self
    where
        T: RealField,
    {
        Rotation3::from_matrix(m).into()
    }

    /// Builds an unit quaternion by extracting the rotation part of the given transformation `m`.
    ///
    /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
    ///
    /// # Parameters
    ///
    /// * `m`: the matrix from which the rotational part is to be extracted.
    /// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
    /// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
    /// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close
    ///           to the actual solution is provided. Can be set to `UnitQuaternion::identity()` if no other
    ///           guesses come to mind.
    pub fn from_matrix_eps(m: &Matrix3<T>, eps: T, max_iter: usize, guess: Self) -> Self
    where
        T: RealField,
    {
        let guess = Rotation3::from(guess);
        Rotation3::from_matrix_eps(m, eps, max_iter, guess).into()
    }

    /// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
    /// direction. Returns `None` if both `a` and `b` are collinear and point to opposite directions, as then the
    /// rotation desired is not unique.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Vector3, UnitQuaternion};
    /// let a = Vector3::new(1.0, 2.0, 3.0);
    /// let b = Vector3::new(3.0, 1.0, 2.0);
    /// let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
    /// assert_relative_eq!(q * a, b);
    /// assert_relative_eq!(q.inverse() * b, a);
    /// ```
    #[inline]
    pub fn rotation_between<SB, SC>(a: &Vector<T, U3, SB>, b: &Vector<T, U3, SC>) -> Option<Self>
    where
        T: RealField,
        SB: Storage<T, U3>,
        SC: Storage<T, U3>,
    {
        Self::scaled_rotation_between(a, b, T::one())
    }

    /// The smallest rotation needed to make `a` and `b` collinear and point toward the same
    /// direction, raised to the power `s`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Vector3, UnitQuaternion};
    /// let a = Vector3::new(1.0, 2.0, 3.0);
    /// let b = Vector3::new(3.0, 1.0, 2.0);
    /// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
    /// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
    /// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
    /// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn scaled_rotation_between<SB, SC>(
        a: &Vector<T, U3, SB>,
        b: &Vector<T, U3, SC>,
        s: T,
    ) -> Option<Self>
    where
        T: RealField,
        SB: Storage<T, U3>,
        SC: Storage<T, U3>,
    {
        // TODO: code duplication with Rotation.
        if let (Some(na), Some(nb)) = (
            Unit::try_new(a.clone_owned(), T::zero()),
            Unit::try_new(b.clone_owned(), T::zero()),
        ) {
            Self::scaled_rotation_between_axis(&na, &nb, s)
        } else {
            Some(Self::identity())
        }
    }

    /// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
    /// direction.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Unit, Vector3, UnitQuaternion};
    /// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
    /// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
    /// let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
    /// assert_relative_eq!(q * a, b);
    /// assert_relative_eq!(q.inverse() * b, a);
    /// ```
    #[inline]
    pub fn rotation_between_axis<SB, SC>(
        a: &Unit<Vector<T, U3, SB>>,
        b: &Unit<Vector<T, U3, SC>>,
    ) -> Option<Self>
    where
        T: RealField,
        SB: Storage<T, U3>,
        SC: Storage<T, U3>,
    {
        Self::scaled_rotation_between_axis(a, b, T::one())
    }

    /// The smallest rotation needed to make `a` and `b` collinear and point toward the same
    /// direction, raised to the power `s`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Unit, Vector3, UnitQuaternion};
    /// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
    /// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
    /// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
    /// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
    /// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
    /// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn scaled_rotation_between_axis<SB, SC>(
        na: &Unit<Vector<T, U3, SB>>,
        nb: &Unit<Vector<T, U3, SC>>,
        s: T,
    ) -> Option<Self>
    where
        T: RealField,
        SB: Storage<T, U3>,
        SC: Storage<T, U3>,
    {
        // TODO: code duplication with Rotation.
        let c = na.cross(&nb);

        if let Some(axis) = Unit::try_new(c, T::default_epsilon()) {
            let cos = na.dot(&nb);

            // The cosinus may be out of [-1, 1] because of inaccuracies.
            if cos <= -T::one() {
                None
            } else if cos >= T::one() {
                Some(Self::identity())
            } else {
                Some(Self::from_axis_angle(&axis, cos.acos() * s))
            }
        } else if na.dot(&nb) < T::zero() {
            // PI
            //
            // The rotation axis is undefined but the angle not zero. This is not a
            // simple rotation.
            None
        } else {
            // Zero
            Some(Self::identity())
        }
    }

    /// Creates an unit quaternion that corresponds to the local frame of an observer standing at the
    /// origin and looking toward `dir`.
    ///
    /// It maps the `z` axis to the direction `dir`.
    ///
    /// # Arguments
    ///   * dir - The look direction. It does not need to be normalized.
    ///   * up - The vertical direction. It does not need to be normalized.
    ///   The only requirement of this parameter is to not be collinear to `dir`. Non-collinearity
    ///   is not checked.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{UnitQuaternion, Vector3};
    /// let dir = Vector3::new(1.0, 2.0, 3.0);
    /// let up = Vector3::y();
    ///
    /// let q = UnitQuaternion::face_towards(&dir, &up);
    /// assert_relative_eq!(q * Vector3::z(), dir.normalize());
    /// ```
    #[inline]
    pub fn face_towards<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
    where
        SB: Storage<T, U3>,
        SC: Storage<T, U3>,
    {
        Self::from_rotation_matrix(&Rotation3::face_towards(dir, up))
    }

    /// Deprecated: Use [UnitQuaternion::face_towards] instead.
    #[deprecated(note = "renamed to `face_towards`")]
    pub fn new_observer_frames<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
    where
        SB: Storage<T, U3>,
        SC: Storage<T, U3>,
    {
        Self::face_towards(dir, up)
    }

    /// Builds a right-handed look-at view matrix without translation.
    ///
    /// It maps the view direction `dir` to the **negative** `z` axis.
    /// This conforms to the common notion of right handed look-at matrix from the computer
    /// graphics community.
    ///
    /// # Arguments
    ///   * dir − The view direction. It does not need to be normalized.
    ///   * up - A vector approximately aligned with required the vertical axis. It does not need
    ///   to be normalized. The only requirement of this parameter is to not be collinear to `dir`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{UnitQuaternion, Vector3};
    /// let dir = Vector3::new(1.0, 2.0, 3.0);
    /// let up = Vector3::y();
    ///
    /// let q = UnitQuaternion::look_at_rh(&dir, &up);
    /// assert_relative_eq!(q * dir.normalize(), -Vector3::z());
    /// ```
    #[inline]
    pub fn look_at_rh<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
    where
        SB: Storage<T, U3>,
        SC: Storage<T, U3>,
    {
        Self::face_towards(&-dir, up).inverse()
    }

    /// Builds a left-handed look-at view matrix without translation.
    ///
    /// It maps the view direction `dir` to the **positive** `z` axis.
    /// This conforms to the common notion of left handed look-at matrix from the computer
    /// graphics community.
    ///
    /// # Arguments
    ///   * dir − The view direction. It does not need to be normalized.
    ///   * up - A vector approximately aligned with required the vertical axis. The only
    ///   requirement of this parameter is to not be collinear to `dir`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{UnitQuaternion, Vector3};
    /// let dir = Vector3::new(1.0, 2.0, 3.0);
    /// let up = Vector3::y();
    ///
    /// let q = UnitQuaternion::look_at_lh(&dir, &up);
    /// assert_relative_eq!(q * dir.normalize(), Vector3::z());
    /// ```
    #[inline]
    pub fn look_at_lh<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
    where
        SB: Storage<T, U3>,
        SC: Storage<T, U3>,
    {
        Self::face_towards(dir, up).inverse()
    }

    /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
    ///
    /// If `axisangle` has a magnitude smaller than `T::default_epsilon()`, this returns the identity rotation.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{UnitQuaternion, Point3, Vector3};
    /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
    /// // Point and vector being transformed in the tests.
    /// let pt = Point3::new(4.0, 5.0, 6.0);
    /// let vec = Vector3::new(4.0, 5.0, 6.0);
    /// let q = UnitQuaternion::new(axisangle);
    ///
    /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    ///
    /// // A zero vector yields an identity.
    /// assert_eq!(UnitQuaternion::new(Vector3::<f32>::zeros()), UnitQuaternion::identity());
    /// ```
    #[inline]
    pub fn new<SB>(axisangle: Vector<T, U3, SB>) -> Self
    where
        SB: Storage<T, U3>,
    {
        let two: T = crate::convert(2.0f64);
        let q = Quaternion::<T>::from_imag(axisangle / two).exp();
        Self::new_unchecked(q)
    }

    /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
    ///
    /// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{UnitQuaternion, Point3, Vector3};
    /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
    /// // Point and vector being transformed in the tests.
    /// let pt = Point3::new(4.0, 5.0, 6.0);
    /// let vec = Vector3::new(4.0, 5.0, 6.0);
    /// let q = UnitQuaternion::new_eps(axisangle, 1.0e-6);
    ///
    /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    ///
    /// // An almost zero vector yields an identity.
    /// assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
    /// ```
    #[inline]
    pub fn new_eps<SB>(axisangle: Vector<T, U3, SB>, eps: T) -> Self
    where
        SB: Storage<T, U3>,
    {
        let two: T = crate::convert(2.0f64);
        let q = Quaternion::<T>::from_imag(axisangle / two).exp_eps(eps);
        Self::new_unchecked(q)
    }

    /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
    ///
    /// If `axisangle` has a magnitude smaller than `T::default_epsilon()`, this returns the identity rotation.
    /// Same as `Self::new(axisangle)`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{UnitQuaternion, Point3, Vector3};
    /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
    /// // Point and vector being transformed in the tests.
    /// let pt = Point3::new(4.0, 5.0, 6.0);
    /// let vec = Vector3::new(4.0, 5.0, 6.0);
    /// let q = UnitQuaternion::from_scaled_axis(axisangle);
    ///
    /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    ///
    /// // A zero vector yields an identity.
    /// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
    /// ```
    #[inline]
    pub fn from_scaled_axis<SB>(axisangle: Vector<T, U3, SB>) -> Self
    where
        SB: Storage<T, U3>,
    {
        Self::new(axisangle)
    }

    /// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
    ///
    /// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
    /// Same as `Self::new_eps(axisangle, eps)`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{UnitQuaternion, Point3, Vector3};
    /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
    /// // Point and vector being transformed in the tests.
    /// let pt = Point3::new(4.0, 5.0, 6.0);
    /// let vec = Vector3::new(4.0, 5.0, 6.0);
    /// let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6);
    ///
    /// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    /// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
    ///
    /// // An almost zero vector yields an identity.
    /// assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
    /// ```
    #[inline]
    pub fn from_scaled_axis_eps<SB>(axisangle: Vector<T, U3, SB>, eps: T) -> Self
    where
        SB: Storage<T, U3>,
    {
        Self::new_eps(axisangle, eps)
    }

    /// Create the mean unit quaternion from a data structure implementing IntoIterator
    /// returning unit quaternions.
    ///
    /// The method will panic if the iterator does not return any quaternions.
    ///
    /// Algorithm from: Oshman, Yaakov, and Avishy Carmi. "Attitude estimation from vector
    /// observations using a genetic-algorithm-embedded quaternion particle filter." Journal of
    /// Guidance, Control, and Dynamics 29.4 (2006): 879-891.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{UnitQuaternion};
    /// let q1 = UnitQuaternion::from_euler_angles(0.0, 0.0, 0.0);
    /// let q2 = UnitQuaternion::from_euler_angles(-0.1, 0.0, 0.0);
    /// let q3 = UnitQuaternion::from_euler_angles(0.1, 0.0, 0.0);
    ///
    /// let quat_vec = vec![q1, q2, q3];
    /// let q_mean = UnitQuaternion::mean_of(quat_vec);
    ///
    /// let euler_angles_mean = q_mean.euler_angles();
    /// assert_relative_eq!(euler_angles_mean.0, 0.0, epsilon = 1.0e-7)
    /// ```
    #[inline]
    pub fn mean_of(unit_quaternions: impl IntoIterator<Item = Self>) -> Self
    where
        T: RealField,
    {
        let quaternions_matrix: Matrix4<T> = unit_quaternions
            .into_iter()
            .map(|q| q.as_vector() * q.as_vector().transpose())
            .sum();

        assert!(!quaternions_matrix.is_zero());

        let eigen_matrix = quaternions_matrix
            .try_symmetric_eigen(T::RealField::default_epsilon(), 10)
            .expect("Quaternions matrix could not be diagonalized. This behavior should not be possible.");

        let max_eigenvalue_index = eigen_matrix
            .eigenvalues
            .iter()
            .position(|v| *v == eigen_matrix.eigenvalues.max())
            .unwrap();

        let max_eigenvector = eigen_matrix.eigenvectors.column(max_eigenvalue_index);
        UnitQuaternion::from_quaternion(Quaternion::new(
            max_eigenvector[0],
            max_eigenvector[1],
            max_eigenvector[2],
            max_eigenvector[3],
        ))
    }
}

impl<T: SimdRealField> One for UnitQuaternion<T>
where
    T::Element: SimdRealField,
{
    #[inline]
    fn one() -> Self {
        Self::identity()
    }
}

#[cfg(feature = "rand-no-std")]
impl<T: SimdRealField> Distribution<UnitQuaternion<T>> for Standard
where
    T::Element: SimdRealField,
    OpenClosed01: Distribution<T>,
    T: SampleUniform,
{
    /// Generate a uniformly distributed random rotation quaternion.
    #[inline]
    fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> UnitQuaternion<T> {
        // Ken Shoemake's Subgroup Algorithm
        // Uniform random rotations.
        // In D. Kirk, editor, Graphics Gems III, pages 124-132. Academic, New York, 1992.
        let x0 = rng.sample(OpenClosed01);
        let twopi = Uniform::new(T::zero(), T::simd_two_pi());
        let theta1 = rng.sample(&twopi);
        let theta2 = rng.sample(&twopi);
        let s1 = theta1.simd_sin();
        let c1 = theta1.simd_cos();
        let s2 = theta2.simd_sin();
        let c2 = theta2.simd_cos();
        let r1 = (T::one() - x0).simd_sqrt();
        let r2 = x0.simd_sqrt();
        Unit::new_unchecked(Quaternion::new(s1 * r1, c1 * r1, s2 * r2, c2 * r2))
    }
}

#[cfg(feature = "arbitrary")]
impl<T: RealField + Arbitrary> Arbitrary for UnitQuaternion<T>
where
    Owned<T, U4>: Send,
    Owned<T, U3>: Send,
{
    #[inline]
    fn arbitrary(g: &mut Gen) -> Self {
        let axisangle = Vector3::arbitrary(g);
        Self::from_scaled_axis(axisangle)
    }
}

#[cfg(test)]
#[cfg(feature = "rand")]
mod tests {
    extern crate rand_xorshift;
    use super::*;
    use rand::SeedableRng;

    #[test]
    fn random_unit_quats_are_unit() {
        let mut rng = rand_xorshift::XorShiftRng::from_seed([0xAB; 16]);
        for _ in 0..1000 {
            let x = rng.gen::<UnitQuaternion<f32>>();
            assert!(relative_eq!(x.into_inner().norm(), 1.0))
        }
    }
}