1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#![no_std]
#![doc = include_str!("../README.md")]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/8f1a9894/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/8f1a9894/logo.svg"
)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![forbid(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]
//! # Design
//!
//! This crate provides a common set of traits for signing and verifying
//! digital signatures intended to be implemented by libraries which produce
//! or contain implementations of digital signature algorithms, and used by
//! libraries which want to produce or verify digital signatures while
//! generically supporting any compatible backend.
//!
//! ## Goals
//!
//! The traits provided by this crate were designed with the following goals
//! in mind:
//!
//! - Provide an easy-to-use, misuse resistant API optimized for consumers
//! (as opposed to implementers) of its traits.
//! - Support common type-safe wrappers around "bag-of-bytes" representations
//! which can be directly parsed from or written to the "wire".
//! - Expose a trait/object-safe API where signers/verifiers spanning multiple
//! homogeneous provider implementations can be seamlessly leveraged together
//! in the same logical "keyring" so long as they operate on the same
//! underlying signature type.
//! - Allow one provider type to potentially implement support (including
//! being generic over) several signature types.
//! - Keep signature algorithm customizations / "knobs" out-of-band from the
//! signing/verification APIs, ideally pushing such concerns into the type
//! system so that algorithm mismatches are caught as type errors.
//! - Opaque error type which minimizes information leaked from cryptographic
//! failures, as "rich" error types in these scenarios are often a source
//! of sidechannel information for attackers (e.g. [BB'06])
//!
//! [BB'06]: https://en.wikipedia.org/wiki/Daniel_Bleichenbacher
//!
//! ## Implementation
//!
//! To accomplish the above goals, the [`Signer`] and [`Verifier`] traits
//! provided by this are generic over a [`Signature`] return value, and use
//! generic parameters rather than associated types. Notably, they use such
//! a parameter for the return value, allowing it to be inferred by the type
//! checker based on the desired signature type.
//!
//! The [`Signature`] trait is bounded on `AsRef<[u8]>`, enforcing that
//! signature types are thin wrappers around a "bag-of-bytes"
//! serialization. Inspiration for this approach comes from the Ed25519
//! signature system, which was based on the observation that past
//! systems were not prescriptive about how signatures should be represented
//! on-the-wire, and that lead to a proliferation of different wire formats
//! and confusion about which ones should be used. This crate aims to provide
//! similar simplicity by minimizing the number of steps involved to obtain
//! a serializable signature.
//!
//! ## Alternatives considered
//!
//! This crate is based on over two years of exploration of how to encapsulate
//! digital signature systems in the most flexible, developer-friendly way.
//! During that time many design alternatives were explored, tradeoffs
//! compared, and ultimately the provided API was selected.
//!
//! The tradeoffs made in this API have all been to improve simplicity,
//! ergonomics, type safety, and flexibility for *consumers* of the traits.
//! At times, this has come at a cost to implementers. Below are some concerns
//! we are cognizant of which were considered in the design of the API:
//!
//! - "Bag-of-bytes" serialization precludes signature providers from using
//! their own internal representation of a signature, which can be helpful
//! for many reasons (e.g. advanced signature system features like batch
//! verification). Alternatively each provider could define its own signature
//! type, using a marker trait to identify the particular signature algorithm,
//! have `From` impls for converting to/from `[u8; N]`, and a marker trait
//! for identifying a specific signature algorithm.
//! - Associated types, rather than generic parameters of traits, could allow
//! more customization of the types used by a particular signature system,
//! e.g. using custom error types.
//!
//! It may still make sense to continue to explore the above tradeoffs, but
//! with a *new* set of traits which are intended to be implementor-friendly,
//! rather than consumer friendly. The existing [`Signer`] and [`Verifier`]
//! traits could have blanket impls for the "provider-friendly" traits.
//! However, as noted above this is a design space easily explored after
//! stabilizing the consumer-oriented traits, and thus we consider these
//! more important.
//!
//! That said, below are some caveats of trying to design such traits, and
//! why we haven't actively pursued them:
//!
//! - Generics in the return position are already used to select which trait
//! impl to use, i.e. for a particular signature algorithm/system. Avoiding
//! a unified, concrete signature type adds another dimension to complexity
//! and compiler errors, and in our experience makes them unsuitable for this
//! sort of API. We believe such an API is the natural one for signature
//! systems, reflecting the natural way they are written absent a trait.
//! - Associated types preclude multiple (or generic) implementations of the
//! same trait. These parameters are common in signature systems, notably
//! ones which support different digest algorithms.
//! - Digital signatures are almost always larger than the present 32-entry
//! trait impl limitation on array types, which complicates trait signatures
//! for these types (particularly things like `From` or `Borrow` bounds).
//! This may be more interesting to explore after const generics.
//!
//! ## Unstable features
//!
//! Despite being post-1.0, this crate includes a number of off-by-default
//! unstable features named `*-preview`, each of which depends on a pre-1.0
//! crate.
//!
//! These features are considered exempt from SemVer. See the
//! [SemVer policy](#semver-policy) above for more information.
//!
//! The following unstable features are presently supported:
//!
//! - `derive-preview`: for implementers of signature systems using
//! [`DigestSigner`] and [`DigestVerifier`], the `derive-preview` feature
//! can be used to derive [`Signer`] and [`Verifier`] traits which prehash
//! the input message using the [`PrehashSignature::Digest`] algorithm for
//! a given [`Signature`] type. When the `derive-preview` feature is enabled
//! import the proc macros with `use signature::{Signer, Verifier}` and then
//! add a `derive(Signer)` or `derive(Verifier)` attribute to the given
//! digest signer/verifier type. Enabling this feature also enables `digest`
//! support (see immediately below).
//! - `digest-preview`: enables the [`DigestSigner`] and [`DigestVerifier`]
//! traits which are based on the [`Digest`] trait from the [`digest`] crate.
//! These traits are used for representing signature systems based on the
//! [Fiat-Shamir heuristic] which compute a random challenge value to sign
//! by computing a cryptographically secure digest of the input message.
//! - `rand-preview`: enables the [`RandomizedSigner`] trait for signature
//! systems which rely on a cryptographically secure random number generator
//! for security.
//!
//! NOTE: the [`async-signature`] crate contains experimental `async` support
//! for [`Signer`] and [`DigestSigner`].
//!
//! [`async-signature`]: https://docs.rs/async-signature
//! [`digest`]: https://docs.rs/digest/
//! [`Digest`]: https://docs.rs/digest/latest/digest/trait.Digest.html
//! [Fiat-Shamir heuristic]: https://en.wikipedia.org/wiki/Fiat%E2%80%93Shamir_heuristic
#[cfg(feature = "std")]
extern crate std;
#[cfg(all(feature = "signature_derive", not(feature = "derive-preview")))]
compile_error!(
"The `signature_derive` feature should not be enabled directly. \
Use the `derive-preview` feature instead."
);
#[cfg(all(feature = "digest", not(feature = "digest-preview")))]
compile_error!(
"The `digest` feature should not be enabled directly. \
Use the `digest-preview` feature instead."
);
#[cfg(all(feature = "rand_core", not(feature = "rand-preview")))]
compile_error!(
"The `rand_core` feature should not be enabled directly. \
Use the `rand-preview` feature instead."
);
#[cfg(feature = "hazmat-preview")]
#[cfg_attr(docsrs, doc(cfg(feature = "hazmat-preview")))]
pub mod hazmat;
mod error;
mod keypair;
mod signature;
mod signer;
mod verifier;
#[cfg(feature = "derive-preview")]
#[cfg_attr(docsrs, doc(cfg(feature = "derive-preview")))]
pub use signature_derive::{Signer, Verifier};
#[cfg(all(feature = "derive-preview", feature = "digest-preview"))]
#[cfg_attr(
docsrs,
doc(cfg(all(feature = "derive-preview", feature = "digest-preview")))
)]
pub use signature_derive::{DigestSigner, DigestVerifier};
#[cfg(feature = "digest-preview")]
pub use digest;
#[cfg(feature = "rand-preview")]
#[cfg_attr(docsrs, doc(cfg(feature = "rand-preview")))]
pub use rand_core;
pub use crate::{error::*, keypair::*, signature::*, signer::*, verifier::*};