1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
// This file is part of Substrate.

// Copyright (C) 2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

///! Provides the [`SharedNodeCache`], the [`SharedValueCache`] and the [`SharedTrieCache`]
///! that combines both caches and is exported to the outside.
use super::{CacheSize, LOG_TARGET};
use hash_db::Hasher;
use hashbrown::{hash_set::Entry as SetEntry, HashSet};
use lru::LruCache;
use nohash_hasher::BuildNoHashHasher;
use parking_lot::{RwLock, RwLockReadGuard, RwLockWriteGuard};
use std::{
	hash::{BuildHasher, Hasher as _},
	mem,
	sync::Arc,
};
use trie_db::{node::NodeOwned, CachedValue};

lazy_static::lazy_static! {
	static ref RANDOM_STATE: ahash::RandomState = ahash::RandomState::default();
}

/// No hashing [`LruCache`].
type NoHashingLruCache<K, T> = LruCache<K, T, BuildNoHashHasher<K>>;

/// The shared node cache.
///
/// Internally this stores all cached nodes in a [`LruCache`]. It ensures that when updating the
/// cache, that the cache stays within its allowed bounds.
pub(super) struct SharedNodeCache<H> {
	/// The cached nodes, ordered by least recently used.
	pub(super) lru: LruCache<H, NodeOwned<H>>,
	/// The size of [`Self::lru`] in bytes.
	pub(super) size_in_bytes: usize,
	/// The maximum cache size of [`Self::lru`].
	maximum_cache_size: CacheSize,
}

impl<H: AsRef<[u8]> + Eq + std::hash::Hash> SharedNodeCache<H> {
	/// Create a new instance.
	fn new(cache_size: CacheSize) -> Self {
		Self { lru: LruCache::unbounded(), size_in_bytes: 0, maximum_cache_size: cache_size }
	}

	/// Get the node for `key`.
	///
	/// This doesn't change the least recently order in the internal [`LruCache`].
	pub fn get(&self, key: &H) -> Option<&NodeOwned<H>> {
		self.lru.peek(key)
	}

	/// Update the cache with the `added` nodes and the `accessed` nodes.
	///
	/// The `added` nodes are the ones that have been collected by doing operations on the trie and
	/// now should be stored in the shared cache. The `accessed` nodes are only referenced by hash
	/// and represent the nodes that were retrieved from this shared cache through [`Self::get`].
	/// These `accessed` nodes are being put to the front of the internal [`LruCache`] like the
	/// `added` ones.
	///
	/// After the internal [`LruCache`] was updated, it is ensured that the internal [`LruCache`] is
	/// inside its bounds ([`Self::maximum_size_in_bytes`]).
	pub fn update(
		&mut self,
		added: impl IntoIterator<Item = (H, NodeOwned<H>)>,
		accessed: impl IntoIterator<Item = H>,
	) {
		let update_size_in_bytes = |size_in_bytes: &mut usize, key: &H, node: &NodeOwned<H>| {
			if let Some(new_size_in_bytes) =
				size_in_bytes.checked_sub(key.as_ref().len() + node.size_in_bytes())
			{
				*size_in_bytes = new_size_in_bytes;
			} else {
				*size_in_bytes = 0;
				tracing::error!(target: LOG_TARGET, "`SharedNodeCache` underflow detected!",);
			}
		};

		accessed.into_iter().for_each(|key| {
			// Access every node in the lru to put it to the front.
			self.lru.get(&key);
		});
		added.into_iter().for_each(|(key, node)| {
			self.size_in_bytes += key.as_ref().len() + node.size_in_bytes();

			if let Some((r_key, r_node)) = self.lru.push(key, node) {
				update_size_in_bytes(&mut self.size_in_bytes, &r_key, &r_node);
			}

			// Directly ensure that we respect the maximum size. By doing it directly here we ensure
			// that the internal map of the [`LruCache`] doesn't grow too much.
			while self.maximum_cache_size.exceeds(self.size_in_bytes) {
				// This should always be `Some(_)`, otherwise something is wrong!
				if let Some((key, node)) = self.lru.pop_lru() {
					update_size_in_bytes(&mut self.size_in_bytes, &key, &node);
				}
			}
		});
	}

	/// Reset the cache.
	fn reset(&mut self) {
		self.size_in_bytes = 0;
		self.lru.clear();
	}
}

/// The hash of [`ValueCacheKey`].
#[derive(Eq, Clone, Copy)]
pub struct ValueCacheKeyHash(u64);

impl ValueCacheKeyHash {
	pub fn from_hasher_and_storage_key(
		mut hasher: impl std::hash::Hasher,
		storage_key: &[u8],
	) -> Self {
		hasher.write(storage_key);

		Self(hasher.finish())
	}
}

impl PartialEq for ValueCacheKeyHash {
	fn eq(&self, other: &Self) -> bool {
		self.0 == other.0
	}
}

impl std::hash::Hash for ValueCacheKeyHash {
	fn hash<Hasher: std::hash::Hasher>(&self, state: &mut Hasher) {
		state.write_u64(self.0);
	}
}

impl nohash_hasher::IsEnabled for ValueCacheKeyHash {}

/// A type that can only be constructed inside of this file.
///
/// It "requires" that the user has read the docs to prevent fuck ups.
#[derive(Eq, PartialEq)]
pub(super) struct IReadTheDocumentation(());

/// The key type that is being used to address a [`CachedValue`].
///
/// This type is implemented as `enum` to improve the performance when accessing the value cache.
/// The problem being that we need to calculate the `hash` of [`Self`] in worst case three times
/// when trying to find a value in the value cache. First to lookup the local cache, then the shared
/// cache and if we found it in the shared cache a third time to insert it into the list of accessed
/// values. To work around each variant stores the `hash` to identify a unique combination of
/// `storage_key` and `storage_root`. However, be aware that this `hash` can lead to collisions when
/// there are two different `storage_key` and `storage_root` pairs that map to the same `hash`. This
/// type also has the `Hash` variant. This variant should only be used for the use case of updating
/// the lru for a key. Because when using only the `Hash` variant to getting a value from a hash map
/// it could happen that a wrong value is returned when there is another key in the same hash map
/// that maps to the same `hash`. The [`PartialEq`] implementation is written in a way that when one
/// of the two compared instances is the `Hash` variant, we will only compare the hashes. This
/// ensures that we can use the `Hash` variant to bring values up in the lru.
#[derive(Eq)]
pub(super) enum ValueCacheKey<'a, H> {
	/// Variant that stores the `storage_key` by value.
	Value {
		/// The storage root of the trie this key belongs to.
		storage_root: H,
		/// The key to access the value in the storage.
		storage_key: Arc<[u8]>,
		/// The hash that identifying this instance of `storage_root` and `storage_key`.
		hash: ValueCacheKeyHash,
	},
	/// Variant that only references the `storage_key`.
	Ref {
		/// The storage root of the trie this key belongs to.
		storage_root: H,
		/// The key to access the value in the storage.
		storage_key: &'a [u8],
		/// The hash that identifying this instance of `storage_root` and `storage_key`.
		hash: ValueCacheKeyHash,
	},
	/// Variant that only stores the hash that represents the `storage_root` and `storage_key`.
	///
	/// This should be used by caution, because it can lead to accessing the wrong value in a
	/// hash map/set when there exists two different `storage_root`s and `storage_key`s that
	/// map to the same `hash`.
	Hash { hash: ValueCacheKeyHash, _i_read_the_documentation: IReadTheDocumentation },
}

impl<'a, H> ValueCacheKey<'a, H> {
	/// Constructs [`Self::Value`].
	pub fn new_value(storage_key: impl Into<Arc<[u8]>>, storage_root: H) -> Self
	where
		H: AsRef<[u8]>,
	{
		let storage_key = storage_key.into();
		let hash = Self::hash_data(&storage_key, &storage_root);
		Self::Value { storage_root, storage_key, hash }
	}

	/// Constructs [`Self::Ref`].
	pub fn new_ref(storage_key: &'a [u8], storage_root: H) -> Self
	where
		H: AsRef<[u8]>,
	{
		let storage_key = storage_key.into();
		let hash = Self::hash_data(storage_key, &storage_root);
		Self::Ref { storage_root, storage_key, hash }
	}

	/// Returns a hasher prepared to build the final hash to identify [`Self`].
	///
	/// See [`Self::hash_data`] for building the hash directly.
	pub fn hash_partial_data(storage_root: &H) -> impl std::hash::Hasher + Clone
	where
		H: AsRef<[u8]>,
	{
		let mut hasher = RANDOM_STATE.build_hasher();
		hasher.write(storage_root.as_ref());
		hasher
	}

	/// Hash the `key` and `storage_root` that identify [`Self`].
	///
	/// Returns a `u64` which represents the unique hash for the given inputs.
	pub fn hash_data(key: &[u8], storage_root: &H) -> ValueCacheKeyHash
	where
		H: AsRef<[u8]>,
	{
		let hasher = Self::hash_partial_data(storage_root);

		ValueCacheKeyHash::from_hasher_and_storage_key(hasher, key)
	}

	/// Returns the `hash` that identifies the current instance.
	pub fn get_hash(&self) -> ValueCacheKeyHash {
		match self {
			Self::Value { hash, .. } | Self::Ref { hash, .. } | Self::Hash { hash, .. } => *hash,
		}
	}

	/// Returns the stored storage root.
	pub fn storage_root(&self) -> Option<&H> {
		match self {
			Self::Value { storage_root, .. } | Self::Ref { storage_root, .. } => Some(storage_root),
			Self::Hash { .. } => None,
		}
	}

	/// Returns the stored storage key.
	pub fn storage_key(&self) -> Option<&[u8]> {
		match self {
			Self::Ref { storage_key, .. } => Some(&storage_key),
			Self::Value { storage_key, .. } => Some(storage_key),
			Self::Hash { .. } => None,
		}
	}
}

// Implement manually to ensure that the `Value` and `Hash` are treated equally.
impl<H: std::hash::Hash> std::hash::Hash for ValueCacheKey<'_, H> {
	fn hash<Hasher: std::hash::Hasher>(&self, state: &mut Hasher) {
		self.get_hash().hash(state)
	}
}

impl<H> nohash_hasher::IsEnabled for ValueCacheKey<'_, H> {}

// Implement manually to ensure that the `Value` and `Hash` are treated equally.
impl<H: PartialEq> PartialEq for ValueCacheKey<'_, H> {
	fn eq(&self, other: &Self) -> bool {
		// First check if `self` or `other` is only the `Hash`.
		// Then we only compare the `hash`. So, there could actually be some collision
		// if two different storage roots and keys are mapping to the same key. See the
		// [`ValueCacheKey`] docs for more information.
		match (self, other) {
			(Self::Hash { hash, .. }, Self::Hash { hash: other_hash, .. }) => hash == other_hash,
			(Self::Hash { hash, .. }, _) => *hash == other.get_hash(),
			(_, Self::Hash { hash: other_hash, .. }) => self.get_hash() == *other_hash,
			// If both are not the `Hash` variant, we compare all the values.
			_ =>
				self.get_hash() == other.get_hash() &&
					self.storage_root() == other.storage_root() &&
					self.storage_key() == other.storage_key(),
		}
	}
}

/// The shared value cache.
///
/// The cache ensures that it stays in the configured size bounds.
pub(super) struct SharedValueCache<H> {
	/// The cached nodes, ordered by least recently used.
	pub(super) lru: NoHashingLruCache<ValueCacheKey<'static, H>, CachedValue<H>>,
	/// The size of [`Self::lru`] in bytes.
	pub(super) size_in_bytes: usize,
	/// The maximum cache size of [`Self::lru`].
	maximum_cache_size: CacheSize,
	/// All known storage keys that are stored in [`Self::lru`].
	///
	/// This is used to de-duplicate keys in memory that use the
	/// same [`SharedValueCache::storage_key`], but have a different
	/// [`SharedValueCache::storage_root`].
	known_storage_keys: HashSet<Arc<[u8]>>,
}

impl<H: Eq + std::hash::Hash + Clone + Copy + AsRef<[u8]>> SharedValueCache<H> {
	/// Create a new instance.
	fn new(cache_size: CacheSize) -> Self {
		Self {
			lru: NoHashingLruCache::unbounded_with_hasher(Default::default()),
			size_in_bytes: 0,
			maximum_cache_size: cache_size,
			known_storage_keys: Default::default(),
		}
	}

	/// Get the [`CachedValue`] for `key`.
	///
	/// This doesn't change the least recently order in the internal [`LruCache`].
	pub fn get<'a>(&'a self, key: &ValueCacheKey<H>) -> Option<&'a CachedValue<H>> {
		debug_assert!(
			!matches!(key, ValueCacheKey::Hash { .. }),
			"`get` can not be called with `Hash` variant as this may returns the wrong value."
		);

		self.lru.peek(unsafe {
			// SAFETY
			//
			// We need to convert the lifetime to make the compiler happy. However, as
			// we only use the `key` to looking up the value this lifetime conversion is
			// safe.
			mem::transmute::<&ValueCacheKey<'_, H>, &ValueCacheKey<'static, H>>(key)
		})
	}

	/// Update the cache with the `added` values and the `accessed` values.
	///
	/// The `added` values are the ones that have been collected by doing operations on the trie and
	/// now should be stored in the shared cache. The `accessed` values are only referenced by the
	/// [`ValueCacheKeyHash`] and represent the values that were retrieved from this shared cache
	/// through [`Self::get`]. These `accessed` values are being put to the front of the internal
	/// [`LruCache`] like the `added` ones.
	///
	/// After the internal [`LruCache`] was updated, it is ensured that the internal [`LruCache`] is
	/// inside its bounds ([`Self::maximum_size_in_bytes`]).
	pub fn update(
		&mut self,
		added: impl IntoIterator<Item = (ValueCacheKey<'static, H>, CachedValue<H>)>,
		accessed: impl IntoIterator<Item = ValueCacheKeyHash>,
	) {
		// The base size in memory per ([`ValueCacheKey<H>`], [`CachedValue`]).
		let base_size = mem::size_of::<ValueCacheKey<H>>() + mem::size_of::<CachedValue<H>>();
		let known_keys_entry_size = mem::size_of::<Arc<[u8]>>();

		let update_size_in_bytes =
			|size_in_bytes: &mut usize, r_key: Arc<[u8]>, known_keys: &mut HashSet<Arc<[u8]>>| {
				// If the `strong_count == 2`, it means this is the last instance of the key.
				// One being `r_key` and the other being stored in `known_storage_keys`.
				let last_instance = Arc::strong_count(&r_key) == 2;

				let key_len = if last_instance {
					known_keys.remove(&r_key);
					r_key.len() + known_keys_entry_size
				} else {
					// The key is still in `keys`, because it is still used by another
					// `ValueCacheKey<H>`.
					0
				};

				if let Some(new_size_in_bytes) = size_in_bytes.checked_sub(key_len + base_size) {
					*size_in_bytes = new_size_in_bytes;
				} else {
					*size_in_bytes = 0;
					tracing::error!(target: LOG_TARGET, "`SharedValueCache` underflow detected!",);
				}
			};

		accessed.into_iter().for_each(|key| {
			// Access every node in the lru to put it to the front.
			// As we are using the `Hash` variant here, it may leads to putting the wrong value to
			// the top. However, the only consequence of this is that we may prune a recently used
			// value to early.
			self.lru.get(&ValueCacheKey::Hash {
				hash: key,
				_i_read_the_documentation: IReadTheDocumentation(()),
			});
		});

		added.into_iter().for_each(|(key, value)| {
			let (storage_root, storage_key, key_hash) = match key {
				ValueCacheKey::Hash { .. } => {
					// Ignore the hash variant and try the next.
					tracing::error!(
						target: LOG_TARGET,
						"`SharedValueCached::update` was called with a key to add \
						that uses the `Hash` variant. This would lead to potential hash collision!",
					);
					return
				},
				ValueCacheKey::Ref { storage_key, storage_root, hash } =>
					(storage_root, storage_key.into(), hash),
				ValueCacheKey::Value { storage_root, storage_key, hash } =>
					(storage_root, storage_key, hash),
			};

			let (size_update, storage_key) =
				match self.known_storage_keys.entry(storage_key.clone()) {
					SetEntry::Vacant(v) => {
						let len = v.get().len();
						v.insert();

						// If the key was unknown, we need to also take its length and the size of
						// the entry of `known_keys` into account.
						(len + base_size + known_keys_entry_size, storage_key)
					},
					SetEntry::Occupied(o) => {
						// Key is known
						(base_size, o.get().clone())
					},
				};

			self.size_in_bytes += size_update;

			if let Some((r_key, _)) = self
				.lru
				.push(ValueCacheKey::Value { storage_key, storage_root, hash: key_hash }, value)
			{
				if let ValueCacheKey::Value { storage_key, .. } = r_key {
					update_size_in_bytes(
						&mut self.size_in_bytes,
						storage_key,
						&mut self.known_storage_keys,
					);
				}
			}

			// Directly ensure that we respect the maximum size. By doing it directly here we
			// ensure that the internal map of the [`LruCache`] doesn't grow too much.
			while self.maximum_cache_size.exceeds(self.size_in_bytes) {
				// This should always be `Some(_)`, otherwise something is wrong!
				if let Some((r_key, _)) = self.lru.pop_lru() {
					if let ValueCacheKey::Value { storage_key, .. } = r_key {
						update_size_in_bytes(
							&mut self.size_in_bytes,
							storage_key,
							&mut self.known_storage_keys,
						);
					}
				}
			}
		});
	}

	/// Reset the cache.
	fn reset(&mut self) {
		self.size_in_bytes = 0;
		self.lru.clear();
		self.known_storage_keys.clear();
	}
}

/// The inner of [`SharedTrieCache`].
pub(super) struct SharedTrieCacheInner<H: Hasher> {
	node_cache: SharedNodeCache<H::Out>,
	value_cache: SharedValueCache<H::Out>,
}

impl<H: Hasher> SharedTrieCacheInner<H> {
	/// Returns a reference to the [`SharedValueCache`].
	pub(super) fn value_cache(&self) -> &SharedValueCache<H::Out> {
		&self.value_cache
	}

	/// Returns a mutable reference to the [`SharedValueCache`].
	pub(super) fn value_cache_mut(&mut self) -> &mut SharedValueCache<H::Out> {
		&mut self.value_cache
	}

	/// Returns a reference to the [`SharedNodeCache`].
	pub(super) fn node_cache(&self) -> &SharedNodeCache<H::Out> {
		&self.node_cache
	}

	/// Returns a mutable reference to the [`SharedNodeCache`].
	pub(super) fn node_cache_mut(&mut self) -> &mut SharedNodeCache<H::Out> {
		&mut self.node_cache
	}
}

/// The shared trie cache.
///
/// It should be instantiated once per node. It will hold the trie nodes and values of all
/// operations to the state. To not use all available memory it will ensure to stay in the
/// bounds given via the [`CacheSize`] at startup.
///
/// The instance of this object can be shared between multiple threads.
pub struct SharedTrieCache<H: Hasher> {
	inner: Arc<RwLock<SharedTrieCacheInner<H>>>,
}

impl<H: Hasher> Clone for SharedTrieCache<H> {
	fn clone(&self) -> Self {
		Self { inner: self.inner.clone() }
	}
}

impl<H: Hasher> SharedTrieCache<H> {
	/// Create a new [`SharedTrieCache`].
	pub fn new(cache_size: CacheSize) -> Self {
		let (node_cache_size, value_cache_size) = match cache_size {
			CacheSize::Maximum(max) => {
				// Allocate 20% for the value cache.
				let value_cache_size_in_bytes = (max as f32 * 0.20) as usize;

				(
					CacheSize::Maximum(max - value_cache_size_in_bytes),
					CacheSize::Maximum(value_cache_size_in_bytes),
				)
			},
			CacheSize::Unlimited => (CacheSize::Unlimited, CacheSize::Unlimited),
		};

		Self {
			inner: Arc::new(RwLock::new(SharedTrieCacheInner {
				node_cache: SharedNodeCache::new(node_cache_size),
				value_cache: SharedValueCache::new(value_cache_size),
			})),
		}
	}

	/// Create a new [`LocalTrieCache`](super::LocalTrieCache) instance from this shared cache.
	pub fn local_cache(&self) -> super::LocalTrieCache<H> {
		super::LocalTrieCache {
			shared: self.clone(),
			node_cache: Default::default(),
			value_cache: Default::default(),
			shared_node_cache_access: Default::default(),
			shared_value_cache_access: Default::default(),
		}
	}

	/// Returns the used memory size of this cache in bytes.
	pub fn used_memory_size(&self) -> usize {
		let inner = self.inner.read();
		let value_cache_size = inner.value_cache.size_in_bytes;
		let node_cache_size = inner.node_cache.size_in_bytes;

		node_cache_size + value_cache_size
	}

	/// Reset the node cache.
	pub fn reset_node_cache(&self) {
		self.inner.write().node_cache.reset();
	}

	/// Reset the value cache.
	pub fn reset_value_cache(&self) {
		self.inner.write().value_cache.reset();
	}

	/// Reset the entire cache.
	pub fn reset(&self) {
		self.reset_node_cache();
		self.reset_value_cache();
	}

	/// Returns the read locked inner.
	pub(super) fn read_lock_inner(&self) -> RwLockReadGuard<'_, SharedTrieCacheInner<H>> {
		self.inner.read()
	}

	/// Returns the write locked inner.
	pub(super) fn write_lock_inner(&self) -> RwLockWriteGuard<'_, SharedTrieCacheInner<H>> {
		self.inner.write()
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_core::H256 as Hash;

	#[test]
	fn shared_value_cache_works() {
		let base_size = mem::size_of::<CachedValue<Hash>>() + mem::size_of::<ValueCacheKey<Hash>>();
		let arc_size = mem::size_of::<Arc<[u8]>>();

		let mut cache = SharedValueCache::<sp_core::H256>::new(CacheSize::Maximum(
			(base_size + arc_size + 10) * 10,
		));

		let key = vec![0; 10];

		let root0 = Hash::repeat_byte(1);
		let root1 = Hash::repeat_byte(2);

		cache.update(
			vec![
				(ValueCacheKey::new_value(&key[..], root0), CachedValue::NonExisting),
				(ValueCacheKey::new_value(&key[..], root1), CachedValue::NonExisting),
			],
			vec![],
		);

		// Ensure that the basics are working
		assert_eq!(1, cache.known_storage_keys.len());
		assert_eq!(3, Arc::strong_count(cache.known_storage_keys.get(&key[..]).unwrap()));
		assert_eq!(base_size * 2 + key.len() + arc_size, cache.size_in_bytes);

		// Just accessing a key should not change anything on the size and number of entries.
		cache.update(vec![], vec![ValueCacheKey::hash_data(&key[..], &root0)]);
		assert_eq!(1, cache.known_storage_keys.len());
		assert_eq!(3, Arc::strong_count(cache.known_storage_keys.get(&key[..]).unwrap()));
		assert_eq!(base_size * 2 + key.len() + arc_size, cache.size_in_bytes);

		// Add 9 other entries and this should move out the key for `root1`.
		cache.update(
			(1..10)
				.map(|i| vec![i; 10])
				.map(|key| (ValueCacheKey::new_value(&key[..], root0), CachedValue::NonExisting)),
			vec![],
		);

		assert_eq!(10, cache.known_storage_keys.len());
		assert_eq!(2, Arc::strong_count(cache.known_storage_keys.get(&key[..]).unwrap()));
		assert_eq!((base_size + key.len() + arc_size) * 10, cache.size_in_bytes);
		assert!(matches!(
			cache.get(&ValueCacheKey::new_ref(&key, root0)).unwrap(),
			CachedValue::<Hash>::NonExisting
		));
		assert!(cache.get(&ValueCacheKey::new_ref(&key, root1)).is_none());

		cache.update(
			vec![(ValueCacheKey::new_value(vec![10; 10], root0), CachedValue::NonExisting)],
			vec![],
		);

		assert!(cache.known_storage_keys.get(&key[..]).is_none());
	}

	#[test]
	fn value_cache_key_eq_works() {
		let storage_key = &b"something"[..];
		let storage_key2 = &b"something2"[..];
		let storage_root = Hash::random();

		let value = ValueCacheKey::new_value(storage_key, storage_root);
		// Ref gets the same hash, but a different storage key
		let ref_ =
			ValueCacheKey::Ref { storage_root, storage_key: storage_key2, hash: value.get_hash() };
		let hash = ValueCacheKey::Hash {
			hash: value.get_hash(),
			_i_read_the_documentation: IReadTheDocumentation(()),
		};

		// Ensure that the hash variants is equal to `value`, `ref_` and itself.
		assert!(hash == value);
		assert!(value == hash);
		assert!(hash == ref_);
		assert!(ref_ == hash);
		assert!(hash == hash);

		// But when we compare `value` and `ref_` the different storage key is detected.
		assert!(value != ref_);
		assert!(ref_ != value);
	}
}