1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
// This file is part of Substrate.
// Copyright (C) 2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///! Provides the [`SharedNodeCache`], the [`SharedValueCache`] and the [`SharedTrieCache`]
///! that combines both caches and is exported to the outside.
use super::{CacheSize, LOG_TARGET};
use hash_db::Hasher;
use hashbrown::{hash_set::Entry as SetEntry, HashSet};
use lru::LruCache;
use nohash_hasher::BuildNoHashHasher;
use parking_lot::{RwLock, RwLockReadGuard, RwLockWriteGuard};
use std::{
hash::{BuildHasher, Hasher as _},
mem,
sync::Arc,
};
use trie_db::{node::NodeOwned, CachedValue};
lazy_static::lazy_static! {
static ref RANDOM_STATE: ahash::RandomState = ahash::RandomState::default();
}
/// No hashing [`LruCache`].
type NoHashingLruCache<K, T> = LruCache<K, T, BuildNoHashHasher<K>>;
/// The shared node cache.
///
/// Internally this stores all cached nodes in a [`LruCache`]. It ensures that when updating the
/// cache, that the cache stays within its allowed bounds.
pub(super) struct SharedNodeCache<H> {
/// The cached nodes, ordered by least recently used.
pub(super) lru: LruCache<H, NodeOwned<H>>,
/// The size of [`Self::lru`] in bytes.
pub(super) size_in_bytes: usize,
/// The maximum cache size of [`Self::lru`].
maximum_cache_size: CacheSize,
}
impl<H: AsRef<[u8]> + Eq + std::hash::Hash> SharedNodeCache<H> {
/// Create a new instance.
fn new(cache_size: CacheSize) -> Self {
Self { lru: LruCache::unbounded(), size_in_bytes: 0, maximum_cache_size: cache_size }
}
/// Get the node for `key`.
///
/// This doesn't change the least recently order in the internal [`LruCache`].
pub fn get(&self, key: &H) -> Option<&NodeOwned<H>> {
self.lru.peek(key)
}
/// Update the cache with the `added` nodes and the `accessed` nodes.
///
/// The `added` nodes are the ones that have been collected by doing operations on the trie and
/// now should be stored in the shared cache. The `accessed` nodes are only referenced by hash
/// and represent the nodes that were retrieved from this shared cache through [`Self::get`].
/// These `accessed` nodes are being put to the front of the internal [`LruCache`] like the
/// `added` ones.
///
/// After the internal [`LruCache`] was updated, it is ensured that the internal [`LruCache`] is
/// inside its bounds ([`Self::maximum_size_in_bytes`]).
pub fn update(
&mut self,
added: impl IntoIterator<Item = (H, NodeOwned<H>)>,
accessed: impl IntoIterator<Item = H>,
) {
let update_size_in_bytes = |size_in_bytes: &mut usize, key: &H, node: &NodeOwned<H>| {
if let Some(new_size_in_bytes) =
size_in_bytes.checked_sub(key.as_ref().len() + node.size_in_bytes())
{
*size_in_bytes = new_size_in_bytes;
} else {
*size_in_bytes = 0;
tracing::error!(target: LOG_TARGET, "`SharedNodeCache` underflow detected!",);
}
};
accessed.into_iter().for_each(|key| {
// Access every node in the lru to put it to the front.
self.lru.get(&key);
});
added.into_iter().for_each(|(key, node)| {
self.size_in_bytes += key.as_ref().len() + node.size_in_bytes();
if let Some((r_key, r_node)) = self.lru.push(key, node) {
update_size_in_bytes(&mut self.size_in_bytes, &r_key, &r_node);
}
// Directly ensure that we respect the maximum size. By doing it directly here we ensure
// that the internal map of the [`LruCache`] doesn't grow too much.
while self.maximum_cache_size.exceeds(self.size_in_bytes) {
// This should always be `Some(_)`, otherwise something is wrong!
if let Some((key, node)) = self.lru.pop_lru() {
update_size_in_bytes(&mut self.size_in_bytes, &key, &node);
}
}
});
}
/// Reset the cache.
fn reset(&mut self) {
self.size_in_bytes = 0;
self.lru.clear();
}
}
/// The hash of [`ValueCacheKey`].
#[derive(Eq, Clone, Copy)]
pub struct ValueCacheKeyHash(u64);
impl ValueCacheKeyHash {
pub fn from_hasher_and_storage_key(
mut hasher: impl std::hash::Hasher,
storage_key: &[u8],
) -> Self {
hasher.write(storage_key);
Self(hasher.finish())
}
}
impl PartialEq for ValueCacheKeyHash {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl std::hash::Hash for ValueCacheKeyHash {
fn hash<Hasher: std::hash::Hasher>(&self, state: &mut Hasher) {
state.write_u64(self.0);
}
}
impl nohash_hasher::IsEnabled for ValueCacheKeyHash {}
/// A type that can only be constructed inside of this file.
///
/// It "requires" that the user has read the docs to prevent fuck ups.
#[derive(Eq, PartialEq)]
pub(super) struct IReadTheDocumentation(());
/// The key type that is being used to address a [`CachedValue`].
///
/// This type is implemented as `enum` to improve the performance when accessing the value cache.
/// The problem being that we need to calculate the `hash` of [`Self`] in worst case three times
/// when trying to find a value in the value cache. First to lookup the local cache, then the shared
/// cache and if we found it in the shared cache a third time to insert it into the list of accessed
/// values. To work around each variant stores the `hash` to identify a unique combination of
/// `storage_key` and `storage_root`. However, be aware that this `hash` can lead to collisions when
/// there are two different `storage_key` and `storage_root` pairs that map to the same `hash`. This
/// type also has the `Hash` variant. This variant should only be used for the use case of updating
/// the lru for a key. Because when using only the `Hash` variant to getting a value from a hash map
/// it could happen that a wrong value is returned when there is another key in the same hash map
/// that maps to the same `hash`. The [`PartialEq`] implementation is written in a way that when one
/// of the two compared instances is the `Hash` variant, we will only compare the hashes. This
/// ensures that we can use the `Hash` variant to bring values up in the lru.
#[derive(Eq)]
pub(super) enum ValueCacheKey<'a, H> {
/// Variant that stores the `storage_key` by value.
Value {
/// The storage root of the trie this key belongs to.
storage_root: H,
/// The key to access the value in the storage.
storage_key: Arc<[u8]>,
/// The hash that identifying this instance of `storage_root` and `storage_key`.
hash: ValueCacheKeyHash,
},
/// Variant that only references the `storage_key`.
Ref {
/// The storage root of the trie this key belongs to.
storage_root: H,
/// The key to access the value in the storage.
storage_key: &'a [u8],
/// The hash that identifying this instance of `storage_root` and `storage_key`.
hash: ValueCacheKeyHash,
},
/// Variant that only stores the hash that represents the `storage_root` and `storage_key`.
///
/// This should be used by caution, because it can lead to accessing the wrong value in a
/// hash map/set when there exists two different `storage_root`s and `storage_key`s that
/// map to the same `hash`.
Hash { hash: ValueCacheKeyHash, _i_read_the_documentation: IReadTheDocumentation },
}
impl<'a, H> ValueCacheKey<'a, H> {
/// Constructs [`Self::Value`].
pub fn new_value(storage_key: impl Into<Arc<[u8]>>, storage_root: H) -> Self
where
H: AsRef<[u8]>,
{
let storage_key = storage_key.into();
let hash = Self::hash_data(&storage_key, &storage_root);
Self::Value { storage_root, storage_key, hash }
}
/// Constructs [`Self::Ref`].
pub fn new_ref(storage_key: &'a [u8], storage_root: H) -> Self
where
H: AsRef<[u8]>,
{
let storage_key = storage_key.into();
let hash = Self::hash_data(storage_key, &storage_root);
Self::Ref { storage_root, storage_key, hash }
}
/// Returns a hasher prepared to build the final hash to identify [`Self`].
///
/// See [`Self::hash_data`] for building the hash directly.
pub fn hash_partial_data(storage_root: &H) -> impl std::hash::Hasher + Clone
where
H: AsRef<[u8]>,
{
let mut hasher = RANDOM_STATE.build_hasher();
hasher.write(storage_root.as_ref());
hasher
}
/// Hash the `key` and `storage_root` that identify [`Self`].
///
/// Returns a `u64` which represents the unique hash for the given inputs.
pub fn hash_data(key: &[u8], storage_root: &H) -> ValueCacheKeyHash
where
H: AsRef<[u8]>,
{
let hasher = Self::hash_partial_data(storage_root);
ValueCacheKeyHash::from_hasher_and_storage_key(hasher, key)
}
/// Returns the `hash` that identifies the current instance.
pub fn get_hash(&self) -> ValueCacheKeyHash {
match self {
Self::Value { hash, .. } | Self::Ref { hash, .. } | Self::Hash { hash, .. } => *hash,
}
}
/// Returns the stored storage root.
pub fn storage_root(&self) -> Option<&H> {
match self {
Self::Value { storage_root, .. } | Self::Ref { storage_root, .. } => Some(storage_root),
Self::Hash { .. } => None,
}
}
/// Returns the stored storage key.
pub fn storage_key(&self) -> Option<&[u8]> {
match self {
Self::Ref { storage_key, .. } => Some(&storage_key),
Self::Value { storage_key, .. } => Some(storage_key),
Self::Hash { .. } => None,
}
}
}
// Implement manually to ensure that the `Value` and `Hash` are treated equally.
impl<H: std::hash::Hash> std::hash::Hash for ValueCacheKey<'_, H> {
fn hash<Hasher: std::hash::Hasher>(&self, state: &mut Hasher) {
self.get_hash().hash(state)
}
}
impl<H> nohash_hasher::IsEnabled for ValueCacheKey<'_, H> {}
// Implement manually to ensure that the `Value` and `Hash` are treated equally.
impl<H: PartialEq> PartialEq for ValueCacheKey<'_, H> {
fn eq(&self, other: &Self) -> bool {
// First check if `self` or `other` is only the `Hash`.
// Then we only compare the `hash`. So, there could actually be some collision
// if two different storage roots and keys are mapping to the same key. See the
// [`ValueCacheKey`] docs for more information.
match (self, other) {
(Self::Hash { hash, .. }, Self::Hash { hash: other_hash, .. }) => hash == other_hash,
(Self::Hash { hash, .. }, _) => *hash == other.get_hash(),
(_, Self::Hash { hash: other_hash, .. }) => self.get_hash() == *other_hash,
// If both are not the `Hash` variant, we compare all the values.
_ =>
self.get_hash() == other.get_hash() &&
self.storage_root() == other.storage_root() &&
self.storage_key() == other.storage_key(),
}
}
}
/// The shared value cache.
///
/// The cache ensures that it stays in the configured size bounds.
pub(super) struct SharedValueCache<H> {
/// The cached nodes, ordered by least recently used.
pub(super) lru: NoHashingLruCache<ValueCacheKey<'static, H>, CachedValue<H>>,
/// The size of [`Self::lru`] in bytes.
pub(super) size_in_bytes: usize,
/// The maximum cache size of [`Self::lru`].
maximum_cache_size: CacheSize,
/// All known storage keys that are stored in [`Self::lru`].
///
/// This is used to de-duplicate keys in memory that use the
/// same [`SharedValueCache::storage_key`], but have a different
/// [`SharedValueCache::storage_root`].
known_storage_keys: HashSet<Arc<[u8]>>,
}
impl<H: Eq + std::hash::Hash + Clone + Copy + AsRef<[u8]>> SharedValueCache<H> {
/// Create a new instance.
fn new(cache_size: CacheSize) -> Self {
Self {
lru: NoHashingLruCache::unbounded_with_hasher(Default::default()),
size_in_bytes: 0,
maximum_cache_size: cache_size,
known_storage_keys: Default::default(),
}
}
/// Get the [`CachedValue`] for `key`.
///
/// This doesn't change the least recently order in the internal [`LruCache`].
pub fn get<'a>(&'a self, key: &ValueCacheKey<H>) -> Option<&'a CachedValue<H>> {
debug_assert!(
!matches!(key, ValueCacheKey::Hash { .. }),
"`get` can not be called with `Hash` variant as this may returns the wrong value."
);
self.lru.peek(unsafe {
// SAFETY
//
// We need to convert the lifetime to make the compiler happy. However, as
// we only use the `key` to looking up the value this lifetime conversion is
// safe.
mem::transmute::<&ValueCacheKey<'_, H>, &ValueCacheKey<'static, H>>(key)
})
}
/// Update the cache with the `added` values and the `accessed` values.
///
/// The `added` values are the ones that have been collected by doing operations on the trie and
/// now should be stored in the shared cache. The `accessed` values are only referenced by the
/// [`ValueCacheKeyHash`] and represent the values that were retrieved from this shared cache
/// through [`Self::get`]. These `accessed` values are being put to the front of the internal
/// [`LruCache`] like the `added` ones.
///
/// After the internal [`LruCache`] was updated, it is ensured that the internal [`LruCache`] is
/// inside its bounds ([`Self::maximum_size_in_bytes`]).
pub fn update(
&mut self,
added: impl IntoIterator<Item = (ValueCacheKey<'static, H>, CachedValue<H>)>,
accessed: impl IntoIterator<Item = ValueCacheKeyHash>,
) {
// The base size in memory per ([`ValueCacheKey<H>`], [`CachedValue`]).
let base_size = mem::size_of::<ValueCacheKey<H>>() + mem::size_of::<CachedValue<H>>();
let known_keys_entry_size = mem::size_of::<Arc<[u8]>>();
let update_size_in_bytes =
|size_in_bytes: &mut usize, r_key: Arc<[u8]>, known_keys: &mut HashSet<Arc<[u8]>>| {
// If the `strong_count == 2`, it means this is the last instance of the key.
// One being `r_key` and the other being stored in `known_storage_keys`.
let last_instance = Arc::strong_count(&r_key) == 2;
let key_len = if last_instance {
known_keys.remove(&r_key);
r_key.len() + known_keys_entry_size
} else {
// The key is still in `keys`, because it is still used by another
// `ValueCacheKey<H>`.
0
};
if let Some(new_size_in_bytes) = size_in_bytes.checked_sub(key_len + base_size) {
*size_in_bytes = new_size_in_bytes;
} else {
*size_in_bytes = 0;
tracing::error!(target: LOG_TARGET, "`SharedValueCache` underflow detected!",);
}
};
accessed.into_iter().for_each(|key| {
// Access every node in the lru to put it to the front.
// As we are using the `Hash` variant here, it may leads to putting the wrong value to
// the top. However, the only consequence of this is that we may prune a recently used
// value to early.
self.lru.get(&ValueCacheKey::Hash {
hash: key,
_i_read_the_documentation: IReadTheDocumentation(()),
});
});
added.into_iter().for_each(|(key, value)| {
let (storage_root, storage_key, key_hash) = match key {
ValueCacheKey::Hash { .. } => {
// Ignore the hash variant and try the next.
tracing::error!(
target: LOG_TARGET,
"`SharedValueCached::update` was called with a key to add \
that uses the `Hash` variant. This would lead to potential hash collision!",
);
return
},
ValueCacheKey::Ref { storage_key, storage_root, hash } =>
(storage_root, storage_key.into(), hash),
ValueCacheKey::Value { storage_root, storage_key, hash } =>
(storage_root, storage_key, hash),
};
let (size_update, storage_key) =
match self.known_storage_keys.entry(storage_key.clone()) {
SetEntry::Vacant(v) => {
let len = v.get().len();
v.insert();
// If the key was unknown, we need to also take its length and the size of
// the entry of `known_keys` into account.
(len + base_size + known_keys_entry_size, storage_key)
},
SetEntry::Occupied(o) => {
// Key is known
(base_size, o.get().clone())
},
};
self.size_in_bytes += size_update;
if let Some((r_key, _)) = self
.lru
.push(ValueCacheKey::Value { storage_key, storage_root, hash: key_hash }, value)
{
if let ValueCacheKey::Value { storage_key, .. } = r_key {
update_size_in_bytes(
&mut self.size_in_bytes,
storage_key,
&mut self.known_storage_keys,
);
}
}
// Directly ensure that we respect the maximum size. By doing it directly here we
// ensure that the internal map of the [`LruCache`] doesn't grow too much.
while self.maximum_cache_size.exceeds(self.size_in_bytes) {
// This should always be `Some(_)`, otherwise something is wrong!
if let Some((r_key, _)) = self.lru.pop_lru() {
if let ValueCacheKey::Value { storage_key, .. } = r_key {
update_size_in_bytes(
&mut self.size_in_bytes,
storage_key,
&mut self.known_storage_keys,
);
}
}
}
});
}
/// Reset the cache.
fn reset(&mut self) {
self.size_in_bytes = 0;
self.lru.clear();
self.known_storage_keys.clear();
}
}
/// The inner of [`SharedTrieCache`].
pub(super) struct SharedTrieCacheInner<H: Hasher> {
node_cache: SharedNodeCache<H::Out>,
value_cache: SharedValueCache<H::Out>,
}
impl<H: Hasher> SharedTrieCacheInner<H> {
/// Returns a reference to the [`SharedValueCache`].
pub(super) fn value_cache(&self) -> &SharedValueCache<H::Out> {
&self.value_cache
}
/// Returns a mutable reference to the [`SharedValueCache`].
pub(super) fn value_cache_mut(&mut self) -> &mut SharedValueCache<H::Out> {
&mut self.value_cache
}
/// Returns a reference to the [`SharedNodeCache`].
pub(super) fn node_cache(&self) -> &SharedNodeCache<H::Out> {
&self.node_cache
}
/// Returns a mutable reference to the [`SharedNodeCache`].
pub(super) fn node_cache_mut(&mut self) -> &mut SharedNodeCache<H::Out> {
&mut self.node_cache
}
}
/// The shared trie cache.
///
/// It should be instantiated once per node. It will hold the trie nodes and values of all
/// operations to the state. To not use all available memory it will ensure to stay in the
/// bounds given via the [`CacheSize`] at startup.
///
/// The instance of this object can be shared between multiple threads.
pub struct SharedTrieCache<H: Hasher> {
inner: Arc<RwLock<SharedTrieCacheInner<H>>>,
}
impl<H: Hasher> Clone for SharedTrieCache<H> {
fn clone(&self) -> Self {
Self { inner: self.inner.clone() }
}
}
impl<H: Hasher> SharedTrieCache<H> {
/// Create a new [`SharedTrieCache`].
pub fn new(cache_size: CacheSize) -> Self {
let (node_cache_size, value_cache_size) = match cache_size {
CacheSize::Maximum(max) => {
// Allocate 20% for the value cache.
let value_cache_size_in_bytes = (max as f32 * 0.20) as usize;
(
CacheSize::Maximum(max - value_cache_size_in_bytes),
CacheSize::Maximum(value_cache_size_in_bytes),
)
},
CacheSize::Unlimited => (CacheSize::Unlimited, CacheSize::Unlimited),
};
Self {
inner: Arc::new(RwLock::new(SharedTrieCacheInner {
node_cache: SharedNodeCache::new(node_cache_size),
value_cache: SharedValueCache::new(value_cache_size),
})),
}
}
/// Create a new [`LocalTrieCache`](super::LocalTrieCache) instance from this shared cache.
pub fn local_cache(&self) -> super::LocalTrieCache<H> {
super::LocalTrieCache {
shared: self.clone(),
node_cache: Default::default(),
value_cache: Default::default(),
shared_node_cache_access: Default::default(),
shared_value_cache_access: Default::default(),
}
}
/// Returns the used memory size of this cache in bytes.
pub fn used_memory_size(&self) -> usize {
let inner = self.inner.read();
let value_cache_size = inner.value_cache.size_in_bytes;
let node_cache_size = inner.node_cache.size_in_bytes;
node_cache_size + value_cache_size
}
/// Reset the node cache.
pub fn reset_node_cache(&self) {
self.inner.write().node_cache.reset();
}
/// Reset the value cache.
pub fn reset_value_cache(&self) {
self.inner.write().value_cache.reset();
}
/// Reset the entire cache.
pub fn reset(&self) {
self.reset_node_cache();
self.reset_value_cache();
}
/// Returns the read locked inner.
pub(super) fn read_lock_inner(&self) -> RwLockReadGuard<'_, SharedTrieCacheInner<H>> {
self.inner.read()
}
/// Returns the write locked inner.
pub(super) fn write_lock_inner(&self) -> RwLockWriteGuard<'_, SharedTrieCacheInner<H>> {
self.inner.write()
}
}
#[cfg(test)]
mod tests {
use super::*;
use sp_core::H256 as Hash;
#[test]
fn shared_value_cache_works() {
let base_size = mem::size_of::<CachedValue<Hash>>() + mem::size_of::<ValueCacheKey<Hash>>();
let arc_size = mem::size_of::<Arc<[u8]>>();
let mut cache = SharedValueCache::<sp_core::H256>::new(CacheSize::Maximum(
(base_size + arc_size + 10) * 10,
));
let key = vec![0; 10];
let root0 = Hash::repeat_byte(1);
let root1 = Hash::repeat_byte(2);
cache.update(
vec![
(ValueCacheKey::new_value(&key[..], root0), CachedValue::NonExisting),
(ValueCacheKey::new_value(&key[..], root1), CachedValue::NonExisting),
],
vec![],
);
// Ensure that the basics are working
assert_eq!(1, cache.known_storage_keys.len());
assert_eq!(3, Arc::strong_count(cache.known_storage_keys.get(&key[..]).unwrap()));
assert_eq!(base_size * 2 + key.len() + arc_size, cache.size_in_bytes);
// Just accessing a key should not change anything on the size and number of entries.
cache.update(vec![], vec![ValueCacheKey::hash_data(&key[..], &root0)]);
assert_eq!(1, cache.known_storage_keys.len());
assert_eq!(3, Arc::strong_count(cache.known_storage_keys.get(&key[..]).unwrap()));
assert_eq!(base_size * 2 + key.len() + arc_size, cache.size_in_bytes);
// Add 9 other entries and this should move out the key for `root1`.
cache.update(
(1..10)
.map(|i| vec![i; 10])
.map(|key| (ValueCacheKey::new_value(&key[..], root0), CachedValue::NonExisting)),
vec![],
);
assert_eq!(10, cache.known_storage_keys.len());
assert_eq!(2, Arc::strong_count(cache.known_storage_keys.get(&key[..]).unwrap()));
assert_eq!((base_size + key.len() + arc_size) * 10, cache.size_in_bytes);
assert!(matches!(
cache.get(&ValueCacheKey::new_ref(&key, root0)).unwrap(),
CachedValue::<Hash>::NonExisting
));
assert!(cache.get(&ValueCacheKey::new_ref(&key, root1)).is_none());
cache.update(
vec![(ValueCacheKey::new_value(vec![10; 10], root0), CachedValue::NonExisting)],
vec![],
);
assert!(cache.known_storage_keys.get(&key[..]).is_none());
}
#[test]
fn value_cache_key_eq_works() {
let storage_key = &b"something"[..];
let storage_key2 = &b"something2"[..];
let storage_root = Hash::random();
let value = ValueCacheKey::new_value(storage_key, storage_root);
// Ref gets the same hash, but a different storage key
let ref_ =
ValueCacheKey::Ref { storage_root, storage_key: storage_key2, hash: value.get_hash() };
let hash = ValueCacheKey::Hash {
hash: value.get_hash(),
_i_read_the_documentation: IReadTheDocumentation(()),
};
// Ensure that the hash variants is equal to `value`, `ref_` and itself.
assert!(hash == value);
assert!(value == hash);
assert!(hash == ref_);
assert!(ref_ == hash);
assert!(hash == hash);
// But when we compare `value` and `ref_` the different storage key is detected.
assert!(value != ref_);
assert!(ref_ != value);
}
}