1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
use crate::distribution::{Continuous, ContinuousCDF, Gamma};
use crate::statistics::*;
use crate::Result;
use rand::Rng;
use std::f64;
/// Implements the
/// [Chi-squared](https://en.wikipedia.org/wiki/Chi-squared_distribution)
/// distribution which is a special case of the
/// [Gamma](https://en.wikipedia.org/wiki/Gamma_distribution) distribution
/// (referenced [Here](./struct.Gamma.html))
///
/// # Examples
///
/// ```
/// use statrs::distribution::{ChiSquared, Continuous};
/// use statrs::statistics::Distribution;
/// use statrs::prec;
///
/// let n = ChiSquared::new(3.0).unwrap();
/// assert_eq!(n.mean().unwrap(), 3.0);
/// assert!(prec::almost_eq(n.pdf(4.0), 0.107981933026376103901, 1e-15));
/// ```
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct ChiSquared {
freedom: f64,
g: Gamma,
}
impl ChiSquared {
/// Constructs a new chi-squared distribution with `freedom`
/// degrees of freedom. This is equivalent to a Gamma distribution
/// with a shape of `freedom / 2.0` and a rate of `0.5`.
///
/// # Errors
///
/// Returns an error if `freedom` is `NaN` or less than
/// or equal to `0.0`
///
/// # Examples
///
/// ```
/// use statrs::distribution::ChiSquared;
///
/// let mut result = ChiSquared::new(3.0);
/// assert!(result.is_ok());
///
/// result = ChiSquared::new(0.0);
/// assert!(result.is_err());
/// ```
pub fn new(freedom: f64) -> Result<ChiSquared> {
Gamma::new(freedom / 2.0, 0.5).map(|g| ChiSquared { freedom, g })
}
/// Returns the degrees of freedom of the chi-squared
/// distribution
///
/// # Examples
///
/// ```
/// use statrs::distribution::ChiSquared;
///
/// let n = ChiSquared::new(3.0).unwrap();
/// assert_eq!(n.freedom(), 3.0);
/// ```
pub fn freedom(&self) -> f64 {
self.freedom
}
/// Returns the shape of the underlying Gamma distribution
///
/// # Examples
///
/// ```
/// use statrs::distribution::ChiSquared;
///
/// let n = ChiSquared::new(3.0).unwrap();
/// assert_eq!(n.shape(), 3.0 / 2.0);
/// ```
pub fn shape(&self) -> f64 {
self.g.shape()
}
/// Returns the rate of the underlying Gamma distribution
///
/// # Examples
///
/// ```
/// use statrs::distribution::ChiSquared;
///
/// let n = ChiSquared::new(3.0).unwrap();
/// assert_eq!(n.rate(), 0.5);
/// ```
pub fn rate(&self) -> f64 {
self.g.rate()
}
}
impl ::rand::distributions::Distribution<f64> for ChiSquared {
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64 {
::rand::distributions::Distribution::sample(&self.g, r)
}
}
impl ContinuousCDF<f64, f64> for ChiSquared {
/// Calculates the cumulative distribution function for the
/// chi-squared distribution at `x`
///
/// # Formula
///
/// ```ignore
/// (1 / Γ(k / 2)) * γ(k / 2, x / 2)
/// ```
///
/// where `k` is the degrees of freedom, `Γ` is the gamma function,
/// and `γ` is the lower incomplete gamma function
fn cdf(&self, x: f64) -> f64 {
self.g.cdf(x)
}
}
impl Min<f64> for ChiSquared {
/// Returns the minimum value in the domain of the
/// chi-squared distribution representable by a double precision
/// float
///
/// # Formula
///
/// ```ignore
/// 0
/// ```
fn min(&self) -> f64 {
0.0
}
}
impl Max<f64> for ChiSquared {
/// Returns the maximum value in the domain of the
/// chi-squared distribution representable by a double precision
/// float
///
/// # Formula
///
/// ```ignore
/// INF
/// ```
fn max(&self) -> f64 {
f64::INFINITY
}
}
impl Distribution<f64> for ChiSquared {
/// Returns the mean of the chi-squared distribution
///
/// # Formula
///
/// ```ignore
/// k
/// ```
///
/// where `k` is the degrees of freedom
fn mean(&self) -> Option<f64> {
self.g.mean()
}
/// Returns the variance of the chi-squared distribution
///
/// # Formula
///
/// ```ignore
/// 2k
/// ```
///
/// where `k` is the degrees of freedom
fn variance(&self) -> Option<f64> {
self.g.variance()
}
/// Returns the entropy of the chi-squared distribution
///
/// # Formula
///
/// ```ignore
/// (k / 2) + ln(2 * Γ(k / 2)) + (1 - (k / 2)) * ψ(k / 2)
/// ```
///
/// where `k` is the degrees of freedom, `Γ` is the gamma function,
/// and `ψ` is the digamma function
fn entropy(&self) -> Option<f64> {
self.g.entropy()
}
/// Returns the skewness of the chi-squared distribution
///
/// # Formula
///
/// ```ignore
/// sqrt(8 / k)
/// ```
///
/// where `k` is the degrees of freedom
fn skewness(&self) -> Option<f64> {
self.g.skewness()
}
}
impl Median<f64> for ChiSquared {
/// Returns the median of the chi-squared distribution
///
/// # Formula
///
/// ```ignore
/// k * (1 - (2 / 9k))^3
/// ```
fn median(&self) -> f64 {
if self.freedom < 1.0 {
// if k is small, calculate using expansion of formula
self.freedom - 2.0 / 3.0 + 12.0 / (81.0 * self.freedom)
- 8.0 / (729.0 * self.freedom * self.freedom)
} else {
// if k is large enough, median heads toward k - 2/3
self.freedom - 2.0 / 3.0
}
}
}
impl Mode<Option<f64>> for ChiSquared {
/// Returns the mode of the chi-squared distribution
///
/// # Formula
///
/// ```ignore
/// k - 2
/// ```
///
/// where `k` is the degrees of freedom
fn mode(&self) -> Option<f64> {
self.g.mode()
}
}
impl Continuous<f64, f64> for ChiSquared {
/// Calculates the probability density function for the chi-squared
/// distribution at `x`
///
/// # Formula
///
/// ```ignore
/// 1 / (2^(k / 2) * Γ(k / 2)) * x^((k / 2) - 1) * e^(-x / 2)
/// ```
///
/// where `k` is the degrees of freedom and `Γ` is the gamma function
fn pdf(&self, x: f64) -> f64 {
self.g.pdf(x)
}
/// Calculates the log probability density function for the chi-squared
/// distribution at `x`
///
/// # Formula
///
/// ```ignore
/// ln(1 / (2^(k / 2) * Γ(k / 2)) * x^((k / 2) - 1) * e^(-x / 2))
/// ```
fn ln_pdf(&self, x: f64) -> f64 {
self.g.ln_pdf(x)
}
}
#[rustfmt::skip]
#[cfg(test)]
mod tests {
use crate::statistics::Median;
use crate::distribution::ChiSquared;
use crate::distribution::internal::*;
use crate::consts::ACC;
fn try_create(freedom: f64) -> ChiSquared {
let n = ChiSquared::new(freedom);
assert!(n.is_ok());
n.unwrap()
}
fn test_case<F>(freedom: f64, expected: f64, eval: F)
where F: Fn(ChiSquared) -> f64
{
let n = try_create(freedom);
let x = eval(n);
assert_eq!(expected, x);
}
fn test_almost<F>(freedom: f64, expected: f64, acc: f64, eval: F)
where F: Fn(ChiSquared) -> f64
{
let n = try_create(freedom);
let x = eval(n);
assert_almost_eq!(expected, x, acc);
}
#[test]
fn test_median() {
let median = |x: ChiSquared| x.median();
test_almost(0.5, 0.0857338820301783264746, 1e-16, median);
test_case(1.0, 1.0 - 2.0 / 3.0, median);
test_case(2.0, 2.0 - 2.0 / 3.0, median);
test_case(2.5, 2.5 - 2.0 / 3.0, median);
test_case(3.0, 3.0 - 2.0 / 3.0, median);
}
#[test]
fn test_continuous() {
// TODO: figure out why this test fails:
//test::check_continuous_distribution(&try_create(1.0), 0.0, 10.0);
test::check_continuous_distribution(&try_create(2.0), 0.0, 10.0);
test::check_continuous_distribution(&try_create(5.0), 0.0, 50.0);
}
}