1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
// This file is part of Substrate.
// Copyright (C) 2020-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Merkle Mountain Range
//!
//! ## Overview
//!
//! Details on Merkle Mountain Ranges (MMRs) can be found here:
//! <https://github.com/mimblewimble/grin/blob/master/doc/mmr.md>
//!
//! The MMR pallet constructs an MMR from leaf data obtained on every block from
//! `LeafDataProvider`. MMR nodes are stored both in:
//! - on-chain storage - hashes only; not full leaf content;
//! - off-chain storage - via Indexing API we push full leaf content (and all internal nodes as
//! well) to the Off-chain DB, so that the data is available for Off-chain workers.
//! Hashing used for MMR is configurable independently from the rest of the runtime (i.e. not using
//! `frame_system::Hashing`) so something compatible with external chains can be used (like
//! Keccak256 for Ethereum compatibility).
//!
//! Depending on the usage context (off-chain vs on-chain) the pallet is able to:
//! - verify MMR leaf proofs (on-chain)
//! - generate leaf proofs (off-chain)
//!
//! See [primitives::Compact] documentation for how you can optimize proof size for leafs that are
//! composed from multiple elements.
//!
//! ## What for?
//!
//! Primary use case for this pallet is to generate MMR root hashes, that can latter on be used by
//! BEEFY protocol (see <https://github.com/paritytech/grandpa-bridge-gadget>).
//! MMR root hashes along with BEEFY will make it possible to build Super Light Clients (SLC) of
//! Substrate-based chains. The SLC will be able to follow finality and can be shown proofs of more
//! details that happened on the source chain.
//! In that case the chain which contains the pallet generates the Root Hashes and Proofs, which
//! are then presented to another chain acting as a light client which can verify them.
//!
//! Secondary use case is to archive historical data, but still be able to retrieve them on-demand
//! if needed. For instance if parent block hashes are stored in the MMR it's possible at any point
//! in time to provide an MMR proof about some past block hash, while this data can be safely pruned
//! from on-chain storage.
//!
//! NOTE This pallet is experimental and not proven to work in production.
#![cfg_attr(not(feature = "std"), no_std)]
use frame_support::{log, weights::Weight};
use sp_mmr_primitives::utils;
use sp_runtime::{
traits::{self, One, Saturating},
SaturatedConversion,
};
use sp_std::prelude::*;
pub use pallet::*;
pub use sp_mmr_primitives::{
self as primitives, utils::NodesUtils, Error, LeafDataProvider, LeafIndex, NodeIndex,
};
#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;
mod default_weights;
mod mmr;
#[cfg(test)]
mod mock;
#[cfg(test)]
mod tests;
/// The most common use case for MMRs is to store historical block hashes,
/// so that any point in time in the future we can receive a proof about some past
/// blocks without using excessive on-chain storage.
///
/// Hence we implement the [LeafDataProvider] for [ParentNumberAndHash] which is a
/// crate-local wrapper over [frame_system::Pallet]. Since the current block hash
/// is not available (since the block is not finished yet),
/// we use the `parent_hash` here along with parent block number.
pub struct ParentNumberAndHash<T: frame_system::Config> {
_phanthom: sp_std::marker::PhantomData<T>,
}
impl<T: frame_system::Config> LeafDataProvider for ParentNumberAndHash<T> {
type LeafData = (<T as frame_system::Config>::BlockNumber, <T as frame_system::Config>::Hash);
fn leaf_data() -> Self::LeafData {
(
frame_system::Pallet::<T>::block_number().saturating_sub(One::one()),
frame_system::Pallet::<T>::parent_hash(),
)
}
}
pub trait WeightInfo {
fn on_initialize(peaks: NodeIndex) -> Weight;
}
/// An MMR specific to the pallet.
type ModuleMmr<StorageType, T, I> = mmr::Mmr<StorageType, T, I, LeafOf<T, I>>;
/// Leaf data.
type LeafOf<T, I> = <<T as Config<I>>::LeafData as primitives::LeafDataProvider>::LeafData;
/// Hashing used for the pallet.
pub(crate) type HashingOf<T, I> = <T as Config<I>>::Hashing;
#[frame_support::pallet]
pub mod pallet {
use super::*;
use frame_support::pallet_prelude::*;
use frame_system::pallet_prelude::*;
#[pallet::pallet]
#[pallet::generate_store(pub(super) trait Store)]
pub struct Pallet<T, I = ()>(PhantomData<(T, I)>);
/// This pallet's configuration trait
#[pallet::config]
pub trait Config<I: 'static = ()>: frame_system::Config {
/// Prefix for elements stored in the Off-chain DB via Indexing API.
///
/// Each node of the MMR is inserted both on-chain and off-chain via Indexing API.
/// The former does not store full leaf content, just its compact version (hash),
/// and some of the inner mmr nodes might be pruned from on-chain storage.
/// The latter will contain all the entries in their full form.
///
/// Each node is stored in the Off-chain DB under key derived from the
/// [`Self::INDEXING_PREFIX`] and its in-tree index (MMR position).
const INDEXING_PREFIX: &'static [u8];
/// A hasher type for MMR.
///
/// To construct trie nodes that result in merging (bagging) two peaks, depending on the
/// node kind we take either:
/// - The node (hash) itself if it's an inner node.
/// - The hash of SCALE-encoding of the leaf data if it's a leaf node.
///
/// Then we create a tuple of these two hashes, SCALE-encode it (concatenate) and
/// hash, to obtain a new MMR inner node - the new peak.
type Hashing: traits::Hash<Output = <Self as Config<I>>::Hash>;
/// The hashing output type.
///
/// This type is actually going to be stored in the MMR.
/// Required to be provided again, to satisfy trait bounds for storage items.
type Hash: traits::Member
+ traits::MaybeSerializeDeserialize
+ sp_std::fmt::Debug
+ sp_std::hash::Hash
+ AsRef<[u8]>
+ AsMut<[u8]>
+ Copy
+ Default
+ codec::Codec
+ codec::EncodeLike
+ scale_info::TypeInfo
+ MaxEncodedLen;
/// Data stored in the leaf nodes.
///
/// The [LeafData](primitives::LeafDataProvider) is responsible for returning the entire
/// leaf data that will be inserted to the MMR.
/// [LeafDataProvider](primitives::LeafDataProvider)s can be composed into tuples to put
/// multiple elements into the tree. In such a case it might be worth using
/// [primitives::Compact] to make MMR proof for one element of the tuple leaner.
///
/// Note that the leaf at each block MUST be unique. You may want to include a block hash or
/// block number as an easiest way to ensure that.
/// Also note that the leaf added by each block is expected to only reference data coming
/// from ancestor blocks (leaves are saved offchain using `(pos, parent_hash)` key to be
/// fork-resistant, as such conflicts could only happen on 1-block deep forks, which means
/// two forks with identical line of ancestors compete to write the same offchain key, but
/// that's fine as long as leaves only contain data coming from ancestors - conflicting
/// writes are identical).
type LeafData: primitives::LeafDataProvider;
/// A hook to act on the new MMR root.
///
/// For some applications it might be beneficial to make the MMR root available externally
/// apart from having it in the storage. For instance you might output it in the header
/// digest (see [`frame_system::Pallet::deposit_log`]) to make it available for Light
/// Clients. Hook complexity should be `O(1)`.
type OnNewRoot: primitives::OnNewRoot<<Self as Config<I>>::Hash>;
/// Weights for this pallet.
type WeightInfo: WeightInfo;
}
/// Latest MMR Root hash.
#[pallet::storage]
#[pallet::getter(fn mmr_root_hash)]
pub type RootHash<T: Config<I>, I: 'static = ()> =
StorageValue<_, <T as Config<I>>::Hash, ValueQuery>;
/// Current size of the MMR (number of leaves).
#[pallet::storage]
#[pallet::getter(fn mmr_leaves)]
pub type NumberOfLeaves<T, I = ()> = StorageValue<_, LeafIndex, ValueQuery>;
/// Hashes of the nodes in the MMR.
///
/// Note this collection only contains MMR peaks, the inner nodes (and leaves)
/// are pruned and only stored in the Offchain DB.
#[pallet::storage]
#[pallet::getter(fn mmr_peak)]
pub type Nodes<T: Config<I>, I: 'static = ()> =
StorageMap<_, Identity, NodeIndex, <T as Config<I>>::Hash, OptionQuery>;
#[pallet::hooks]
impl<T: Config<I>, I: 'static> Hooks<BlockNumberFor<T>> for Pallet<T, I> {
fn on_initialize(_n: T::BlockNumber) -> Weight {
use primitives::LeafDataProvider;
let leaves = Self::mmr_leaves();
let peaks_before = sp_mmr_primitives::utils::NodesUtils::new(leaves).number_of_peaks();
let data = T::LeafData::leaf_data();
// append new leaf to MMR
let mut mmr: ModuleMmr<mmr::storage::RuntimeStorage, T, I> = mmr::Mmr::new(leaves);
// MMR push never fails, but better safe than sorry.
if mmr.push(data).is_none() {
log::error!(target: "runtime::mmr", "MMR push failed");
return T::WeightInfo::on_initialize(peaks_before)
}
// Update the size, `mmr.finalize()` should also never fail.
let (leaves, root) = match mmr.finalize() {
Ok((leaves, root)) => (leaves, root),
Err(e) => {
log::error!(target: "runtime::mmr", "MMR finalize failed: {:?}", e);
return T::WeightInfo::on_initialize(peaks_before)
},
};
<T::OnNewRoot as primitives::OnNewRoot<_>>::on_new_root(&root);
<NumberOfLeaves<T, I>>::put(leaves);
<RootHash<T, I>>::put(root);
let peaks_after = sp_mmr_primitives::utils::NodesUtils::new(leaves).number_of_peaks();
T::WeightInfo::on_initialize(peaks_before.max(peaks_after))
}
}
}
/// Stateless MMR proof verification for batch of leaves.
///
/// This function can be used to verify received MMR [primitives::Proof] (`proof`)
/// for given leaves set (`leaves`) against a known MMR root hash (`root`).
/// Note, the leaves should be sorted such that corresponding leaves and leaf indices have the
/// same position in both the `leaves` vector and the `leaf_indices` vector contained in the
/// [primitives::Proof].
pub fn verify_leaves_proof<H, L>(
root: H::Output,
leaves: Vec<mmr::Node<H, L>>,
proof: primitives::Proof<H::Output>,
) -> Result<(), primitives::Error>
where
H: traits::Hash,
L: primitives::FullLeaf,
{
let is_valid = mmr::verify_leaves_proof::<H, L>(root, leaves, proof)?;
if is_valid {
Ok(())
} else {
Err(primitives::Error::Verify.log_debug(("The proof is incorrect.", root)))
}
}
impl<T: Config<I>, I: 'static> Pallet<T, I> {
/// Build offchain key from `parent_hash` of block that originally added node `pos` to MMR.
///
/// This combination makes the offchain (key,value) entry resilient to chain forks.
fn node_temp_offchain_key(
pos: NodeIndex,
parent_hash: <T as frame_system::Config>::Hash,
) -> sp_std::prelude::Vec<u8> {
NodesUtils::node_temp_offchain_key::<<T as frame_system::Config>::Header>(
&T::INDEXING_PREFIX,
pos,
parent_hash,
)
}
/// Build canonical offchain key for node `pos` in MMR.
///
/// Used for nodes added by now finalized blocks.
/// Never read keys using `node_canon_offchain_key` unless you sure that
/// there's no `node_offchain_key` key in the storage.
fn node_canon_offchain_key(pos: NodeIndex) -> sp_std::prelude::Vec<u8> {
NodesUtils::node_canon_offchain_key(&T::INDEXING_PREFIX, pos)
}
/// Provide the parent number for the block that added `leaf_index` to the MMR.
fn leaf_index_to_parent_block_num(
leaf_index: LeafIndex,
leaves_count: LeafIndex,
) -> <T as frame_system::Config>::BlockNumber {
// leaves are zero-indexed and were added one per block since pallet activation,
// while block numbers are one-indexed, so block number that added `leaf_idx` is:
// `block_num = block_num_when_pallet_activated + leaf_idx + 1`
// `block_num = (current_block_num - leaves_count) + leaf_idx + 1`
// `parent_block_num = current_block_num - leaves_count + leaf_idx`.
<frame_system::Pallet<T>>::block_number()
.saturating_sub(leaves_count.saturated_into())
.saturating_add(leaf_index.saturated_into())
}
/// Convert a block number into a leaf index.
fn block_num_to_leaf_index(block_num: T::BlockNumber) -> Result<LeafIndex, Error>
where
T: frame_system::Config,
{
let first_mmr_block = utils::first_mmr_block_num::<T::Header>(
<frame_system::Pallet<T>>::block_number(),
Self::mmr_leaves(),
)?;
utils::block_num_to_leaf_index::<T::Header>(block_num, first_mmr_block)
}
/// Generate an MMR proof for the given `block_numbers`.
/// If `best_known_block_number = Some(n)`, this generates a historical proof for
/// the chain with head at height `n`.
/// Else it generates a proof for the MMR at the current block height.
///
/// Note this method can only be used from an off-chain context
/// (Offchain Worker or Runtime API call), since it requires
/// all the leaves to be present.
/// It may return an error or panic if used incorrectly.
pub fn generate_proof(
block_numbers: Vec<T::BlockNumber>,
best_known_block_number: Option<T::BlockNumber>,
) -> Result<(Vec<LeafOf<T, I>>, primitives::Proof<<T as Config<I>>::Hash>), primitives::Error> {
// check whether best_known_block_number provided, else use current best block
let best_known_block_number =
best_known_block_number.unwrap_or_else(|| <frame_system::Pallet<T>>::block_number());
let leaves_count =
Self::block_num_to_leaf_index(best_known_block_number)?.saturating_add(1);
// we need to translate the block_numbers into leaf indices.
let leaf_indices = block_numbers
.iter()
.map(|block_num| -> Result<LeafIndex, primitives::Error> {
Self::block_num_to_leaf_index(*block_num)
})
.collect::<Result<Vec<LeafIndex>, _>>()?;
let mmr: ModuleMmr<mmr::storage::OffchainStorage, T, I> = mmr::Mmr::new(leaves_count);
mmr.generate_proof(leaf_indices)
}
/// Return the on-chain MMR root hash.
pub fn mmr_root() -> <T as Config<I>>::Hash {
Self::mmr_root_hash()
}
/// Verify MMR proof for given `leaves`.
///
/// This method is safe to use within the runtime code.
/// It will return `Ok(())` if the proof is valid
/// and an `Err(..)` if MMR is inconsistent (some leaves are missing)
/// or the proof is invalid.
pub fn verify_leaves(
leaves: Vec<LeafOf<T, I>>,
proof: primitives::Proof<<T as Config<I>>::Hash>,
) -> Result<(), primitives::Error> {
if proof.leaf_count > Self::mmr_leaves() ||
proof.leaf_count == 0 ||
(proof.items.len().saturating_add(leaves.len())) as u64 > proof.leaf_count
{
return Err(primitives::Error::Verify
.log_debug("The proof has incorrect number of leaves or proof items."))
}
let mmr: ModuleMmr<mmr::storage::OffchainStorage, T, I> = mmr::Mmr::new(proof.leaf_count);
let is_valid = mmr.verify_leaves_proof(leaves, proof)?;
if is_valid {
Ok(())
} else {
Err(primitives::Error::Verify.log_debug("The proof is incorrect."))
}
}
}