1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//! Michael-Scott lock-free queue.
//!
//! Usable with any number of producers and consumers.
//!
//! Michael and Scott.  Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
//! Algorithms.  PODC 1996.  <http://dl.acm.org/citation.cfm?id=248106>
//!
//! Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004b. Formal Verification of a
//! Practical Lock-Free Queue Algorithm. <https://doi.org/10.1007/978-3-540-30232-2_7>

use core::mem::MaybeUninit;
use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};

use crossbeam_utils::CachePadded;

use crate::{unprotected, Atomic, Guard, Owned, Shared};

// The representation here is a singly-linked list, with a sentinel node at the front. In general
// the `tail` pointer may lag behind the actual tail. Non-sentinel nodes are either all `Data` or
// all `Blocked` (requests for data from blocked threads).
#[derive(Debug)]
pub(crate) struct Queue<T> {
    head: CachePadded<Atomic<Node<T>>>,
    tail: CachePadded<Atomic<Node<T>>>,
}

struct Node<T> {
    /// The slot in which a value of type `T` can be stored.
    ///
    /// The type of `data` is `MaybeUninit<T>` because a `Node<T>` doesn't always contain a `T`.
    /// For example, the sentinel node in a queue never contains a value: its slot is always empty.
    /// Other nodes start their life with a push operation and contain a value until it gets popped
    /// out. After that such empty nodes get added to the collector for destruction.
    data: MaybeUninit<T>,

    next: Atomic<Node<T>>,
}

// Any particular `T` should never be accessed concurrently, so no need for `Sync`.
unsafe impl<T: Send> Sync for Queue<T> {}
unsafe impl<T: Send> Send for Queue<T> {}

impl<T> Queue<T> {
    /// Create a new, empty queue.
    pub(crate) fn new() -> Queue<T> {
        let q = Queue {
            head: CachePadded::new(Atomic::null()),
            tail: CachePadded::new(Atomic::null()),
        };
        let sentinel = Owned::new(Node {
            data: MaybeUninit::uninit(),
            next: Atomic::null(),
        });
        unsafe {
            let guard = unprotected();
            let sentinel = sentinel.into_shared(guard);
            q.head.store(sentinel, Relaxed);
            q.tail.store(sentinel, Relaxed);
            q
        }
    }

    /// Attempts to atomically place `n` into the `next` pointer of `onto`, and returns `true` on
    /// success. The queue's `tail` pointer may be updated.
    #[inline(always)]
    fn push_internal(
        &self,
        onto: Shared<'_, Node<T>>,
        new: Shared<'_, Node<T>>,
        guard: &Guard,
    ) -> bool {
        // is `onto` the actual tail?
        let o = unsafe { onto.deref() };
        let next = o.next.load(Acquire, guard);
        if unsafe { next.as_ref().is_some() } {
            // if not, try to "help" by moving the tail pointer forward
            let _ = self
                .tail
                .compare_exchange(onto, next, Release, Relaxed, guard);
            false
        } else {
            // looks like the actual tail; attempt to link in `n`
            let result = o
                .next
                .compare_exchange(Shared::null(), new, Release, Relaxed, guard)
                .is_ok();
            if result {
                // try to move the tail pointer forward
                let _ = self
                    .tail
                    .compare_exchange(onto, new, Release, Relaxed, guard);
            }
            result
        }
    }

    /// Adds `t` to the back of the queue, possibly waking up threads blocked on `pop`.
    pub(crate) fn push(&self, t: T, guard: &Guard) {
        let new = Owned::new(Node {
            data: MaybeUninit::new(t),
            next: Atomic::null(),
        });
        let new = Owned::into_shared(new, guard);

        loop {
            // We push onto the tail, so we'll start optimistically by looking there first.
            let tail = self.tail.load(Acquire, guard);

            // Attempt to push onto the `tail` snapshot; fails if `tail.next` has changed.
            if self.push_internal(tail, new, guard) {
                break;
            }
        }
    }

    /// Attempts to pop a data node. `Ok(None)` if queue is empty; `Err(())` if lost race to pop.
    #[inline(always)]
    fn pop_internal(&self, guard: &Guard) -> Result<Option<T>, ()> {
        let head = self.head.load(Acquire, guard);
        let h = unsafe { head.deref() };
        let next = h.next.load(Acquire, guard);
        match unsafe { next.as_ref() } {
            Some(n) => unsafe {
                self.head
                    .compare_exchange(head, next, Release, Relaxed, guard)
                    .map(|_| {
                        let tail = self.tail.load(Relaxed, guard);
                        // Advance the tail so that we don't retire a pointer to a reachable node.
                        if head == tail {
                            let _ = self
                                .tail
                                .compare_exchange(tail, next, Release, Relaxed, guard);
                        }
                        guard.defer_destroy(head);
                        // TODO: Replace with MaybeUninit::read when api is stable
                        Some(n.data.as_ptr().read())
                    })
                    .map_err(|_| ())
            },
            None => Ok(None),
        }
    }

    /// Attempts to pop a data node, if the data satisfies the given condition. `Ok(None)` if queue
    /// is empty or the data does not satisfy the condition; `Err(())` if lost race to pop.
    #[inline(always)]
    fn pop_if_internal<F>(&self, condition: F, guard: &Guard) -> Result<Option<T>, ()>
    where
        T: Sync,
        F: Fn(&T) -> bool,
    {
        let head = self.head.load(Acquire, guard);
        let h = unsafe { head.deref() };
        let next = h.next.load(Acquire, guard);
        match unsafe { next.as_ref() } {
            Some(n) if condition(unsafe { &*n.data.as_ptr() }) => unsafe {
                self.head
                    .compare_exchange(head, next, Release, Relaxed, guard)
                    .map(|_| {
                        let tail = self.tail.load(Relaxed, guard);
                        // Advance the tail so that we don't retire a pointer to a reachable node.
                        if head == tail {
                            let _ = self
                                .tail
                                .compare_exchange(tail, next, Release, Relaxed, guard);
                        }
                        guard.defer_destroy(head);
                        Some(n.data.as_ptr().read())
                    })
                    .map_err(|_| ())
            },
            None | Some(_) => Ok(None),
        }
    }

    /// Attempts to dequeue from the front.
    ///
    /// Returns `None` if the queue is observed to be empty.
    pub(crate) fn try_pop(&self, guard: &Guard) -> Option<T> {
        loop {
            if let Ok(head) = self.pop_internal(guard) {
                return head;
            }
        }
    }

    /// Attempts to dequeue from the front, if the item satisfies the given condition.
    ///
    /// Returns `None` if the queue is observed to be empty, or the head does not satisfy the given
    /// condition.
    pub(crate) fn try_pop_if<F>(&self, condition: F, guard: &Guard) -> Option<T>
    where
        T: Sync,
        F: Fn(&T) -> bool,
    {
        loop {
            if let Ok(head) = self.pop_if_internal(&condition, guard) {
                return head;
            }
        }
    }
}

impl<T> Drop for Queue<T> {
    fn drop(&mut self) {
        unsafe {
            let guard = unprotected();

            while self.try_pop(guard).is_some() {}

            // Destroy the remaining sentinel node.
            let sentinel = self.head.load(Relaxed, guard);
            drop(sentinel.into_owned());
        }
    }
}

#[cfg(all(test, not(crossbeam_loom)))]
mod test {
    use super::*;
    use crate::pin;
    use crossbeam_utils::thread;

    struct Queue<T> {
        queue: super::Queue<T>,
    }

    impl<T> Queue<T> {
        pub(crate) fn new() -> Queue<T> {
            Queue {
                queue: super::Queue::new(),
            }
        }

        pub(crate) fn push(&self, t: T) {
            let guard = &pin();
            self.queue.push(t, guard);
        }

        pub(crate) fn is_empty(&self) -> bool {
            let guard = &pin();
            let head = self.queue.head.load(Acquire, guard);
            let h = unsafe { head.deref() };
            h.next.load(Acquire, guard).is_null()
        }

        pub(crate) fn try_pop(&self) -> Option<T> {
            let guard = &pin();
            self.queue.try_pop(guard)
        }

        pub(crate) fn pop(&self) -> T {
            loop {
                match self.try_pop() {
                    None => continue,
                    Some(t) => return t,
                }
            }
        }
    }

    #[cfg(miri)]
    const CONC_COUNT: i64 = 1000;
    #[cfg(not(miri))]
    const CONC_COUNT: i64 = 1000000;

    #[test]
    fn push_try_pop_1() {
        let q: Queue<i64> = Queue::new();
        assert!(q.is_empty());
        q.push(37);
        assert!(!q.is_empty());
        assert_eq!(q.try_pop(), Some(37));
        assert!(q.is_empty());
    }

    #[test]
    fn push_try_pop_2() {
        let q: Queue<i64> = Queue::new();
        assert!(q.is_empty());
        q.push(37);
        q.push(48);
        assert_eq!(q.try_pop(), Some(37));
        assert!(!q.is_empty());
        assert_eq!(q.try_pop(), Some(48));
        assert!(q.is_empty());
    }

    #[test]
    fn push_try_pop_many_seq() {
        let q: Queue<i64> = Queue::new();
        assert!(q.is_empty());
        for i in 0..200 {
            q.push(i)
        }
        assert!(!q.is_empty());
        for i in 0..200 {
            assert_eq!(q.try_pop(), Some(i));
        }
        assert!(q.is_empty());
    }

    #[test]
    fn push_pop_1() {
        let q: Queue<i64> = Queue::new();
        assert!(q.is_empty());
        q.push(37);
        assert!(!q.is_empty());
        assert_eq!(q.pop(), 37);
        assert!(q.is_empty());
    }

    #[test]
    fn push_pop_2() {
        let q: Queue<i64> = Queue::new();
        q.push(37);
        q.push(48);
        assert_eq!(q.pop(), 37);
        assert_eq!(q.pop(), 48);
    }

    #[test]
    fn push_pop_many_seq() {
        let q: Queue<i64> = Queue::new();
        assert!(q.is_empty());
        for i in 0..200 {
            q.push(i)
        }
        assert!(!q.is_empty());
        for i in 0..200 {
            assert_eq!(q.pop(), i);
        }
        assert!(q.is_empty());
    }

    #[test]
    fn push_try_pop_many_spsc() {
        let q: Queue<i64> = Queue::new();
        assert!(q.is_empty());

        thread::scope(|scope| {
            scope.spawn(|_| {
                let mut next = 0;

                while next < CONC_COUNT {
                    if let Some(elem) = q.try_pop() {
                        assert_eq!(elem, next);
                        next += 1;
                    }
                }
            });

            for i in 0..CONC_COUNT {
                q.push(i)
            }
        })
        .unwrap();
    }

    #[test]
    fn push_try_pop_many_spmc() {
        fn recv(_t: i32, q: &Queue<i64>) {
            let mut cur = -1;
            for _i in 0..CONC_COUNT {
                if let Some(elem) = q.try_pop() {
                    assert!(elem > cur);
                    cur = elem;

                    if cur == CONC_COUNT - 1 {
                        break;
                    }
                }
            }
        }

        let q: Queue<i64> = Queue::new();
        assert!(q.is_empty());
        thread::scope(|scope| {
            for i in 0..3 {
                let q = &q;
                scope.spawn(move |_| recv(i, q));
            }

            scope.spawn(|_| {
                for i in 0..CONC_COUNT {
                    q.push(i);
                }
            });
        })
        .unwrap();
    }

    #[test]
    fn push_try_pop_many_mpmc() {
        enum LR {
            Left(i64),
            Right(i64),
        }

        let q: Queue<LR> = Queue::new();
        assert!(q.is_empty());

        thread::scope(|scope| {
            for _t in 0..2 {
                scope.spawn(|_| {
                    for i in CONC_COUNT - 1..CONC_COUNT {
                        q.push(LR::Left(i))
                    }
                });
                scope.spawn(|_| {
                    for i in CONC_COUNT - 1..CONC_COUNT {
                        q.push(LR::Right(i))
                    }
                });
                scope.spawn(|_| {
                    let mut vl = vec![];
                    let mut vr = vec![];
                    for _i in 0..CONC_COUNT {
                        match q.try_pop() {
                            Some(LR::Left(x)) => vl.push(x),
                            Some(LR::Right(x)) => vr.push(x),
                            _ => {}
                        }
                    }

                    let mut vl2 = vl.clone();
                    let mut vr2 = vr.clone();
                    vl2.sort_unstable();
                    vr2.sort_unstable();

                    assert_eq!(vl, vl2);
                    assert_eq!(vr, vr2);
                });
            }
        })
        .unwrap();
    }

    #[test]
    fn push_pop_many_spsc() {
        let q: Queue<i64> = Queue::new();

        thread::scope(|scope| {
            scope.spawn(|_| {
                let mut next = 0;
                while next < CONC_COUNT {
                    assert_eq!(q.pop(), next);
                    next += 1;
                }
            });

            for i in 0..CONC_COUNT {
                q.push(i)
            }
        })
        .unwrap();
        assert!(q.is_empty());
    }

    #[test]
    fn is_empty_dont_pop() {
        let q: Queue<i64> = Queue::new();
        q.push(20);
        q.push(20);
        assert!(!q.is_empty());
        assert!(!q.is_empty());
        assert!(q.try_pop().is_some());
    }
}