1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
#[cfg(feature = "std")]
use core::fmt;
#[cfg(feature = "std")]
use core::iter;
use core::marker::PhantomData;
use core::mem::size_of;
#[cfg(feature = "std")]
use std::collections::HashMap;
#[cfg(feature = "std")]
use byteorder::{BigEndian, LittleEndian};
use byteorder::{ByteOrder, NativeEndian};
use classes::ByteClasses;
use dense;
use dfa::DFA;
#[cfg(feature = "std")]
use error::{Error, Result};
#[cfg(feature = "std")]
use state_id::{dead_id, usize_to_state_id, write_state_id_bytes, StateID};
#[cfg(not(feature = "std"))]
use state_id::{dead_id, StateID};
/// A sparse table-based deterministic finite automaton (DFA).
///
/// In contrast to a [dense DFA](enum.DenseDFA.html), a sparse DFA uses a
/// more space efficient representation for its transition table. Consequently,
/// sparse DFAs can use much less memory than dense DFAs, but this comes at a
/// price. In particular, reading the more space efficient transitions takes
/// more work, and consequently, searching using a sparse DFA is typically
/// slower than a dense DFA.
///
/// A sparse DFA can be built using the default configuration via the
/// [`SparseDFA::new`](enum.SparseDFA.html#method.new) constructor. Otherwise,
/// one can configure various aspects of a dense DFA via
/// [`dense::Builder`](dense/struct.Builder.html), and then convert a dense
/// DFA to a sparse DFA using
/// [`DenseDFA::to_sparse`](enum.DenseDFA.html#method.to_sparse).
///
/// In general, a sparse DFA supports all the same operations as a dense DFA.
///
/// Making the choice between a dense and sparse DFA depends on your specific
/// work load. If you can sacrifice a bit of search time performance, then a
/// sparse DFA might be the best choice. In particular, while sparse DFAs are
/// probably always slower than dense DFAs, you may find that they are easily
/// fast enough for your purposes!
///
/// # State size
///
/// A `SparseDFA` has two type parameters, `T` and `S`. `T` corresponds to
/// the type of the DFA's transition table while `S` corresponds to the
/// representation used for the DFA's state identifiers as described by the
/// [`StateID`](trait.StateID.html) trait. This type parameter is typically
/// `usize`, but other valid choices provided by this crate include `u8`,
/// `u16`, `u32` and `u64`. The primary reason for choosing a different state
/// identifier representation than the default is to reduce the amount of
/// memory used by a DFA. Note though, that if the chosen representation cannot
/// accommodate the size of your DFA, then building the DFA will fail and
/// return an error.
///
/// While the reduction in heap memory used by a DFA is one reason for choosing
/// a smaller state identifier representation, another possible reason is for
/// decreasing the serialization size of a DFA, as returned by
/// [`to_bytes_little_endian`](enum.SparseDFA.html#method.to_bytes_little_endian),
/// [`to_bytes_big_endian`](enum.SparseDFA.html#method.to_bytes_big_endian)
/// or
/// [`to_bytes_native_endian`](enum.DenseDFA.html#method.to_bytes_native_endian).
///
/// The type of the transition table is typically either `Vec<u8>` or `&[u8]`,
/// depending on where the transition table is stored. Note that this is
/// different than a dense DFA, whose transition table is typically
/// `Vec<S>` or `&[S]`. The reason for this is that a sparse DFA always reads
/// its transition table from raw bytes because the table is compactly packed.
///
/// # Variants
///
/// This DFA is defined as a non-exhaustive enumeration of different types of
/// dense DFAs. All of the variants use the same internal representation
/// for the transition table, but they vary in how the transition table is
/// read. A DFA's specific variant depends on the configuration options set via
/// [`dense::Builder`](dense/struct.Builder.html). The default variant is
/// `ByteClass`.
///
/// # The `DFA` trait
///
/// This type implements the [`DFA`](trait.DFA.html) trait, which means it
/// can be used for searching. For example:
///
/// ```
/// use regex_automata::{DFA, SparseDFA};
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let dfa = SparseDFA::new("foo[0-9]+")?;
/// assert_eq!(Some(8), dfa.find(b"foo12345"));
/// # Ok(()) }; example().unwrap()
/// ```
///
/// The `DFA` trait also provides an assortment of other lower level methods
/// for DFAs, such as `start_state` and `next_state`. While these are correctly
/// implemented, it is an anti-pattern to use them in performance sensitive
/// code on the `SparseDFA` type directly. Namely, each implementation requires
/// a branch to determine which type of sparse DFA is being used. Instead,
/// this branch should be pushed up a layer in the code since walking the
/// transitions of a DFA is usually a hot path. If you do need to use these
/// lower level methods in performance critical code, then you should match on
/// the variants of this DFA and use each variant's implementation of the `DFA`
/// trait directly.
#[derive(Clone, Debug)]
pub enum SparseDFA<T: AsRef<[u8]>, S: StateID = usize> {
/// A standard DFA that does not use byte classes.
Standard(Standard<T, S>),
/// A DFA that shrinks its alphabet to a set of equivalence classes instead
/// of using all possible byte values. Any two bytes belong to the same
/// equivalence class if and only if they can be used interchangeably
/// anywhere in the DFA while never discriminating between a match and a
/// non-match.
///
/// Unlike dense DFAs, sparse DFAs do not tend to benefit nearly as much
/// from using byte classes. In some cases, using byte classes can even
/// marginally increase the size of a sparse DFA's transition table. The
/// reason for this is that a sparse DFA already compacts each state's
/// transitions separate from whether byte classes are used.
ByteClass(ByteClass<T, S>),
/// Hints that destructuring should not be exhaustive.
///
/// This enum may grow additional variants, so this makes sure clients
/// don't count on exhaustive matching. (Otherwise, adding a new variant
/// could break existing code.)
#[doc(hidden)]
__Nonexhaustive,
}
#[cfg(feature = "std")]
impl SparseDFA<Vec<u8>, usize> {
/// Parse the given regular expression using a default configuration and
/// return the corresponding sparse DFA.
///
/// The default configuration uses `usize` for state IDs and reduces the
/// alphabet size by splitting bytes into equivalence classes. The
/// resulting DFA is *not* minimized.
///
/// If you want a non-default configuration, then use the
/// [`dense::Builder`](dense/struct.Builder.html)
/// to set your own configuration, and then call
/// [`DenseDFA::to_sparse`](enum.DenseDFA.html#method.to_sparse)
/// to create a sparse DFA.
///
/// # Example
///
/// ```
/// use regex_automata::{DFA, SparseDFA};
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let dfa = SparseDFA::new("foo[0-9]+bar")?;
/// assert_eq!(Some(11), dfa.find(b"foo12345bar"));
/// # Ok(()) }; example().unwrap()
/// ```
pub fn new(pattern: &str) -> Result<SparseDFA<Vec<u8>, usize>> {
dense::Builder::new()
.build(pattern)
.and_then(|dense| dense.to_sparse())
}
}
#[cfg(feature = "std")]
impl<S: StateID> SparseDFA<Vec<u8>, S> {
/// Create a new empty sparse DFA that never matches any input.
///
/// # Example
///
/// In order to build an empty DFA, callers must provide a type hint
/// indicating their choice of state identifier representation.
///
/// ```
/// use regex_automata::{DFA, SparseDFA};
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let dfa: SparseDFA<Vec<u8>, usize> = SparseDFA::empty();
/// assert_eq!(None, dfa.find(b""));
/// assert_eq!(None, dfa.find(b"foo"));
/// # Ok(()) }; example().unwrap()
/// ```
pub fn empty() -> SparseDFA<Vec<u8>, S> {
dense::DenseDFA::empty().to_sparse().unwrap()
}
pub(crate) fn from_dense_sized<T: AsRef<[S]>, A: StateID>(
dfa: &dense::Repr<T, S>,
) -> Result<SparseDFA<Vec<u8>, A>> {
Repr::from_dense_sized(dfa).map(|r| r.into_sparse_dfa())
}
}
impl<T: AsRef<[u8]>, S: StateID> SparseDFA<T, S> {
/// Cheaply return a borrowed version of this sparse DFA. Specifically, the
/// DFA returned always uses `&[u8]` for its transition table while keeping
/// the same state identifier representation.
pub fn as_ref<'a>(&'a self) -> SparseDFA<&'a [u8], S> {
match *self {
SparseDFA::Standard(Standard(ref r)) => {
SparseDFA::Standard(Standard(r.as_ref()))
}
SparseDFA::ByteClass(ByteClass(ref r)) => {
SparseDFA::ByteClass(ByteClass(r.as_ref()))
}
SparseDFA::__Nonexhaustive => unreachable!(),
}
}
/// Return an owned version of this sparse DFA. Specifically, the DFA
/// returned always uses `Vec<u8>` for its transition table while keeping
/// the same state identifier representation.
///
/// Effectively, this returns a sparse DFA whose transition table lives
/// on the heap.
#[cfg(feature = "std")]
pub fn to_owned(&self) -> SparseDFA<Vec<u8>, S> {
match *self {
SparseDFA::Standard(Standard(ref r)) => {
SparseDFA::Standard(Standard(r.to_owned()))
}
SparseDFA::ByteClass(ByteClass(ref r)) => {
SparseDFA::ByteClass(ByteClass(r.to_owned()))
}
SparseDFA::__Nonexhaustive => unreachable!(),
}
}
/// Returns the memory usage, in bytes, of this DFA.
///
/// The memory usage is computed based on the number of bytes used to
/// represent this DFA's transition table. This typically corresponds to
/// heap memory usage.
///
/// This does **not** include the stack size used up by this DFA. To
/// compute that, used `std::mem::size_of::<SparseDFA>()`.
pub fn memory_usage(&self) -> usize {
self.repr().memory_usage()
}
fn repr(&self) -> &Repr<T, S> {
match *self {
SparseDFA::Standard(ref r) => &r.0,
SparseDFA::ByteClass(ref r) => &r.0,
SparseDFA::__Nonexhaustive => unreachable!(),
}
}
}
/// Routines for converting a sparse DFA to other representations, such as
/// smaller state identifiers or raw bytes suitable for persistent storage.
#[cfg(feature = "std")]
impl<T: AsRef<[u8]>, S: StateID> SparseDFA<T, S> {
/// Create a new sparse DFA whose match semantics are equivalent to
/// this DFA, but attempt to use `u8` for the representation of state
/// identifiers. If `u8` is insufficient to represent all state identifiers
/// in this DFA, then this returns an error.
///
/// This is a convenience routine for `to_sized::<u8>()`.
pub fn to_u8(&self) -> Result<SparseDFA<Vec<u8>, u8>> {
self.to_sized()
}
/// Create a new sparse DFA whose match semantics are equivalent to
/// this DFA, but attempt to use `u16` for the representation of state
/// identifiers. If `u16` is insufficient to represent all state
/// identifiers in this DFA, then this returns an error.
///
/// This is a convenience routine for `to_sized::<u16>()`.
pub fn to_u16(&self) -> Result<SparseDFA<Vec<u8>, u16>> {
self.to_sized()
}
/// Create a new sparse DFA whose match semantics are equivalent to
/// this DFA, but attempt to use `u32` for the representation of state
/// identifiers. If `u32` is insufficient to represent all state
/// identifiers in this DFA, then this returns an error.
///
/// This is a convenience routine for `to_sized::<u32>()`.
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
pub fn to_u32(&self) -> Result<SparseDFA<Vec<u8>, u32>> {
self.to_sized()
}
/// Create a new sparse DFA whose match semantics are equivalent to
/// this DFA, but attempt to use `u64` for the representation of state
/// identifiers. If `u64` is insufficient to represent all state
/// identifiers in this DFA, then this returns an error.
///
/// This is a convenience routine for `to_sized::<u64>()`.
#[cfg(target_pointer_width = "64")]
pub fn to_u64(&self) -> Result<SparseDFA<Vec<u8>, u64>> {
self.to_sized()
}
/// Create a new sparse DFA whose match semantics are equivalent to
/// this DFA, but attempt to use `A` for the representation of state
/// identifiers. If `A` is insufficient to represent all state identifiers
/// in this DFA, then this returns an error.
///
/// An alternative way to construct such a DFA is to use
/// [`DenseDFA::to_sparse_sized`](enum.DenseDFA.html#method.to_sparse_sized).
/// In general, picking the appropriate size upon initial construction of
/// a sparse DFA is preferred, since it will do the conversion in one
/// step instead of two.
pub fn to_sized<A: StateID>(&self) -> Result<SparseDFA<Vec<u8>, A>> {
self.repr().to_sized().map(|r| r.into_sparse_dfa())
}
/// Serialize a sparse DFA to raw bytes in little endian format.
///
/// If the state identifier representation of this DFA has a size different
/// than 1, 2, 4 or 8 bytes, then this returns an error. All
/// implementations of `StateID` provided by this crate satisfy this
/// requirement.
pub fn to_bytes_little_endian(&self) -> Result<Vec<u8>> {
self.repr().to_bytes::<LittleEndian>()
}
/// Serialize a sparse DFA to raw bytes in big endian format.
///
/// If the state identifier representation of this DFA has a size different
/// than 1, 2, 4 or 8 bytes, then this returns an error. All
/// implementations of `StateID` provided by this crate satisfy this
/// requirement.
pub fn to_bytes_big_endian(&self) -> Result<Vec<u8>> {
self.repr().to_bytes::<BigEndian>()
}
/// Serialize a sparse DFA to raw bytes in native endian format.
/// Generally, it is better to pick an explicit endianness using either
/// `to_bytes_little_endian` or `to_bytes_big_endian`. This routine is
/// useful in tests where the DFA is serialized and deserialized on the
/// same platform.
///
/// If the state identifier representation of this DFA has a size different
/// than 1, 2, 4 or 8 bytes, then this returns an error. All
/// implementations of `StateID` provided by this crate satisfy this
/// requirement.
pub fn to_bytes_native_endian(&self) -> Result<Vec<u8>> {
self.repr().to_bytes::<NativeEndian>()
}
}
impl<'a, S: StateID> SparseDFA<&'a [u8], S> {
/// Deserialize a sparse DFA with a specific state identifier
/// representation.
///
/// Deserializing a DFA using this routine will never allocate heap memory.
/// This is also guaranteed to be a constant time operation that does not
/// vary with the size of the DFA.
///
/// The bytes given should be generated by the serialization of a DFA with
/// either the
/// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian)
/// method or the
/// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian)
/// endian, depending on the endianness of the machine you are
/// deserializing this DFA from.
///
/// If the state identifier representation is `usize`, then deserialization
/// is dependent on the pointer size. For this reason, it is best to
/// serialize DFAs using a fixed size representation for your state
/// identifiers, such as `u8`, `u16`, `u32` or `u64`.
///
/// # Panics
///
/// The bytes given should be *trusted*. In particular, if the bytes
/// are not a valid serialization of a DFA, or if the endianness of the
/// serialized bytes is different than the endianness of the machine that
/// is deserializing the DFA, then this routine will panic. Moreover, it
/// is possible for this deserialization routine to succeed even if the
/// given bytes do not represent a valid serialized sparse DFA.
///
/// # Safety
///
/// This routine is unsafe because it permits callers to provide an
/// arbitrary transition table with possibly incorrect transitions. While
/// the various serialization routines will never return an incorrect
/// transition table, there is no guarantee that the bytes provided here
/// are correct. While deserialization does many checks (as documented
/// above in the panic conditions), this routine does not check that the
/// transition table is correct. Given an incorrect transition table, it is
/// possible for the search routines to access out-of-bounds memory because
/// of explicit bounds check elision.
///
/// # Example
///
/// This example shows how to serialize a DFA to raw bytes, deserialize it
/// and then use it for searching. Note that we first convert the DFA to
/// using `u16` for its state identifier representation before serializing
/// it. While this isn't strictly necessary, it's good practice in order to
/// decrease the size of the DFA and to avoid platform specific pitfalls
/// such as differing pointer sizes.
///
/// ```
/// use regex_automata::{DFA, DenseDFA, SparseDFA};
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let sparse = SparseDFA::new("foo[0-9]+")?;
/// let bytes = sparse.to_u16()?.to_bytes_native_endian()?;
///
/// let dfa: SparseDFA<&[u8], u16> = unsafe {
/// SparseDFA::from_bytes(&bytes)
/// };
///
/// assert_eq!(Some(8), dfa.find(b"foo12345"));
/// # Ok(()) }; example().unwrap()
/// ```
pub unsafe fn from_bytes(buf: &'a [u8]) -> SparseDFA<&'a [u8], S> {
Repr::from_bytes(buf).into_sparse_dfa()
}
}
impl<T: AsRef<[u8]>, S: StateID> DFA for SparseDFA<T, S> {
type ID = S;
#[inline]
fn start_state(&self) -> S {
self.repr().start_state()
}
#[inline]
fn is_match_state(&self, id: S) -> bool {
self.repr().is_match_state(id)
}
#[inline]
fn is_dead_state(&self, id: S) -> bool {
self.repr().is_dead_state(id)
}
#[inline]
fn is_match_or_dead_state(&self, id: S) -> bool {
self.repr().is_match_or_dead_state(id)
}
#[inline]
fn is_anchored(&self) -> bool {
self.repr().is_anchored()
}
#[inline]
fn next_state(&self, current: S, input: u8) -> S {
match *self {
SparseDFA::Standard(ref r) => r.next_state(current, input),
SparseDFA::ByteClass(ref r) => r.next_state(current, input),
SparseDFA::__Nonexhaustive => unreachable!(),
}
}
#[inline]
unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
self.next_state(current, input)
}
// We specialize the following methods because it lets us lift the
// case analysis between the different types of sparse DFAs. Instead of
// doing the case analysis for every transition, we do it once before
// searching. For sparse DFAs, this doesn't seem to benefit performance as
// much as it does for the dense DFAs, but it's easy to do so we might as
// well do it.
#[inline]
fn is_match_at(&self, bytes: &[u8], start: usize) -> bool {
match *self {
SparseDFA::Standard(ref r) => r.is_match_at(bytes, start),
SparseDFA::ByteClass(ref r) => r.is_match_at(bytes, start),
SparseDFA::__Nonexhaustive => unreachable!(),
}
}
#[inline]
fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
match *self {
SparseDFA::Standard(ref r) => r.shortest_match_at(bytes, start),
SparseDFA::ByteClass(ref r) => r.shortest_match_at(bytes, start),
SparseDFA::__Nonexhaustive => unreachable!(),
}
}
#[inline]
fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
match *self {
SparseDFA::Standard(ref r) => r.find_at(bytes, start),
SparseDFA::ByteClass(ref r) => r.find_at(bytes, start),
SparseDFA::__Nonexhaustive => unreachable!(),
}
}
#[inline]
fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
match *self {
SparseDFA::Standard(ref r) => r.rfind_at(bytes, start),
SparseDFA::ByteClass(ref r) => r.rfind_at(bytes, start),
SparseDFA::__Nonexhaustive => unreachable!(),
}
}
}
/// A standard sparse DFA that does not use premultiplication or byte classes.
///
/// Generally, it isn't necessary to use this type directly, since a
/// `SparseDFA` can be used for searching directly. One possible reason why
/// one might want to use this type directly is if you are implementing your
/// own search routines by walking a DFA's transitions directly. In that case,
/// you'll want to use this type (or any of the other DFA variant types)
/// directly, since they implement `next_state` more efficiently.
#[derive(Clone, Debug)]
pub struct Standard<T: AsRef<[u8]>, S: StateID = usize>(Repr<T, S>);
impl<T: AsRef<[u8]>, S: StateID> DFA for Standard<T, S> {
type ID = S;
#[inline]
fn start_state(&self) -> S {
self.0.start_state()
}
#[inline]
fn is_match_state(&self, id: S) -> bool {
self.0.is_match_state(id)
}
#[inline]
fn is_dead_state(&self, id: S) -> bool {
self.0.is_dead_state(id)
}
#[inline]
fn is_match_or_dead_state(&self, id: S) -> bool {
self.0.is_match_or_dead_state(id)
}
#[inline]
fn is_anchored(&self) -> bool {
self.0.is_anchored()
}
#[inline]
fn next_state(&self, current: S, input: u8) -> S {
self.0.state(current).next(input)
}
#[inline]
unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
self.next_state(current, input)
}
}
/// A sparse DFA that shrinks its alphabet.
///
/// Alphabet shrinking is achieved by using a set of equivalence classes
/// instead of using all possible byte values. Any two bytes belong to the same
/// equivalence class if and only if they can be used interchangeably anywhere
/// in the DFA while never discriminating between a match and a non-match.
///
/// Unlike dense DFAs, sparse DFAs do not tend to benefit nearly as much from
/// using byte classes. In some cases, using byte classes can even marginally
/// increase the size of a sparse DFA's transition table. The reason for this
/// is that a sparse DFA already compacts each state's transitions separate
/// from whether byte classes are used.
///
/// Generally, it isn't necessary to use this type directly, since a
/// `SparseDFA` can be used for searching directly. One possible reason why
/// one might want to use this type directly is if you are implementing your
/// own search routines by walking a DFA's transitions directly. In that case,
/// you'll want to use this type (or any of the other DFA variant types)
/// directly, since they implement `next_state` more efficiently.
#[derive(Clone, Debug)]
pub struct ByteClass<T: AsRef<[u8]>, S: StateID = usize>(Repr<T, S>);
impl<T: AsRef<[u8]>, S: StateID> DFA for ByteClass<T, S> {
type ID = S;
#[inline]
fn start_state(&self) -> S {
self.0.start_state()
}
#[inline]
fn is_match_state(&self, id: S) -> bool {
self.0.is_match_state(id)
}
#[inline]
fn is_dead_state(&self, id: S) -> bool {
self.0.is_dead_state(id)
}
#[inline]
fn is_match_or_dead_state(&self, id: S) -> bool {
self.0.is_match_or_dead_state(id)
}
#[inline]
fn is_anchored(&self) -> bool {
self.0.is_anchored()
}
#[inline]
fn next_state(&self, current: S, input: u8) -> S {
let input = self.0.byte_classes.get(input);
self.0.state(current).next(input)
}
#[inline]
unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
self.next_state(current, input)
}
}
/// The underlying representation of a sparse DFA. This is shared by all of
/// the different variants of a sparse DFA.
#[derive(Clone)]
#[cfg_attr(not(feature = "std"), derive(Debug))]
struct Repr<T: AsRef<[u8]>, S: StateID = usize> {
anchored: bool,
start: S,
state_count: usize,
max_match: S,
byte_classes: ByteClasses,
trans: T,
}
impl<T: AsRef<[u8]>, S: StateID> Repr<T, S> {
fn into_sparse_dfa(self) -> SparseDFA<T, S> {
if self.byte_classes.is_singleton() {
SparseDFA::Standard(Standard(self))
} else {
SparseDFA::ByteClass(ByteClass(self))
}
}
fn as_ref<'a>(&'a self) -> Repr<&'a [u8], S> {
Repr {
anchored: self.anchored,
start: self.start,
state_count: self.state_count,
max_match: self.max_match,
byte_classes: self.byte_classes.clone(),
trans: self.trans(),
}
}
#[cfg(feature = "std")]
fn to_owned(&self) -> Repr<Vec<u8>, S> {
Repr {
anchored: self.anchored,
start: self.start,
state_count: self.state_count,
max_match: self.max_match,
byte_classes: self.byte_classes.clone(),
trans: self.trans().to_vec(),
}
}
/// Return a convenient representation of the given state.
///
/// This is marked as inline because it doesn't seem to get inlined
/// otherwise, which leads to a fairly significant performance loss (~25%).
#[inline]
fn state<'a>(&'a self, id: S) -> State<'a, S> {
let mut pos = id.to_usize();
let ntrans = NativeEndian::read_u16(&self.trans()[pos..]) as usize;
pos += 2;
let input_ranges = &self.trans()[pos..pos + (ntrans * 2)];
pos += 2 * ntrans;
let next = &self.trans()[pos..pos + (ntrans * size_of::<S>())];
State { _state_id_repr: PhantomData, ntrans, input_ranges, next }
}
/// Return an iterator over all of the states in this DFA.
///
/// The iterator returned yields tuples, where the first element is the
/// state ID and the second element is the state itself.
#[cfg(feature = "std")]
fn states<'a>(&'a self) -> StateIter<'a, T, S> {
StateIter { dfa: self, id: dead_id() }
}
fn memory_usage(&self) -> usize {
self.trans().len()
}
fn start_state(&self) -> S {
self.start
}
fn is_match_state(&self, id: S) -> bool {
self.is_match_or_dead_state(id) && !self.is_dead_state(id)
}
fn is_dead_state(&self, id: S) -> bool {
id == dead_id()
}
fn is_match_or_dead_state(&self, id: S) -> bool {
id <= self.max_match
}
fn is_anchored(&self) -> bool {
self.anchored
}
fn trans(&self) -> &[u8] {
self.trans.as_ref()
}
/// Create a new sparse DFA whose match semantics are equivalent to this
/// DFA, but attempt to use `A` for the representation of state
/// identifiers. If `A` is insufficient to represent all state identifiers
/// in this DFA, then this returns an error.
#[cfg(feature = "std")]
fn to_sized<A: StateID>(&self) -> Result<Repr<Vec<u8>, A>> {
// To build the new DFA, we proceed much like the initial construction
// of the sparse DFA. Namely, since the state ID size is changing,
// we don't actually know all of our state IDs until we've allocated
// all necessary space. So we do one pass that allocates all of the
// storage we need, and then another pass to fill in the transitions.
let mut trans = Vec::with_capacity(size_of::<A>() * self.state_count);
let mut map: HashMap<S, A> = HashMap::with_capacity(self.state_count);
for (old_id, state) in self.states() {
let pos = trans.len();
map.insert(old_id, usize_to_state_id(pos)?);
let n = state.ntrans;
let zeros = 2 + (n * 2) + (n * size_of::<A>());
trans.extend(iter::repeat(0).take(zeros));
NativeEndian::write_u16(&mut trans[pos..], n as u16);
let (s, e) = (pos + 2, pos + 2 + (n * 2));
trans[s..e].copy_from_slice(state.input_ranges);
}
let mut new = Repr {
anchored: self.anchored,
start: map[&self.start],
state_count: self.state_count,
max_match: map[&self.max_match],
byte_classes: self.byte_classes.clone(),
trans,
};
for (&old_id, &new_id) in map.iter() {
let old_state = self.state(old_id);
let mut new_state = new.state_mut(new_id);
for i in 0..new_state.ntrans {
let next = map[&old_state.next_at(i)];
new_state.set_next_at(i, usize_to_state_id(next.to_usize())?);
}
}
new.start = map[&self.start];
new.max_match = map[&self.max_match];
Ok(new)
}
/// Serialize a sparse DFA to raw bytes using the provided endianness.
///
/// If the state identifier representation of this DFA has a size different
/// than 1, 2, 4 or 8 bytes, then this returns an error. All
/// implementations of `StateID` provided by this crate satisfy this
/// requirement.
///
/// Unlike dense DFAs, the result is not necessarily aligned since a
/// sparse DFA's transition table is always read as a sequence of bytes.
#[cfg(feature = "std")]
fn to_bytes<A: ByteOrder>(&self) -> Result<Vec<u8>> {
let label = b"rust-regex-automata-sparse-dfa\x00";
let size =
// For human readable label.
label.len()
// endiannes check, must be equal to 0xFEFF for native endian
+ 2
// For version number.
+ 2
// Size of state ID representation, in bytes.
// Must be 1, 2, 4 or 8.
+ 2
// For DFA misc options. (Currently unused.)
+ 2
// For start state.
+ 8
// For state count.
+ 8
// For max match state.
+ 8
// For byte class map.
+ 256
// For transition table.
+ self.trans().len();
let mut i = 0;
let mut buf = vec![0; size];
// write label
for &b in label {
buf[i] = b;
i += 1;
}
// endianness check
A::write_u16(&mut buf[i..], 0xFEFF);
i += 2;
// version number
A::write_u16(&mut buf[i..], 1);
i += 2;
// size of state ID
let state_size = size_of::<S>();
if ![1, 2, 4, 8].contains(&state_size) {
return Err(Error::serialize(&format!(
"state size of {} not supported, must be 1, 2, 4 or 8",
state_size
)));
}
A::write_u16(&mut buf[i..], state_size as u16);
i += 2;
// DFA misc options
let mut options = 0u16;
if self.anchored {
options |= dense::MASK_ANCHORED;
}
A::write_u16(&mut buf[i..], options);
i += 2;
// start state
A::write_u64(&mut buf[i..], self.start.to_usize() as u64);
i += 8;
// state count
A::write_u64(&mut buf[i..], self.state_count as u64);
i += 8;
// max match state
A::write_u64(&mut buf[i..], self.max_match.to_usize() as u64);
i += 8;
// byte class map
for b in (0..256).map(|b| b as u8) {
buf[i] = self.byte_classes.get(b);
i += 1;
}
// transition table
for (_, state) in self.states() {
A::write_u16(&mut buf[i..], state.ntrans as u16);
i += 2;
buf[i..i + (state.ntrans * 2)].copy_from_slice(state.input_ranges);
i += state.ntrans * 2;
for j in 0..state.ntrans {
write_state_id_bytes::<A, _>(&mut buf[i..], state.next_at(j));
i += size_of::<S>();
}
}
assert_eq!(size, i, "expected to consume entire buffer");
Ok(buf)
}
}
impl<'a, S: StateID> Repr<&'a [u8], S> {
/// The implementation for deserializing a sparse DFA from raw bytes.
unsafe fn from_bytes(mut buf: &'a [u8]) -> Repr<&'a [u8], S> {
// skip over label
match buf.iter().position(|&b| b == b'\x00') {
None => panic!("could not find label"),
Some(i) => buf = &buf[i + 1..],
}
// check that current endianness is same as endianness of DFA
let endian_check = NativeEndian::read_u16(buf);
buf = &buf[2..];
if endian_check != 0xFEFF {
panic!(
"endianness mismatch, expected 0xFEFF but got 0x{:X}. \
are you trying to load a SparseDFA serialized with a \
different endianness?",
endian_check,
);
}
// check that the version number is supported
let version = NativeEndian::read_u16(buf);
buf = &buf[2..];
if version != 1 {
panic!(
"expected version 1, but found unsupported version {}",
version,
);
}
// read size of state
let state_size = NativeEndian::read_u16(buf) as usize;
if state_size != size_of::<S>() {
panic!(
"state size of SparseDFA ({}) does not match \
requested state size ({})",
state_size,
size_of::<S>(),
);
}
buf = &buf[2..];
// read miscellaneous options
let opts = NativeEndian::read_u16(buf);
buf = &buf[2..];
// read start state
let start = S::from_usize(NativeEndian::read_u64(buf) as usize);
buf = &buf[8..];
// read state count
let state_count = NativeEndian::read_u64(buf) as usize;
buf = &buf[8..];
// read max match state
let max_match = S::from_usize(NativeEndian::read_u64(buf) as usize);
buf = &buf[8..];
// read byte classes
let byte_classes = ByteClasses::from_slice(&buf[..256]);
buf = &buf[256..];
Repr {
anchored: opts & dense::MASK_ANCHORED > 0,
start,
state_count,
max_match,
byte_classes,
trans: buf,
}
}
}
#[cfg(feature = "std")]
impl<S: StateID> Repr<Vec<u8>, S> {
/// The implementation for constructing a sparse DFA from a dense DFA.
fn from_dense_sized<T: AsRef<[S]>, A: StateID>(
dfa: &dense::Repr<T, S>,
) -> Result<Repr<Vec<u8>, A>> {
// In order to build the transition table, we need to be able to write
// state identifiers for each of the "next" transitions in each state.
// Our state identifiers correspond to the byte offset in the
// transition table at which the state is encoded. Therefore, we do not
// actually know what the state identifiers are until we've allocated
// exactly as much space as we need for each state. Thus, construction
// of the transition table happens in two passes.
//
// In the first pass, we fill out the shell of each state, which
// includes the transition count, the input byte ranges and zero-filled
// space for the transitions. In this first pass, we also build up a
// map from the state identifier index of the dense DFA to the state
// identifier in this sparse DFA.
//
// In the second pass, we fill in the transitions based on the map
// built in the first pass.
let mut trans = Vec::with_capacity(size_of::<A>() * dfa.state_count());
let mut remap: Vec<A> = vec![dead_id(); dfa.state_count()];
for (old_id, state) in dfa.states() {
let pos = trans.len();
remap[dfa.state_id_to_index(old_id)] = usize_to_state_id(pos)?;
// zero-filled space for the transition count
trans.push(0);
trans.push(0);
let mut trans_count = 0;
for (b1, b2, _) in state.sparse_transitions() {
trans_count += 1;
trans.push(b1);
trans.push(b2);
}
// fill in the transition count
NativeEndian::write_u16(&mut trans[pos..], trans_count);
// zero-fill the actual transitions
let zeros = trans_count as usize * size_of::<A>();
trans.extend(iter::repeat(0).take(zeros));
}
let mut new = Repr {
anchored: dfa.is_anchored(),
start: remap[dfa.state_id_to_index(dfa.start_state())],
state_count: dfa.state_count(),
max_match: remap[dfa.state_id_to_index(dfa.max_match_state())],
byte_classes: dfa.byte_classes().clone(),
trans,
};
for (old_id, old_state) in dfa.states() {
let new_id = remap[dfa.state_id_to_index(old_id)];
let mut new_state = new.state_mut(new_id);
let sparse = old_state.sparse_transitions();
for (i, (_, _, next)) in sparse.enumerate() {
let next = remap[dfa.state_id_to_index(next)];
new_state.set_next_at(i, next);
}
}
Ok(new)
}
/// Return a convenient mutable representation of the given state.
fn state_mut<'a>(&'a mut self, id: S) -> StateMut<'a, S> {
let mut pos = id.to_usize();
let ntrans = NativeEndian::read_u16(&self.trans[pos..]) as usize;
pos += 2;
let size = (ntrans * 2) + (ntrans * size_of::<S>());
let ranges_and_next = &mut self.trans[pos..pos + size];
let (input_ranges, next) = ranges_and_next.split_at_mut(ntrans * 2);
StateMut { _state_id_repr: PhantomData, ntrans, input_ranges, next }
}
}
#[cfg(feature = "std")]
impl<T: AsRef<[u8]>, S: StateID> fmt::Debug for Repr<T, S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fn state_status<T: AsRef<[u8]>, S: StateID>(
dfa: &Repr<T, S>,
id: S,
) -> &'static str {
if id == dead_id() {
if dfa.is_match_state(id) {
"D*"
} else {
"D "
}
} else if id == dfa.start_state() {
if dfa.is_match_state(id) {
">*"
} else {
"> "
}
} else {
if dfa.is_match_state(id) {
" *"
} else {
" "
}
}
}
writeln!(f, "SparseDFA(")?;
for (id, state) in self.states() {
let status = state_status(self, id);
writeln!(f, "{}{:06}: {:?}", status, id.to_usize(), state)?;
}
writeln!(f, ")")?;
Ok(())
}
}
/// An iterator over all states in a sparse DFA.
///
/// This iterator yields tuples, where the first element is the state ID and
/// the second element is the state itself.
#[cfg(feature = "std")]
#[derive(Debug)]
struct StateIter<'a, T: AsRef<[u8]> + 'a, S: StateID + 'a = usize> {
dfa: &'a Repr<T, S>,
id: S,
}
#[cfg(feature = "std")]
impl<'a, T: AsRef<[u8]>, S: StateID> Iterator for StateIter<'a, T, S> {
type Item = (S, State<'a, S>);
fn next(&mut self) -> Option<(S, State<'a, S>)> {
if self.id.to_usize() >= self.dfa.trans().len() {
return None;
}
let id = self.id;
let state = self.dfa.state(id);
self.id = S::from_usize(self.id.to_usize() + state.bytes());
Some((id, state))
}
}
/// A representation of a sparse DFA state that can be cheaply materialized
/// from a state identifier.
#[derive(Clone)]
struct State<'a, S: StateID = usize> {
/// The state identifier representation used by the DFA from which this
/// state was extracted. Since our transition table is compacted in a
/// &[u8], we don't actually use the state ID type parameter explicitly
/// anywhere, so we fake it. This prevents callers from using an incorrect
/// state ID representation to read from this state.
_state_id_repr: PhantomData<S>,
/// The number of transitions in this state.
ntrans: usize,
/// Pairs of input ranges, where there is one pair for each transition.
/// Each pair specifies an inclusive start and end byte range for the
/// corresponding transition.
input_ranges: &'a [u8],
/// Transitions to the next state. This slice contains native endian
/// encoded state identifiers, with `S` as the representation. Thus, there
/// are `ntrans * size_of::<S>()` bytes in this slice.
next: &'a [u8],
}
impl<'a, S: StateID> State<'a, S> {
/// Searches for the next transition given an input byte. If no such
/// transition could be found, then a dead state is returned.
fn next(&self, input: u8) -> S {
// This straight linear search was observed to be much better than
// binary search on ASCII haystacks, likely because a binary search
// visits the ASCII case last but a linear search sees it first. A
// binary search does do a little better on non-ASCII haystacks, but
// not by much. There might be a better trade off lurking here.
for i in 0..self.ntrans {
let (start, end) = self.range(i);
if start <= input && input <= end {
return self.next_at(i);
}
// We could bail early with an extra branch: if input < b1, then
// we know we'll never find a matching transition. Interestingly,
// this extra branch seems to not help performance, or will even
// hurt it. It's likely very dependent on the DFA itself and what
// is being searched.
}
dead_id()
}
/// Returns the inclusive input byte range for the ith transition in this
/// state.
fn range(&self, i: usize) -> (u8, u8) {
(self.input_ranges[i * 2], self.input_ranges[i * 2 + 1])
}
/// Returns the next state for the ith transition in this state.
fn next_at(&self, i: usize) -> S {
S::read_bytes(&self.next[i * size_of::<S>()..])
}
/// Return the total number of bytes that this state consumes in its
/// encoded form.
#[cfg(feature = "std")]
fn bytes(&self) -> usize {
2 + (self.ntrans * 2) + (self.ntrans * size_of::<S>())
}
}
#[cfg(feature = "std")]
impl<'a, S: StateID> fmt::Debug for State<'a, S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut transitions = vec![];
for i in 0..self.ntrans {
let next = self.next_at(i);
if next == dead_id() {
continue;
}
let (start, end) = self.range(i);
if start == end {
transitions.push(format!(
"{} => {}",
escape(start),
next.to_usize()
));
} else {
transitions.push(format!(
"{}-{} => {}",
escape(start),
escape(end),
next.to_usize(),
));
}
}
write!(f, "{}", transitions.join(", "))
}
}
/// A representation of a mutable sparse DFA state that can be cheaply
/// materialized from a state identifier.
#[cfg(feature = "std")]
struct StateMut<'a, S: StateID = usize> {
/// The state identifier representation used by the DFA from which this
/// state was extracted. Since our transition table is compacted in a
/// &[u8], we don't actually use the state ID type parameter explicitly
/// anywhere, so we fake it. This prevents callers from using an incorrect
/// state ID representation to read from this state.
_state_id_repr: PhantomData<S>,
/// The number of transitions in this state.
ntrans: usize,
/// Pairs of input ranges, where there is one pair for each transition.
/// Each pair specifies an inclusive start and end byte range for the
/// corresponding transition.
input_ranges: &'a mut [u8],
/// Transitions to the next state. This slice contains native endian
/// encoded state identifiers, with `S` as the representation. Thus, there
/// are `ntrans * size_of::<S>()` bytes in this slice.
next: &'a mut [u8],
}
#[cfg(feature = "std")]
impl<'a, S: StateID> StateMut<'a, S> {
/// Sets the ith transition to the given state.
fn set_next_at(&mut self, i: usize, next: S) {
next.write_bytes(&mut self.next[i * size_of::<S>()..]);
}
}
#[cfg(feature = "std")]
impl<'a, S: StateID> fmt::Debug for StateMut<'a, S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let state = State {
_state_id_repr: self._state_id_repr,
ntrans: self.ntrans,
input_ranges: self.input_ranges,
next: self.next,
};
fmt::Debug::fmt(&state, f)
}
}
/// Return the given byte as its escaped string form.
#[cfg(feature = "std")]
fn escape(b: u8) -> String {
use std::ascii;
String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap()
}
/// A binary search routine specialized specifically to a sparse DFA state's
/// transitions. Specifically, the transitions are defined as a set of pairs
/// of input bytes that delineate an inclusive range of bytes. If the input
/// byte is in the range, then the corresponding transition is a match.
///
/// This binary search accepts a slice of these pairs and returns the position
/// of the matching pair (the ith transition), or None if no matching pair
/// could be found.
///
/// Note that this routine is not currently used since it was observed to
/// either decrease performance when searching ASCII, or did not provide enough
/// of a boost on non-ASCII haystacks to be worth it. However, we leave it here
/// for posterity in case we can find a way to use it.
///
/// In theory, we could use the standard library's search routine if we could
/// cast a `&[u8]` to a `&[(u8, u8)]`, but I don't believe this is currently
/// guaranteed to be safe and is thus UB (since I don't think the in-memory
/// representation of `(u8, u8)` has been nailed down).
#[inline(always)]
#[allow(dead_code)]
fn binary_search_ranges(ranges: &[u8], needle: u8) -> Option<usize> {
debug_assert!(ranges.len() % 2 == 0, "ranges must have even length");
debug_assert!(ranges.len() <= 512, "ranges should be short");
let (mut left, mut right) = (0, ranges.len() / 2);
while left < right {
let mid = (left + right) / 2;
let (b1, b2) = (ranges[mid * 2], ranges[mid * 2 + 1]);
if needle < b1 {
right = mid;
} else if needle > b2 {
left = mid + 1;
} else {
return Some(mid);
}
}
None
}