1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
// This file is part of Substrate.
// Copyright (C) 2017-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Stuff to do with the runtime's storage.
use crate::{
hash::{ReversibleStorageHasher, StorageHasher},
storage::types::{
EncodeLikeTuple, HasKeyPrefix, HasReversibleKeyPrefix, KeyGenerator,
ReversibleKeyGenerator, TupleToEncodedIter,
},
};
use codec::{Decode, Encode, EncodeLike, FullCodec, FullEncode};
use sp_core::storage::ChildInfo;
use sp_runtime::generic::{Digest, DigestItem};
use sp_std::{collections::btree_set::BTreeSet, marker::PhantomData, prelude::*};
pub use self::{
stream_iter::StorageStreamIter,
transactional::{
in_storage_layer, with_storage_layer, with_transaction, with_transaction_unchecked,
},
types::StorageEntryMetadataBuilder,
};
pub use sp_runtime::TransactionOutcome;
pub use types::Key;
pub mod bounded_btree_map;
pub mod bounded_btree_set;
pub mod bounded_vec;
pub mod child;
#[doc(hidden)]
pub mod generator;
pub mod hashed;
pub mod migration;
pub mod storage_noop_guard;
mod stream_iter;
pub mod transactional;
pub mod types;
pub mod unhashed;
pub mod weak_bounded_vec;
/// Utility type for converting a storage map into a `Get<u32>` impl which returns the maximum
/// key size.
pub struct KeyLenOf<M>(PhantomData<M>);
/// A trait for working with macro-generated storage values under the substrate storage API.
///
/// Details on implementation can be found at [`generator::StorageValue`].
pub trait StorageValue<T: FullCodec> {
/// The type that get/take return.
type Query;
/// Get the storage key.
fn hashed_key() -> [u8; 32];
/// Does the value (explicitly) exist in storage?
fn exists() -> bool;
/// Load the value from the provided storage instance.
fn get() -> Self::Query;
/// Try to get the underlying value from the provided storage instance.
///
/// Returns `Ok` if it exists, `Err` if not.
fn try_get() -> Result<T, ()>;
/// Translate a value from some previous type (`O`) to the current type.
///
/// `f: F` is the translation function.
///
/// Returns `Err` if the storage item could not be interpreted as the old type, and Ok, along
/// with the new value if it could.
///
/// NOTE: This operates from and to `Option<_>` types; no effort is made to respect the default
/// value of the original type.
///
/// # Warning
///
/// This function must be used with care, before being updated the storage still contains the
/// old type, thus other calls (such as `get`) will fail at decoding it.
///
/// # Usage
///
/// This would typically be called inside the module implementation of on_runtime_upgrade, while
/// ensuring **no usage of this storage are made before the call to `on_runtime_upgrade`**.
/// (More precisely prior initialized modules doesn't make use of this storage).
fn translate<O: Decode, F: FnOnce(Option<O>) -> Option<T>>(f: F) -> Result<Option<T>, ()>;
/// Store a value under this key into the provided storage instance.
fn put<Arg: EncodeLike<T>>(val: Arg);
/// Store a value under this key into the provided storage instance; this uses the query
/// type rather than the underlying value.
fn set(val: Self::Query);
/// Mutate the value
fn mutate<R, F: FnOnce(&mut Self::Query) -> R>(f: F) -> R;
/// Mutate the value if closure returns `Ok`
fn try_mutate<R, E, F: FnOnce(&mut Self::Query) -> Result<R, E>>(f: F) -> Result<R, E>;
/// Clear the storage value.
fn kill();
/// Take a value from storage, removing it afterwards.
fn take() -> Self::Query;
/// Append the given item to the value in the storage.
///
/// `T` is required to implement [`StorageAppend`].
///
/// # Warning
///
/// If the storage item is not encoded properly, the storage item will be overwritten
/// and set to `[item]`. Any default value set for the storage item will be ignored
/// on overwrite.
fn append<Item, EncodeLikeItem>(item: EncodeLikeItem)
where
Item: Encode,
EncodeLikeItem: EncodeLike<Item>,
T: StorageAppend<Item>;
/// Read the length of the storage value without decoding the entire value.
///
/// `T` is required to implement [`StorageDecodeLength`].
///
/// If the value does not exists or it fails to decode the length, `None` is returned.
/// Otherwise `Some(len)` is returned.
///
/// # Warning
///
/// `None` does not mean that `get()` does not return a value. The default value is completly
/// ignored by this function.
fn decode_len() -> Option<usize>
where
T: StorageDecodeLength,
{
T::decode_len(&Self::hashed_key())
}
}
/// A strongly-typed map in storage.
///
/// Details on implementation can be found at [`generator::StorageMap`].
pub trait StorageMap<K: FullEncode, V: FullCodec> {
/// The type that get/take return.
type Query;
/// Get the storage key used to fetch a value corresponding to a specific key.
fn hashed_key_for<KeyArg: EncodeLike<K>>(key: KeyArg) -> Vec<u8>;
/// Does the value (explicitly) exist in storage?
fn contains_key<KeyArg: EncodeLike<K>>(key: KeyArg) -> bool;
/// Load the value associated with the given key from the map.
fn get<KeyArg: EncodeLike<K>>(key: KeyArg) -> Self::Query;
/// Store or remove the value to be associated with `key` so that `get` returns the `query`.
fn set<KeyArg: EncodeLike<K>>(key: KeyArg, query: Self::Query);
/// Try to get the value for the given key from the map.
///
/// Returns `Ok` if it exists, `Err` if not.
fn try_get<KeyArg: EncodeLike<K>>(key: KeyArg) -> Result<V, ()>;
/// Swap the values of two keys.
fn swap<KeyArg1: EncodeLike<K>, KeyArg2: EncodeLike<K>>(key1: KeyArg1, key2: KeyArg2);
/// Store a value to be associated with the given key from the map.
fn insert<KeyArg: EncodeLike<K>, ValArg: EncodeLike<V>>(key: KeyArg, val: ValArg);
/// Remove the value under a key.
fn remove<KeyArg: EncodeLike<K>>(key: KeyArg);
/// Mutate the value under a key.
fn mutate<KeyArg: EncodeLike<K>, R, F: FnOnce(&mut Self::Query) -> R>(key: KeyArg, f: F) -> R;
/// Mutate the item, only if an `Ok` value is returned.
fn try_mutate<KeyArg: EncodeLike<K>, R, E, F: FnOnce(&mut Self::Query) -> Result<R, E>>(
key: KeyArg,
f: F,
) -> Result<R, E>;
/// Mutate the value under a key.
///
/// Deletes the item if mutated to a `None`.
fn mutate_exists<KeyArg: EncodeLike<K>, R, F: FnOnce(&mut Option<V>) -> R>(
key: KeyArg,
f: F,
) -> R;
/// Mutate the item, only if an `Ok` value is returned. Deletes the item if mutated to a `None`.
/// `f` will always be called with an option representing if the storage item exists (`Some<V>`)
/// or if the storage item does not exist (`None`), independent of the `QueryType`.
fn try_mutate_exists<KeyArg: EncodeLike<K>, R, E, F: FnOnce(&mut Option<V>) -> Result<R, E>>(
key: KeyArg,
f: F,
) -> Result<R, E>;
/// Take the value under a key.
fn take<KeyArg: EncodeLike<K>>(key: KeyArg) -> Self::Query;
/// Append the given items to the value in the storage.
///
/// `V` is required to implement `codec::EncodeAppend`.
///
/// # Warning
///
/// If the storage item is not encoded properly, the storage will be overwritten
/// and set to `[item]`. Any default value set for the storage item will be ignored
/// on overwrite.
fn append<Item, EncodeLikeItem, EncodeLikeKey>(key: EncodeLikeKey, item: EncodeLikeItem)
where
EncodeLikeKey: EncodeLike<K>,
Item: Encode,
EncodeLikeItem: EncodeLike<Item>,
V: StorageAppend<Item>;
/// Read the length of the storage value without decoding the entire value under the
/// given `key`.
///
/// `V` is required to implement [`StorageDecodeLength`].
///
/// If the value does not exists or it fails to decode the length, `None` is returned.
/// Otherwise `Some(len)` is returned.
///
/// # Warning
///
/// `None` does not mean that `get()` does not return a value. The default value is completly
/// ignored by this function.
fn decode_len<KeyArg: EncodeLike<K>>(key: KeyArg) -> Option<usize>
where
V: StorageDecodeLength,
{
V::decode_len(&Self::hashed_key_for(key))
}
/// Migrate an item with the given `key` from a defunct `OldHasher` to the current hasher.
///
/// If the key doesn't exist, then it's a no-op. If it does, then it returns its value.
fn migrate_key<OldHasher: StorageHasher, KeyArg: EncodeLike<K>>(key: KeyArg) -> Option<V>;
/// Migrate an item with the given `key` from a `blake2_256` hasher to the current hasher.
///
/// If the key doesn't exist, then it's a no-op. If it does, then it returns its value.
fn migrate_key_from_blake<KeyArg: EncodeLike<K>>(key: KeyArg) -> Option<V> {
Self::migrate_key::<crate::hash::Blake2_256, KeyArg>(key)
}
}
/// A strongly-typed map in storage whose keys and values can be iterated over.
pub trait IterableStorageMap<K: FullEncode, V: FullCodec>: StorageMap<K, V> {
/// The type that iterates over all `(key, value)`.
type Iterator: Iterator<Item = (K, V)>;
/// The type that itereates over all `key`s.
type KeyIterator: Iterator<Item = K>;
/// Enumerate all elements in the map in lexicographical order of the encoded key. If you
/// alter the map while doing this, you'll get undefined results.
fn iter() -> Self::Iterator;
/// Enumerate all elements in the map after a specified `starting_raw_key` in lexicographical
/// order of the encoded key. If you alter the map while doing this, you'll get undefined
/// results.
fn iter_from(starting_raw_key: Vec<u8>) -> Self::Iterator;
/// Enumerate all keys in the map in lexicographical order of the encoded key, skipping over
/// the elements. If you alter the map while doing this, you'll get undefined results.
fn iter_keys() -> Self::KeyIterator;
/// Enumerate all keys in the map after a specified `starting_raw_key` in lexicographical order
/// of the encoded key. If you alter the map while doing this, you'll get undefined results.
fn iter_keys_from(starting_raw_key: Vec<u8>) -> Self::KeyIterator;
/// Remove all elements from the map and iterate through them in lexicographical order of the
/// encoded key. If you add elements to the map while doing this, you'll get undefined results.
fn drain() -> Self::Iterator;
/// Translate the values of all elements by a function `f`, in the map in lexicographical order
/// of the encoded key.
/// By returning `None` from `f` for an element, you'll remove it from the map.
///
/// NOTE: If a value fail to decode because storage is corrupted then it is skipped.
fn translate<O: Decode, F: FnMut(K, O) -> Option<V>>(f: F);
}
/// A strongly-typed double map in storage whose secondary keys and values can be iterated over.
pub trait IterableStorageDoubleMap<K1: FullCodec, K2: FullCodec, V: FullCodec>:
StorageDoubleMap<K1, K2, V>
{
/// The type that iterates over all `key2`.
type PartialKeyIterator: Iterator<Item = K2>;
/// The type that iterates over all `(key2, value)`.
type PrefixIterator: Iterator<Item = (K2, V)>;
/// The type that iterates over all `(key1, key2)`.
type FullKeyIterator: Iterator<Item = (K1, K2)>;
/// The type that iterates over all `(key1, key2, value)`.
type Iterator: Iterator<Item = (K1, K2, V)>;
/// Enumerate all elements in the map with first key `k1` in lexicographical order of the
/// encoded key. If you add or remove values whose first key is `k1` to the map while doing
/// this, you'll get undefined results.
fn iter_prefix(k1: impl EncodeLike<K1>) -> Self::PrefixIterator;
/// Enumerate all elements in the map with first key `k1` after a specified `starting_raw_key`
/// in lexicographical order of the encoded key. If you add or remove values whose first key is
/// `k1` to the map while doing this, you'll get undefined results.
fn iter_prefix_from(k1: impl EncodeLike<K1>, starting_raw_key: Vec<u8>)
-> Self::PrefixIterator;
/// Enumerate all second keys `k2` in the map with the same first key `k1` in lexicographical
/// order of the encoded key. If you add or remove values whose first key is `k1` to the map
/// while doing this, you'll get undefined results.
fn iter_key_prefix(k1: impl EncodeLike<K1>) -> Self::PartialKeyIterator;
/// Enumerate all second keys `k2` in the map with the same first key `k1` after a specified
/// `starting_raw_key` in lexicographical order of the encoded key. If you add or remove values
/// whose first key is `k1` to the map while doing this, you'll get undefined results.
fn iter_key_prefix_from(
k1: impl EncodeLike<K1>,
starting_raw_key: Vec<u8>,
) -> Self::PartialKeyIterator;
/// Remove all elements from the map with first key `k1` and iterate through them in
/// lexicographical order of the encoded key. If you add elements with first key `k1` to the
/// map while doing this, you'll get undefined results.
fn drain_prefix(k1: impl EncodeLike<K1>) -> Self::PrefixIterator;
/// Enumerate all elements in the map in lexicographical order of the encoded key. If you add
/// or remove values to the map while doing this, you'll get undefined results.
fn iter() -> Self::Iterator;
/// Enumerate all elements in the map after a specified `starting_raw_key` in lexicographical
/// order of the encoded key. If you add or remove values to the map while doing this, you'll
/// get undefined results.
fn iter_from(starting_raw_key: Vec<u8>) -> Self::Iterator;
/// Enumerate all keys `k1` and `k2` in the map in lexicographical order of the encoded key. If
/// you add or remove values to the map while doing this, you'll get undefined results.
fn iter_keys() -> Self::FullKeyIterator;
/// Enumerate all keys `k1` and `k2` in the map after a specified `starting_raw_key` in
/// lexicographical order of the encoded key. If you add or remove values to the map while
/// doing this, you'll get undefined results.
fn iter_keys_from(starting_raw_key: Vec<u8>) -> Self::FullKeyIterator;
/// Remove all elements from the map and iterate through them in lexicographical order of the
/// encoded key. If you add elements to the map while doing this, you'll get undefined results.
fn drain() -> Self::Iterator;
/// Translate the values of all elements by a function `f`, in the map in lexicographical order
/// of the encoded key.
/// By returning `None` from `f` for an element, you'll remove it from the map.
///
/// NOTE: If a value fail to decode because storage is corrupted then it is skipped.
fn translate<O: Decode, F: FnMut(K1, K2, O) -> Option<V>>(f: F);
}
/// A strongly-typed map with arbitrary number of keys in storage whose keys and values can be
/// iterated over.
pub trait IterableStorageNMap<K: ReversibleKeyGenerator, V: FullCodec>: StorageNMap<K, V> {
/// The type that iterates over all `(key1, key2, key3, ... keyN)` tuples.
type KeyIterator: Iterator<Item = K::Key>;
/// The type that iterates over all `(key1, key2, key3, ... keyN), value)` tuples.
type Iterator: Iterator<Item = (K::Key, V)>;
/// Enumerate all elements in the map with prefix key `kp` in lexicographical order of the
/// encoded key. If you add or remove values whose prefix is `kp` to the map while doing this,
/// you'll get undefined results.
fn iter_prefix<KP>(kp: KP) -> PrefixIterator<(<K as HasKeyPrefix<KP>>::Suffix, V)>
where
K: HasReversibleKeyPrefix<KP>;
/// Enumerate all elements in the map with prefix key `kp` after a specified `starting_raw_key`
/// in lexicographical order of the encoded key. If you add or remove values whose prefix is
/// `kp` to the map while doing this, you'll get undefined results.
fn iter_prefix_from<KP>(
kp: KP,
starting_raw_key: Vec<u8>,
) -> PrefixIterator<(<K as HasKeyPrefix<KP>>::Suffix, V)>
where
K: HasReversibleKeyPrefix<KP>;
/// Enumerate all suffix keys in the map with prefix key `kp` in lexicographical order of the
/// encoded key. If you add or remove values whose prefix is `kp` to the map while doing this,
/// you'll get undefined results.
fn iter_key_prefix<KP>(kp: KP) -> KeyPrefixIterator<<K as HasKeyPrefix<KP>>::Suffix>
where
K: HasReversibleKeyPrefix<KP>;
/// Enumerate all suffix keys in the map with prefix key `kp` after a specified
/// `starting_raw_key` in lexicographical order of the encoded key. If you add or remove values
/// whose prefix is `kp` to the map while doing this, you'll get undefined results.
fn iter_key_prefix_from<KP>(
kp: KP,
starting_raw_key: Vec<u8>,
) -> KeyPrefixIterator<<K as HasKeyPrefix<KP>>::Suffix>
where
K: HasReversibleKeyPrefix<KP>;
/// Remove all elements from the map with prefix key `kp` and iterate through them in
/// lexicographical order of the encoded key. If you add elements with prefix key `kp` to the
/// map while doing this, you'll get undefined results.
fn drain_prefix<KP>(kp: KP) -> PrefixIterator<(<K as HasKeyPrefix<KP>>::Suffix, V)>
where
K: HasReversibleKeyPrefix<KP>;
/// Enumerate all elements in the map in lexicographical order of the encoded key. If you add
/// or remove values to the map while doing this, you'll get undefined results.
fn iter() -> Self::Iterator;
/// Enumerate all elements in the map after a specified `starting_raw_key` in lexicographical
/// order of the encoded key. If you add or remove values to the map while doing this, you'll
/// get undefined results.
fn iter_from(starting_raw_key: Vec<u8>) -> Self::Iterator;
/// Enumerate all keys in the map in lexicographical order of the encoded key. If you add or
/// remove values to the map while doing this, you'll get undefined results.
fn iter_keys() -> Self::KeyIterator;
/// Enumerate all keys in the map after `starting_raw_key` in lexicographical order of the
/// encoded key. If you add or remove values to the map while doing this, you'll get undefined
/// results.
fn iter_keys_from(starting_raw_key: Vec<u8>) -> Self::KeyIterator;
/// Remove all elements from the map and iterate through them in lexicographical order of the
/// encoded key. If you add elements to the map while doing this, you'll get undefined results.
fn drain() -> Self::Iterator;
/// Translate the values of all elements by a function `f`, in the map in lexicographical order
/// of the encoded key.
/// By returning `None` from `f` for an element, you'll remove it from the map.
///
/// NOTE: If a value fail to decode because storage is corrupted then it is skipped.
fn translate<O: Decode, F: FnMut(K::Key, O) -> Option<V>>(f: F);
}
/// An implementation of a map with a two keys.
///
/// Details on implementation can be found at [`generator::StorageDoubleMap`].
pub trait StorageDoubleMap<K1: FullEncode, K2: FullEncode, V: FullCodec> {
/// The type that get/take returns.
type Query;
/// Get the storage key used to fetch a value corresponding to a specific key.
fn hashed_key_for<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Vec<u8>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Does the value (explicitly) exist in storage?
fn contains_key<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> bool
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Load the value associated with the given key from the double map.
fn get<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Self::Query
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Try to get the value for the given key from the double map.
///
/// Returns `Ok` if it exists, `Err` if not.
fn try_get<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Result<V, ()>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Store or remove the value to be associated with `key` so that `get` returns the `query`.
fn set<KArg1: EncodeLike<K1>, KArg2: EncodeLike<K2>>(k1: KArg1, k2: KArg2, query: Self::Query);
/// Take a value from storage, removing it afterwards.
fn take<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Self::Query
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Swap the values of two key-pairs.
fn swap<XKArg1, XKArg2, YKArg1, YKArg2>(x_k1: XKArg1, x_k2: XKArg2, y_k1: YKArg1, y_k2: YKArg2)
where
XKArg1: EncodeLike<K1>,
XKArg2: EncodeLike<K2>,
YKArg1: EncodeLike<K1>,
YKArg2: EncodeLike<K2>;
/// Store a value to be associated with the given keys from the double map.
fn insert<KArg1, KArg2, VArg>(k1: KArg1, k2: KArg2, val: VArg)
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
VArg: EncodeLike<V>;
/// Remove the value under the given keys.
fn remove<KArg1, KArg2>(k1: KArg1, k2: KArg2)
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Remove all values under the first key `k1` in the overlay and up to `limit` in the
/// backend.
///
/// All values in the client overlay will be deleted, if there is some `limit` then up to
/// `limit` values are deleted from the client backend, if `limit` is none then all values in
/// the client backend are deleted.
///
/// # Note
///
/// Calling this multiple times per block with a `limit` set leads always to the same keys being
/// removed and the same result being returned. This happens because the keys to delete in the
/// overlay are not taken into account when deleting keys in the backend.
#[deprecated = "Use `clear_prefix` instead"]
fn remove_prefix<KArg1>(k1: KArg1, limit: Option<u32>) -> sp_io::KillStorageResult
where
KArg1: ?Sized + EncodeLike<K1>;
/// Remove all values under the first key `k1` in the overlay and up to `maybe_limit` in the
/// backend.
///
/// All values in the client overlay will be deleted, if `maybe_limit` is `Some` then up to
/// that number of values are deleted from the client backend, otherwise all values in the
/// client backend are deleted.
///
/// ## Cursors
///
/// The `maybe_cursor` parameter should be `None` for the first call to initial removal.
/// If the resultant `maybe_cursor` is `Some`, then another call is required to complete the
/// removal operation. This value must be passed in as the subsequent call's `maybe_cursor`
/// parameter. If the resultant `maybe_cursor` is `None`, then the operation is complete and no
/// items remain in storage provided that no items were added between the first calls and the
/// final call.
fn clear_prefix<KArg1>(
k1: KArg1,
limit: u32,
maybe_cursor: Option<&[u8]>,
) -> sp_io::MultiRemovalResults
where
KArg1: ?Sized + EncodeLike<K1>;
/// Iterate over values that share the first key.
fn iter_prefix_values<KArg1>(k1: KArg1) -> PrefixIterator<V>
where
KArg1: ?Sized + EncodeLike<K1>;
/// Mutate the value under the given keys.
fn mutate<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> R
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
F: FnOnce(&mut Self::Query) -> R;
/// Mutate the value under the given keys when the closure returns `Ok`.
fn try_mutate<KArg1, KArg2, R, E, F>(k1: KArg1, k2: KArg2, f: F) -> Result<R, E>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
F: FnOnce(&mut Self::Query) -> Result<R, E>;
/// Mutate the value under the given keys. Deletes the item if mutated to a `None`.
fn mutate_exists<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> R
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
F: FnOnce(&mut Option<V>) -> R;
/// Mutate the item, only if an `Ok` value is returned. Deletes the item if mutated to a `None`.
/// `f` will always be called with an option representing if the storage item exists (`Some<V>`)
/// or if the storage item does not exist (`None`), independent of the `QueryType`.
fn try_mutate_exists<KArg1, KArg2, R, E, F>(k1: KArg1, k2: KArg2, f: F) -> Result<R, E>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
F: FnOnce(&mut Option<V>) -> Result<R, E>;
/// Append the given item to the value in the storage.
///
/// `V` is required to implement [`StorageAppend`].
///
/// # Warning
///
/// If the storage item is not encoded properly, the storage will be overwritten
/// and set to `[item]`. Any default value set for the storage item will be ignored
/// on overwrite.
fn append<Item, EncodeLikeItem, KArg1, KArg2>(k1: KArg1, k2: KArg2, item: EncodeLikeItem)
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
Item: Encode,
EncodeLikeItem: EncodeLike<Item>,
V: StorageAppend<Item>;
/// Read the length of the storage value without decoding the entire value under the
/// given `key1` and `key2`.
///
/// `V` is required to implement [`StorageDecodeLength`].
///
/// If the value does not exists or it fails to decode the length, `None` is returned.
/// Otherwise `Some(len)` is returned.
///
/// # Warning
///
/// `None` does not mean that `get()` does not return a value. The default value is completly
/// ignored by this function.
fn decode_len<KArg1, KArg2>(key1: KArg1, key2: KArg2) -> Option<usize>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
V: StorageDecodeLength,
{
V::decode_len(&Self::hashed_key_for(key1, key2))
}
/// Migrate an item with the given `key1` and `key2` from defunct `OldHasher1` and
/// `OldHasher2` to the current hashers.
///
/// If the key doesn't exist, then it's a no-op. If it does, then it returns its value.
fn migrate_keys<
OldHasher1: StorageHasher,
OldHasher2: StorageHasher,
KeyArg1: EncodeLike<K1>,
KeyArg2: EncodeLike<K2>,
>(
key1: KeyArg1,
key2: KeyArg2,
) -> Option<V>;
}
/// An implementation of a map with an arbitrary number of keys.
///
/// Details of implementation can be found at [`generator::StorageNMap`].
pub trait StorageNMap<K: KeyGenerator, V: FullCodec> {
/// The type that get/take returns.
type Query;
/// Get the storage key used to fetch a value corresponding to a specific key.
fn hashed_key_for<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Vec<u8>;
/// Does the value (explicitly) exist in storage?
fn contains_key<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> bool;
/// Load the value associated with the given key from the map.
fn get<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Self::Query;
/// Try to get the value for the given key from the map.
///
/// Returns `Ok` if it exists, `Err` if not.
fn try_get<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Result<V, ()>;
/// Store or remove the value to be associated with `key` so that `get` returns the `query`.
fn set<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg, query: Self::Query);
/// Swap the values of two keys.
fn swap<KOther, KArg1, KArg2>(key1: KArg1, key2: KArg2)
where
KOther: KeyGenerator,
KArg1: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
KArg2: EncodeLikeTuple<KOther::KArg> + TupleToEncodedIter;
/// Store a value to be associated with the given key from the map.
fn insert<KArg, VArg>(key: KArg, val: VArg)
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
VArg: EncodeLike<V>;
/// Remove the value under a key.
fn remove<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg);
/// Remove all values starting with `partial_key` in the overlay and up to `limit` in the
/// backend.
///
/// All values in the client overlay will be deleted, if there is some `limit` then up to
/// `limit` values are deleted from the client backend, if `limit` is none then all values in
/// the client backend are deleted.
///
/// # Note
///
/// Calling this multiple times per block with a `limit` set leads always to the same keys being
/// removed and the same result being returned. This happens because the keys to delete in the
/// overlay are not taken into account when deleting keys in the backend.
#[deprecated = "Use `clear_prefix` instead"]
fn remove_prefix<KP>(partial_key: KP, limit: Option<u32>) -> sp_io::KillStorageResult
where
K: HasKeyPrefix<KP>;
/// Attempt to remove items from the map matching a `partial_key` prefix.
///
/// Returns [`MultiRemovalResults`](sp_io::MultiRemovalResults) to inform about the result. Once
/// the resultant `maybe_cursor` field is `None`, then no further items remain to be deleted.
///
/// NOTE: After the initial call for any given map, it is important that no further items
/// are inserted into the map which match the `partial key`. If so, then the map may not be
/// empty when the resultant `maybe_cursor` is `None`.
///
/// # Limit
///
/// A `limit` must be provided in order to cap the maximum
/// amount of deletions done in a single call. This is one fewer than the
/// maximum number of backend iterations which may be done by this operation and as such
/// represents the maximum number of backend deletions which may happen. A `limit` of zero
/// implies that no keys will be deleted, though there may be a single iteration done.
///
/// # Cursor
///
/// A *cursor* may be passed in to this operation with `maybe_cursor`. `None` should only be
/// passed once (in the initial call) for any given storage map and `partial_key`. Subsequent
/// calls operating on the same map/`partial_key` should always pass `Some`, and this should be
/// equal to the previous call result's `maybe_cursor` field.
fn clear_prefix<KP>(
partial_key: KP,
limit: u32,
maybe_cursor: Option<&[u8]>,
) -> sp_io::MultiRemovalResults
where
K: HasKeyPrefix<KP>;
/// Iterate over values that share the partial prefix key.
fn iter_prefix_values<KP>(partial_key: KP) -> PrefixIterator<V>
where
K: HasKeyPrefix<KP>;
/// Mutate the value under a key.
fn mutate<KArg, R, F>(key: KArg, f: F) -> R
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
F: FnOnce(&mut Self::Query) -> R;
/// Mutate the item, only if an `Ok` value is returned.
fn try_mutate<KArg, R, E, F>(key: KArg, f: F) -> Result<R, E>
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
F: FnOnce(&mut Self::Query) -> Result<R, E>;
/// Mutate the value under a key.
///
/// Deletes the item if mutated to a `None`.
fn mutate_exists<KArg, R, F>(key: KArg, f: F) -> R
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
F: FnOnce(&mut Option<V>) -> R;
/// Mutate the item, only if an `Ok` value is returned. Deletes the item if mutated to a `None`.
/// `f` will always be called with an option representing if the storage item exists (`Some<V>`)
/// or if the storage item does not exist (`None`), independent of the `QueryType`.
fn try_mutate_exists<KArg, R, E, F>(key: KArg, f: F) -> Result<R, E>
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
F: FnOnce(&mut Option<V>) -> Result<R, E>;
/// Take the value under a key.
fn take<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Self::Query;
/// Append the given items to the value in the storage.
///
/// `V` is required to implement `codec::EncodeAppend`.
///
/// # Warning
///
/// If the storage item is not encoded properly, the storage will be overwritten
/// and set to `[item]`. Any default value set for the storage item will be ignored
/// on overwrite.
fn append<Item, EncodeLikeItem, KArg>(key: KArg, item: EncodeLikeItem)
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
Item: Encode,
EncodeLikeItem: EncodeLike<Item>,
V: StorageAppend<Item>;
/// Read the length of the storage value without decoding the entire value under the
/// given `key`.
///
/// `V` is required to implement [`StorageDecodeLength`].
///
/// If the value does not exists or it fails to decode the length, `None` is returned.
/// Otherwise `Some(len)` is returned.
///
/// # Warning
///
/// `None` does not mean that `get()` does not return a value. The default value is completly
/// ignored by this function.
fn decode_len<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Option<usize>
where
V: StorageDecodeLength,
{
V::decode_len(&Self::hashed_key_for(key))
}
/// Migrate an item with the given `key` from defunct `hash_fns` to the current hashers.
///
/// If the key doesn't exist, then it's a no-op. If it does, then it returns its value.
fn migrate_keys<KArg>(key: KArg, hash_fns: K::HArg) -> Option<V>
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter;
}
/// Iterate or drain over a prefix and decode raw_key and raw_value into `T`.
///
/// If any decoding fails it skips it and continues to the next key.
///
/// If draining, then the hook `OnRemoval::on_removal` is called after each removal.
pub struct PrefixIterator<T, OnRemoval = ()> {
prefix: Vec<u8>,
previous_key: Vec<u8>,
/// If true then value are removed while iterating
drain: bool,
/// Function that take `(raw_key_without_prefix, raw_value)` and decode `T`.
/// `raw_key_without_prefix` is the raw storage key without the prefix iterated on.
closure: fn(&[u8], &[u8]) -> Result<T, codec::Error>,
phantom: core::marker::PhantomData<OnRemoval>,
}
impl<T, OnRemoval1> PrefixIterator<T, OnRemoval1> {
/// Converts to the same iterator but with the different 'OnRemoval' type
pub fn convert_on_removal<OnRemoval2>(self) -> PrefixIterator<T, OnRemoval2> {
PrefixIterator::<T, OnRemoval2> {
prefix: self.prefix,
previous_key: self.previous_key,
drain: self.drain,
closure: self.closure,
phantom: Default::default(),
}
}
}
/// Trait for specialising on removal logic of [`PrefixIterator`].
pub trait PrefixIteratorOnRemoval {
/// This function is called whenever a key/value is removed.
fn on_removal(key: &[u8], value: &[u8]);
}
/// No-op implementation.
impl PrefixIteratorOnRemoval for () {
fn on_removal(_key: &[u8], _value: &[u8]) {}
}
impl<T, OnRemoval> PrefixIterator<T, OnRemoval> {
/// Creates a new `PrefixIterator`, iterating after `previous_key` and filtering out keys that
/// are not prefixed with `prefix`.
///
/// A `decode_fn` function must also be supplied, and it takes in two `&[u8]` parameters,
/// returning a `Result` containing the decoded type `T` if successful, and a `codec::Error` on
/// failure. The first `&[u8]` argument represents the raw, undecoded key without the prefix of
/// the current item, while the second `&[u8]` argument denotes the corresponding raw,
/// undecoded value.
pub fn new(
prefix: Vec<u8>,
previous_key: Vec<u8>,
decode_fn: fn(&[u8], &[u8]) -> Result<T, codec::Error>,
) -> Self {
PrefixIterator {
prefix,
previous_key,
drain: false,
closure: decode_fn,
phantom: Default::default(),
}
}
/// Get the last key that has been iterated upon and return it.
pub fn last_raw_key(&self) -> &[u8] {
&self.previous_key
}
/// Get the prefix that is being iterated upon for this iterator and return it.
pub fn prefix(&self) -> &[u8] {
&self.prefix
}
/// Set the key that the iterator should start iterating after.
pub fn set_last_raw_key(&mut self, previous_key: Vec<u8>) {
self.previous_key = previous_key;
}
/// Mutate this iterator into a draining iterator; items iterated are removed from storage.
pub fn drain(mut self) -> Self {
self.drain = true;
self
}
}
impl<T, OnRemoval: PrefixIteratorOnRemoval> Iterator for PrefixIterator<T, OnRemoval> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
loop {
let maybe_next = sp_io::storage::next_key(&self.previous_key)
.filter(|n| n.starts_with(&self.prefix));
break match maybe_next {
Some(next) => {
self.previous_key = next;
let raw_value = match unhashed::get_raw(&self.previous_key) {
Some(raw_value) => raw_value,
None => {
log::error!(
"next_key returned a key with no value at {:?}",
self.previous_key,
);
continue
},
};
if self.drain {
unhashed::kill(&self.previous_key);
OnRemoval::on_removal(&self.previous_key, &raw_value);
}
let raw_key_without_prefix = &self.previous_key[self.prefix.len()..];
let item = match (self.closure)(raw_key_without_prefix, &raw_value[..]) {
Ok(item) => item,
Err(e) => {
log::error!(
"(key, value) failed to decode at {:?}: {:?}",
self.previous_key,
e,
);
continue
},
};
Some(item)
},
None => None,
}
}
}
}
/// Iterate over a prefix and decode raw_key into `T`.
///
/// If any decoding fails it skips it and continues to the next key.
pub struct KeyPrefixIterator<T> {
prefix: Vec<u8>,
previous_key: Vec<u8>,
/// If true then value are removed while iterating
drain: bool,
/// Function that take `raw_key_without_prefix` and decode `T`.
/// `raw_key_without_prefix` is the raw storage key without the prefix iterated on.
closure: fn(&[u8]) -> Result<T, codec::Error>,
}
impl<T> KeyPrefixIterator<T> {
/// Creates a new `KeyPrefixIterator`, iterating after `previous_key` and filtering out keys
/// that are not prefixed with `prefix`.
///
/// A `decode_fn` function must also be supplied, and it takes in a `&[u8]` parameter, returning
/// a `Result` containing the decoded key type `T` if successful, and a `codec::Error` on
/// failure. The `&[u8]` argument represents the raw, undecoded key without the prefix of the
/// current item.
pub fn new(
prefix: Vec<u8>,
previous_key: Vec<u8>,
decode_fn: fn(&[u8]) -> Result<T, codec::Error>,
) -> Self {
KeyPrefixIterator { prefix, previous_key, drain: false, closure: decode_fn }
}
/// Get the last key that has been iterated upon and return it.
pub fn last_raw_key(&self) -> &[u8] {
&self.previous_key
}
/// Get the prefix that is being iterated upon for this iterator and return it.
pub fn prefix(&self) -> &[u8] {
&self.prefix
}
/// Set the key that the iterator should start iterating after.
pub fn set_last_raw_key(&mut self, previous_key: Vec<u8>) {
self.previous_key = previous_key;
}
/// Mutate this iterator into a draining iterator; items iterated are removed from storage.
pub fn drain(mut self) -> Self {
self.drain = true;
self
}
}
impl<T> Iterator for KeyPrefixIterator<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
loop {
let maybe_next = sp_io::storage::next_key(&self.previous_key)
.filter(|n| n.starts_with(&self.prefix));
if let Some(next) = maybe_next {
self.previous_key = next;
if self.drain {
unhashed::kill(&self.previous_key);
}
let raw_key_without_prefix = &self.previous_key[self.prefix.len()..];
match (self.closure)(raw_key_without_prefix) {
Ok(item) => return Some(item),
Err(e) => {
log::error!("key failed to decode at {:?}: {:?}", self.previous_key, e);
continue
},
}
}
return None
}
}
}
/// Iterate over a prefix of a child trie and decode raw_key and raw_value into `T`.
///
/// If any decoding fails it skips the key and continues to the next one.
pub struct ChildTriePrefixIterator<T> {
/// The prefix iterated on
prefix: Vec<u8>,
/// child info for child trie
child_info: ChildInfo,
/// The last key iterated on
previous_key: Vec<u8>,
/// If true then values are removed while iterating
drain: bool,
/// Whether or not we should fetch the previous key
fetch_previous_key: bool,
/// Function that takes `(raw_key_without_prefix, raw_value)` and decode `T`.
/// `raw_key_without_prefix` is the raw storage key without the prefix iterated on.
closure: fn(&[u8], &[u8]) -> Result<T, codec::Error>,
}
impl<T> ChildTriePrefixIterator<T> {
/// Mutate this iterator into a draining iterator; items iterated are removed from storage.
pub fn drain(mut self) -> Self {
self.drain = true;
self
}
}
impl<T: Decode + Sized> ChildTriePrefixIterator<(Vec<u8>, T)> {
/// Construct iterator to iterate over child trie items in `child_info` with the prefix
/// `prefix`.
///
/// NOTE: Iterator with [`Self::drain`] will remove any value who failed to decode
pub fn with_prefix(child_info: &ChildInfo, prefix: &[u8]) -> Self {
let prefix = prefix.to_vec();
let previous_key = prefix.clone();
let closure = |raw_key_without_prefix: &[u8], mut raw_value: &[u8]| {
let value = T::decode(&mut raw_value)?;
Ok((raw_key_without_prefix.to_vec(), value))
};
Self {
prefix,
child_info: child_info.clone(),
previous_key,
drain: false,
fetch_previous_key: true,
closure,
}
}
}
impl<K: Decode + Sized, T: Decode + Sized> ChildTriePrefixIterator<(K, T)> {
/// Construct iterator to iterate over child trie items in `child_info` with the prefix
/// `prefix`.
///
/// NOTE: Iterator with [`Self::drain`] will remove any key or value who failed to decode
pub fn with_prefix_over_key<H: ReversibleStorageHasher>(
child_info: &ChildInfo,
prefix: &[u8],
) -> Self {
let prefix = prefix.to_vec();
let previous_key = prefix.clone();
let closure = |raw_key_without_prefix: &[u8], mut raw_value: &[u8]| {
let mut key_material = H::reverse(raw_key_without_prefix);
let key = K::decode(&mut key_material)?;
let value = T::decode(&mut raw_value)?;
Ok((key, value))
};
Self {
prefix,
child_info: child_info.clone(),
previous_key,
drain: false,
fetch_previous_key: true,
closure,
}
}
}
impl<T> Iterator for ChildTriePrefixIterator<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
loop {
let maybe_next = if self.fetch_previous_key {
self.fetch_previous_key = false;
Some(self.previous_key.clone())
} else {
sp_io::default_child_storage::next_key(
self.child_info.storage_key(),
&self.previous_key,
)
.filter(|n| n.starts_with(&self.prefix))
};
break match maybe_next {
Some(next) => {
self.previous_key = next;
let raw_value = match child::get_raw(&self.child_info, &self.previous_key) {
Some(raw_value) => raw_value,
None => {
log::error!(
"next_key returned a key with no value at {:?}",
self.previous_key,
);
continue
},
};
if self.drain {
child::kill(&self.child_info, &self.previous_key)
}
let raw_key_without_prefix = &self.previous_key[self.prefix.len()..];
let item = match (self.closure)(raw_key_without_prefix, &raw_value[..]) {
Ok(item) => item,
Err(e) => {
log::error!(
"(key, value) failed to decode at {:?}: {:?}",
self.previous_key,
e,
);
continue
},
};
Some(item)
},
None => None,
}
}
}
}
/// Trait for maps that store all its value after a unique prefix.
///
/// By default the final prefix is:
/// ```nocompile
/// Twox128(module_prefix) ++ Twox128(storage_prefix)
/// ```
pub trait StoragePrefixedMap<Value: FullCodec> {
/// Module prefix. Used for generating final key.
fn module_prefix() -> &'static [u8];
/// Storage prefix. Used for generating final key.
fn storage_prefix() -> &'static [u8];
/// Final full prefix that prefixes all keys.
fn final_prefix() -> [u8; 32] {
crate::storage::storage_prefix(Self::module_prefix(), Self::storage_prefix())
}
/// Remove all values in the overlay and up to `limit` in the backend.
///
/// All values in the client overlay will be deleted, if there is some `limit` then up to
/// `limit` values are deleted from the client backend, if `limit` is none then all values in
/// the client backend are deleted.
///
/// # Note
///
/// Calling this multiple times per block with a `limit` set leads always to the same keys being
/// removed and the same result being returned. This happens because the keys to delete in the
/// overlay are not taken into account when deleting keys in the backend.
#[deprecated = "Use `clear` instead"]
fn remove_all(limit: Option<u32>) -> sp_io::KillStorageResult {
unhashed::clear_prefix(&Self::final_prefix(), limit, None).into()
}
/// Attempt to remove all items from the map.
///
/// Returns [`MultiRemovalResults`](sp_io::MultiRemovalResults) to inform about the result. Once
/// the resultant `maybe_cursor` field is `None`, then no further items remain to be deleted.
///
/// NOTE: After the initial call for any given map, it is important that no further items
/// are inserted into the map. If so, then the map may not be empty when the resultant
/// `maybe_cursor` is `None`.
///
/// # Limit
///
/// A `limit` must always be provided through in order to cap the maximum
/// amount of deletions done in a single call. This is one fewer than the
/// maximum number of backend iterations which may be done by this operation and as such
/// represents the maximum number of backend deletions which may happen. A `limit` of zero
/// implies that no keys will be deleted, though there may be a single iteration done.
///
/// # Cursor
///
/// A *cursor* may be passed in to this operation with `maybe_cursor`. `None` should only be
/// passed once (in the initial call) for any given storage map. Subsequent calls
/// operating on the same map should always pass `Some`, and this should be equal to the
/// previous call result's `maybe_cursor` field.
fn clear(limit: u32, maybe_cursor: Option<&[u8]>) -> sp_io::MultiRemovalResults {
unhashed::clear_prefix(&Self::final_prefix(), Some(limit), maybe_cursor)
}
/// Iter over all value of the storage.
///
/// NOTE: If a value failed to decode because storage is corrupted then it is skipped.
fn iter_values() -> PrefixIterator<Value> {
let prefix = Self::final_prefix();
PrefixIterator {
prefix: prefix.to_vec(),
previous_key: prefix.to_vec(),
drain: false,
closure: |_raw_key, mut raw_value| Value::decode(&mut raw_value),
phantom: Default::default(),
}
}
/// Translate the values of all elements by a function `f`, in the map in no particular order.
/// By returning `None` from `f` for an element, you'll remove it from the map.
///
/// NOTE: If a value fail to decode because storage is corrupted then it is skipped.
///
/// # Warning
///
/// This function must be used with care, before being updated the storage still contains the
/// old type, thus other calls (such as `get`) will fail at decoding it.
///
/// # Usage
///
/// This would typically be called inside the module implementation of on_runtime_upgrade.
fn translate_values<OldValue: Decode, F: FnMut(OldValue) -> Option<Value>>(mut f: F) {
let prefix = Self::final_prefix();
let mut previous_key = prefix.clone().to_vec();
while let Some(next) =
sp_io::storage::next_key(&previous_key).filter(|n| n.starts_with(&prefix))
{
previous_key = next;
let maybe_value = unhashed::get::<OldValue>(&previous_key);
match maybe_value {
Some(value) => match f(value) {
Some(new) => unhashed::put::<Value>(&previous_key, &new),
None => unhashed::kill(&previous_key),
},
None => {
log::error!("old key failed to decode at {:?}", previous_key);
continue
},
}
}
}
}
/// Marker trait that will be implemented for types that support the `storage::append` api.
///
/// This trait is sealed.
pub trait StorageAppend<Item: Encode>: private::Sealed {}
/// Marker trait that will be implemented for types that support to decode their length in an
/// efficient way. It is expected that the length is at the beginning of the encoded object
/// and that the length is a `Compact<u32>`.
///
/// This trait is sealed.
pub trait StorageDecodeLength: private::Sealed + codec::DecodeLength {
/// Decode the length of the storage value at `key`.
///
/// This function assumes that the length is at the beginning of the encoded object
/// and is a `Compact<u32>`.
///
/// Returns `None` if the storage value does not exist or the decoding failed.
fn decode_len(key: &[u8]) -> Option<usize> {
// `Compact<u32>` is 5 bytes in maximum.
let mut data = [0u8; 5];
let len = sp_io::storage::read(key, &mut data, 0)?;
let len = data.len().min(len as usize);
<Self as codec::DecodeLength>::len(&data[..len]).ok()
}
}
/// Provides `Sealed` trait to prevent implementing trait `StorageAppend` & `StorageDecodeLength`
/// & `EncodeLikeTuple` outside of this crate.
mod private {
use super::*;
use bounded_vec::BoundedVec;
use weak_bounded_vec::WeakBoundedVec;
pub trait Sealed {}
impl<T: Encode> Sealed for Vec<T> {}
impl Sealed for Digest {}
impl<T, S> Sealed for BoundedVec<T, S> {}
impl<T, S> Sealed for WeakBoundedVec<T, S> {}
impl<K, V, S> Sealed for bounded_btree_map::BoundedBTreeMap<K, V, S> {}
impl<T, S> Sealed for bounded_btree_set::BoundedBTreeSet<T, S> {}
impl<T: Encode> Sealed for BTreeSet<T> {}
macro_rules! impl_sealed_for_tuple {
($($elem:ident),+) => {
paste::paste! {
impl<$($elem: Encode,)+> Sealed for ($($elem,)+) {}
impl<$($elem: Encode,)+> Sealed for &($($elem,)+) {}
}
};
}
impl_sealed_for_tuple!(A);
impl_sealed_for_tuple!(A, B);
impl_sealed_for_tuple!(A, B, C);
impl_sealed_for_tuple!(A, B, C, D);
impl_sealed_for_tuple!(A, B, C, D, E);
impl_sealed_for_tuple!(A, B, C, D, E, F);
impl_sealed_for_tuple!(A, B, C, D, E, F, G);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H, I);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H, I, J);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H, I, J, K);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, O);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, O, P);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, O, P, Q);
impl_sealed_for_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, O, P, Q, R);
}
impl<T: Encode> StorageAppend<T> for Vec<T> {}
impl<T: Encode> StorageDecodeLength for Vec<T> {}
impl<T: Encode> StorageAppend<T> for BTreeSet<T> {}
impl<T: Encode> StorageDecodeLength for BTreeSet<T> {}
/// We abuse the fact that SCALE does not put any marker into the encoding, i.e. we only encode the
/// internal vec and we can append to this vec. We have a test that ensures that if the `Digest`
/// format ever changes, we need to remove this here.
impl StorageAppend<DigestItem> for Digest {}
/// Marker trait that is implemented for types that support the `storage::append` api with a limit
/// on the number of element.
///
/// This trait is sealed.
pub trait StorageTryAppend<Item>: StorageDecodeLength + private::Sealed {
fn bound() -> usize;
}
/// Storage value that is capable of [`StorageTryAppend`](crate::storage::StorageTryAppend).
pub trait TryAppendValue<T: StorageTryAppend<I>, I: Encode> {
/// Try and append the `item` into the storage item.
///
/// This might fail if bounds are not respected.
fn try_append<LikeI: EncodeLike<I>>(item: LikeI) -> Result<(), ()>;
}
impl<T, I, StorageValueT> TryAppendValue<T, I> for StorageValueT
where
I: Encode,
T: FullCodec + StorageTryAppend<I>,
StorageValueT: generator::StorageValue<T>,
{
fn try_append<LikeI: EncodeLike<I>>(item: LikeI) -> Result<(), ()> {
let bound = T::bound();
let current = Self::decode_len().unwrap_or_default();
if current < bound {
// NOTE: we cannot reuse the implementation for `Vec<T>` here because we never want to
// mark `BoundedVec<T, S>` as `StorageAppend`.
let key = Self::storage_value_final_key();
sp_io::storage::append(&key, item.encode());
Ok(())
} else {
Err(())
}
}
}
/// Storage map that is capable of [`StorageTryAppend`](crate::storage::StorageTryAppend).
pub trait TryAppendMap<K: Encode, T: StorageTryAppend<I>, I: Encode> {
/// Try and append the `item` into the storage map at the given `key`.
///
/// This might fail if bounds are not respected.
fn try_append<LikeK: EncodeLike<K> + Clone, LikeI: EncodeLike<I>>(
key: LikeK,
item: LikeI,
) -> Result<(), ()>;
}
impl<K, T, I, StorageMapT> TryAppendMap<K, T, I> for StorageMapT
where
K: FullCodec,
T: FullCodec + StorageTryAppend<I>,
I: Encode,
StorageMapT: generator::StorageMap<K, T>,
{
fn try_append<LikeK: EncodeLike<K> + Clone, LikeI: EncodeLike<I>>(
key: LikeK,
item: LikeI,
) -> Result<(), ()> {
let bound = T::bound();
let current = Self::decode_len(key.clone()).unwrap_or_default();
if current < bound {
let key = Self::storage_map_final_key(key);
sp_io::storage::append(&key, item.encode());
Ok(())
} else {
Err(())
}
}
}
/// Storage double map that is capable of [`StorageTryAppend`](crate::storage::StorageTryAppend).
pub trait TryAppendDoubleMap<K1: Encode, K2: Encode, T: StorageTryAppend<I>, I: Encode> {
/// Try and append the `item` into the storage double map at the given `key`.
///
/// This might fail if bounds are not respected.
fn try_append<
LikeK1: EncodeLike<K1> + Clone,
LikeK2: EncodeLike<K2> + Clone,
LikeI: EncodeLike<I>,
>(
key1: LikeK1,
key2: LikeK2,
item: LikeI,
) -> Result<(), ()>;
}
impl<K1, K2, T, I, StorageDoubleMapT> TryAppendDoubleMap<K1, K2, T, I> for StorageDoubleMapT
where
K1: FullCodec,
K2: FullCodec,
T: FullCodec + StorageTryAppend<I>,
I: Encode,
StorageDoubleMapT: generator::StorageDoubleMap<K1, K2, T>,
{
fn try_append<
LikeK1: EncodeLike<K1> + Clone,
LikeK2: EncodeLike<K2> + Clone,
LikeI: EncodeLike<I>,
>(
key1: LikeK1,
key2: LikeK2,
item: LikeI,
) -> Result<(), ()> {
let bound = T::bound();
let current = Self::decode_len(key1.clone(), key2.clone()).unwrap_or_default();
if current < bound {
let double_map_key = Self::storage_double_map_final_key(key1, key2);
sp_io::storage::append(&double_map_key, item.encode());
Ok(())
} else {
Err(())
}
}
}
/// Returns the storage prefix for a specific pallet name and storage name.
///
/// The storage prefix is `concat(twox_128(pallet_name), twox_128(storage_name))`.
pub fn storage_prefix(pallet_name: &[u8], storage_name: &[u8]) -> [u8; 32] {
let pallet_hash = sp_io::hashing::twox_128(pallet_name);
let storage_hash = sp_io::hashing::twox_128(storage_name);
let mut final_key = [0u8; 32];
final_key[..16].copy_from_slice(&pallet_hash);
final_key[16..].copy_from_slice(&storage_hash);
final_key
}
#[cfg(test)]
mod test {
use super::*;
use crate::{assert_ok, hash::Identity, Twox128};
use bounded_vec::BoundedVec;
use frame_support::traits::ConstU32;
use generator::StorageValue as _;
use sp_core::hashing::twox_128;
use sp_io::TestExternalities;
use weak_bounded_vec::WeakBoundedVec;
#[test]
fn prefixed_map_works() {
TestExternalities::default().execute_with(|| {
struct MyStorage;
impl StoragePrefixedMap<u64> for MyStorage {
fn module_prefix() -> &'static [u8] {
b"MyModule"
}
fn storage_prefix() -> &'static [u8] {
b"MyStorage"
}
}
let key_before = {
let mut k = MyStorage::final_prefix();
let last = k.iter_mut().last().unwrap();
*last = last.checked_sub(1).unwrap();
k
};
let key_after = {
let mut k = MyStorage::final_prefix();
let last = k.iter_mut().last().unwrap();
*last = last.checked_add(1).unwrap();
k
};
unhashed::put(&key_before[..], &32u64);
unhashed::put(&key_after[..], &33u64);
let k = [twox_128(b"MyModule"), twox_128(b"MyStorage")].concat();
assert_eq!(MyStorage::final_prefix().to_vec(), k);
// test iteration
assert!(MyStorage::iter_values().collect::<Vec<_>>().is_empty());
unhashed::put(&[&k[..], &vec![1][..]].concat(), &1u64);
unhashed::put(&[&k[..], &vec![1, 1][..]].concat(), &2u64);
unhashed::put(&[&k[..], &vec![8][..]].concat(), &3u64);
unhashed::put(&[&k[..], &vec![10][..]].concat(), &4u64);
assert_eq!(MyStorage::iter_values().collect::<Vec<_>>(), vec![1, 2, 3, 4]);
// test removal
let _ = MyStorage::clear(u32::max_value(), None);
assert!(MyStorage::iter_values().collect::<Vec<_>>().is_empty());
// test migration
unhashed::put(&[&k[..], &vec![1][..]].concat(), &1u32);
unhashed::put(&[&k[..], &vec![8][..]].concat(), &2u32);
assert!(MyStorage::iter_values().collect::<Vec<_>>().is_empty());
MyStorage::translate_values(|v: u32| Some(v as u64));
assert_eq!(MyStorage::iter_values().collect::<Vec<_>>(), vec![1, 2]);
let _ = MyStorage::clear(u32::max_value(), None);
// test migration 2
unhashed::put(&[&k[..], &vec![1][..]].concat(), &1u128);
unhashed::put(&[&k[..], &vec![1, 1][..]].concat(), &2u64);
unhashed::put(&[&k[..], &vec![8][..]].concat(), &3u128);
unhashed::put(&[&k[..], &vec![10][..]].concat(), &4u32);
// (contains some value that successfully decoded to u64)
assert_eq!(MyStorage::iter_values().collect::<Vec<_>>(), vec![1, 2, 3]);
MyStorage::translate_values(|v: u128| Some(v as u64));
assert_eq!(MyStorage::iter_values().collect::<Vec<_>>(), vec![1, 2, 3]);
let _ = MyStorage::clear(u32::max_value(), None);
// test that other values are not modified.
assert_eq!(unhashed::get(&key_before[..]), Some(32u64));
assert_eq!(unhashed::get(&key_after[..]), Some(33u64));
});
}
// This test ensures that the Digest encoding does not change without being noticied.
#[test]
fn digest_storage_append_works_as_expected() {
TestExternalities::default().execute_with(|| {
struct Storage;
impl generator::StorageValue<Digest> for Storage {
type Query = Digest;
fn module_prefix() -> &'static [u8] {
b"MyModule"
}
fn storage_prefix() -> &'static [u8] {
b"Storage"
}
fn from_optional_value_to_query(v: Option<Digest>) -> Self::Query {
v.unwrap()
}
fn from_query_to_optional_value(v: Self::Query) -> Option<Digest> {
Some(v)
}
}
Storage::append(DigestItem::Other(Vec::new()));
let value = unhashed::get_raw(&Storage::storage_value_final_key()).unwrap();
let expected = Digest { logs: vec![DigestItem::Other(Vec::new())] };
assert_eq!(Digest::decode(&mut &value[..]).unwrap(), expected);
});
}
#[test]
fn key_prefix_iterator_works() {
TestExternalities::default().execute_with(|| {
use crate::{hash::Twox64Concat, storage::generator::StorageMap};
struct MyStorageMap;
impl StorageMap<u64, u64> for MyStorageMap {
type Query = u64;
type Hasher = Twox64Concat;
fn module_prefix() -> &'static [u8] {
b"MyModule"
}
fn storage_prefix() -> &'static [u8] {
b"MyStorageMap"
}
fn from_optional_value_to_query(v: Option<u64>) -> Self::Query {
v.unwrap_or_default()
}
fn from_query_to_optional_value(v: Self::Query) -> Option<u64> {
Some(v)
}
}
let k = [twox_128(b"MyModule"), twox_128(b"MyStorageMap")].concat();
assert_eq!(MyStorageMap::prefix_hash().to_vec(), k);
// empty to start
assert!(MyStorageMap::iter_keys().collect::<Vec<_>>().is_empty());
MyStorageMap::insert(1, 10);
MyStorageMap::insert(2, 20);
MyStorageMap::insert(3, 30);
MyStorageMap::insert(4, 40);
// just looking
let mut keys = MyStorageMap::iter_keys().collect::<Vec<_>>();
keys.sort();
assert_eq!(keys, vec![1, 2, 3, 4]);
// draining the keys and values
let mut drained_keys = MyStorageMap::iter_keys().drain().collect::<Vec<_>>();
drained_keys.sort();
assert_eq!(drained_keys, vec![1, 2, 3, 4]);
// empty again
assert!(MyStorageMap::iter_keys().collect::<Vec<_>>().is_empty());
});
}
#[test]
fn prefix_iterator_pagination_works() {
TestExternalities::default().execute_with(|| {
use crate::{hash::Identity, storage::generator::map::StorageMap};
#[crate::storage_alias]
type MyStorageMap = StorageMap<MyModule, Identity, u64, u64>;
MyStorageMap::insert(1, 10);
MyStorageMap::insert(2, 20);
MyStorageMap::insert(3, 30);
MyStorageMap::insert(4, 40);
MyStorageMap::insert(5, 50);
MyStorageMap::insert(6, 60);
MyStorageMap::insert(7, 70);
MyStorageMap::insert(8, 80);
MyStorageMap::insert(9, 90);
MyStorageMap::insert(10, 100);
let op = |(_, v)| v / 10;
let mut final_vec = vec![];
let mut iter = MyStorageMap::iter();
let elem = iter.next().unwrap();
assert_eq!(elem, (1, 10));
final_vec.push(op(elem));
let elem = iter.next().unwrap();
assert_eq!(elem, (2, 20));
final_vec.push(op(elem));
let stored_key = iter.last_raw_key().to_owned();
assert_eq!(stored_key, MyStorageMap::storage_map_final_key(2));
let mut iter = MyStorageMap::iter_from(stored_key.clone());
final_vec.push(op(iter.next().unwrap()));
final_vec.push(op(iter.next().unwrap()));
final_vec.push(op(iter.next().unwrap()));
assert_eq!(final_vec, vec![1, 2, 3, 4, 5]);
let mut iter = PrefixIterator::<_>::new(
iter.prefix().to_vec(),
stored_key,
|mut raw_key_without_prefix, mut raw_value| {
let key = u64::decode(&mut raw_key_without_prefix)?;
Ok((key, u64::decode(&mut raw_value)?))
},
);
let previous_key = MyStorageMap::storage_map_final_key(5);
iter.set_last_raw_key(previous_key);
let remaining = iter.map(op).collect::<Vec<_>>();
assert_eq!(remaining.len(), 5);
assert_eq!(remaining, vec![6, 7, 8, 9, 10]);
final_vec.extend_from_slice(&remaining);
assert_eq!(final_vec, vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
});
}
#[test]
fn child_trie_prefixed_map_works() {
TestExternalities::default().execute_with(|| {
let child_info_a = child::ChildInfo::new_default(b"a");
child::put(&child_info_a, &[1, 2, 3], &8u16);
child::put(&child_info_a, &[2], &8u16);
child::put(&child_info_a, &[2, 1, 3], &8u8);
child::put(&child_info_a, &[2, 2, 3], &8u16);
child::put(&child_info_a, &[3], &8u16);
assert_eq!(
ChildTriePrefixIterator::with_prefix(&child_info_a, &[2])
.collect::<Vec<(Vec<u8>, u16)>>(),
vec![(vec![], 8), (vec![2, 3], 8),],
);
assert_eq!(
ChildTriePrefixIterator::with_prefix(&child_info_a, &[2])
.drain()
.collect::<Vec<(Vec<u8>, u16)>>(),
vec![(vec![], 8), (vec![2, 3], 8),],
);
// The only remaining is the ones outside prefix
assert_eq!(
ChildTriePrefixIterator::with_prefix(&child_info_a, &[])
.collect::<Vec<(Vec<u8>, u8)>>(),
vec![(vec![1, 2, 3], 8), (vec![3], 8),],
);
child::put(&child_info_a, &[1, 2, 3], &8u16);
child::put(&child_info_a, &[2], &8u16);
child::put(&child_info_a, &[2, 1, 3], &8u8);
child::put(&child_info_a, &[2, 2, 3], &8u16);
child::put(&child_info_a, &[3], &8u16);
assert_eq!(
ChildTriePrefixIterator::with_prefix_over_key::<Identity>(&child_info_a, &[2])
.collect::<Vec<(u16, u16)>>(),
vec![(u16::decode(&mut &[2, 3][..]).unwrap(), 8),],
);
assert_eq!(
ChildTriePrefixIterator::with_prefix_over_key::<Identity>(&child_info_a, &[2])
.drain()
.collect::<Vec<(u16, u16)>>(),
vec![(u16::decode(&mut &[2, 3][..]).unwrap(), 8),],
);
// The only remaining is the ones outside prefix
assert_eq!(
ChildTriePrefixIterator::with_prefix(&child_info_a, &[])
.collect::<Vec<(Vec<u8>, u8)>>(),
vec![(vec![1, 2, 3], 8), (vec![3], 8),],
);
});
}
#[crate::storage_alias]
type Foo = StorageValue<Prefix, WeakBoundedVec<u32, ConstU32<7>>>;
#[crate::storage_alias]
type FooMap = StorageMap<Prefix, Twox128, u32, BoundedVec<u32, ConstU32<7>>>;
#[crate::storage_alias]
type FooDoubleMap =
StorageDoubleMap<Prefix, Twox128, u32, Twox128, u32, BoundedVec<u32, ConstU32<7>>>;
#[test]
fn try_append_works() {
TestExternalities::default().execute_with(|| {
let bounded: WeakBoundedVec<u32, ConstU32<7>> = vec![1, 2, 3].try_into().unwrap();
Foo::put(bounded);
assert_ok!(Foo::try_append(4));
assert_ok!(Foo::try_append(5));
assert_ok!(Foo::try_append(6));
assert_ok!(Foo::try_append(7));
assert_eq!(Foo::decode_len().unwrap(), 7);
assert!(Foo::try_append(8).is_err());
});
TestExternalities::default().execute_with(|| {
let bounded: BoundedVec<u32, ConstU32<7>> = vec![1, 2, 3].try_into().unwrap();
FooMap::insert(1, bounded);
assert_ok!(FooMap::try_append(1, 4));
assert_ok!(FooMap::try_append(1, 5));
assert_ok!(FooMap::try_append(1, 6));
assert_ok!(FooMap::try_append(1, 7));
assert_eq!(FooMap::decode_len(1).unwrap(), 7);
assert!(FooMap::try_append(1, 8).is_err());
// append to a non-existing
assert!(FooMap::get(2).is_none());
assert_ok!(FooMap::try_append(2, 4));
assert_eq!(
FooMap::get(2).unwrap(),
BoundedVec::<u32, ConstU32<7>>::try_from(vec![4]).unwrap(),
);
assert_ok!(FooMap::try_append(2, 5));
assert_eq!(
FooMap::get(2).unwrap(),
BoundedVec::<u32, ConstU32<7>>::try_from(vec![4, 5]).unwrap(),
);
});
TestExternalities::default().execute_with(|| {
let bounded: BoundedVec<u32, ConstU32<7>> = vec![1, 2, 3].try_into().unwrap();
FooDoubleMap::insert(1, 1, bounded);
assert_ok!(FooDoubleMap::try_append(1, 1, 4));
assert_ok!(FooDoubleMap::try_append(1, 1, 5));
assert_ok!(FooDoubleMap::try_append(1, 1, 6));
assert_ok!(FooDoubleMap::try_append(1, 1, 7));
assert_eq!(FooDoubleMap::decode_len(1, 1).unwrap(), 7);
assert!(FooDoubleMap::try_append(1, 1, 8).is_err());
// append to a non-existing
assert!(FooDoubleMap::get(2, 1).is_none());
assert_ok!(FooDoubleMap::try_append(2, 1, 4));
assert_eq!(
FooDoubleMap::get(2, 1).unwrap(),
BoundedVec::<u32, ConstU32<7>>::try_from(vec![4]).unwrap(),
);
assert_ok!(FooDoubleMap::try_append(2, 1, 5));
assert_eq!(
FooDoubleMap::get(2, 1).unwrap(),
BoundedVec::<u32, ConstU32<7>>::try_from(vec![4, 5]).unwrap(),
);
});
}
#[crate::storage_alias]
type FooSet = StorageValue<Prefix, BTreeSet<u32>>;
#[test]
fn btree_set_append_and_decode_len_works() {
TestExternalities::default().execute_with(|| {
let btree = BTreeSet::from([1, 2, 3]);
FooSet::put(btree);
FooSet::append(4);
FooSet::append(5);
FooSet::append(6);
FooSet::append(7);
assert_eq!(FooSet::decode_len().unwrap(), 7);
});
}
}