1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
//! Legalization of heaps.
//!
//! This module exports the `expand_heap_addr` function which transforms a `heap_addr`
//! instruction into code that depends on the kind of heap referenced.
use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::condcodes::IntCC;
use crate::ir::immediates::Uimm32;
use crate::ir::{self, InstBuilder, RelSourceLoc};
use crate::isa::TargetIsa;
/// Expand a `heap_addr` instruction according to the definition of the heap.
pub fn expand_heap_addr(
inst: ir::Inst,
func: &mut ir::Function,
cfg: &mut ControlFlowGraph,
isa: &dyn TargetIsa,
heap: ir::Heap,
offset: ir::Value,
access_size: Uimm32,
) {
match func.heaps[heap].style {
ir::HeapStyle::Dynamic { bound_gv } => dynamic_addr(
isa,
inst,
heap,
offset,
u64::from(access_size),
bound_gv,
func,
),
ir::HeapStyle::Static { bound } => static_addr(
isa,
inst,
heap,
offset,
u64::from(access_size),
bound.into(),
func,
cfg,
),
}
}
/// Expand a `heap_addr` for a dynamic heap.
fn dynamic_addr(
isa: &dyn TargetIsa,
inst: ir::Inst,
heap: ir::Heap,
offset: ir::Value,
access_size: u64,
bound_gv: ir::GlobalValue,
func: &mut ir::Function,
) {
let offset_ty = func.dfg.value_type(offset);
let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
let min_size = func.heaps[heap].min_size.into();
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
let offset = cast_offset_to_pointer_ty(offset, offset_ty, addr_ty, &mut pos);
// Start with the bounds check. Trap if `offset + access_size > bound`.
let bound = pos.ins().global_value(addr_ty, bound_gv);
let (cc, lhs, bound) = if access_size == 1 {
// `offset > bound - 1` is the same as `offset >= bound`.
(IntCC::UnsignedGreaterThanOrEqual, offset, bound)
} else if access_size <= min_size {
// We know that bound >= min_size, so here we can compare `offset > bound - access_size`
// without wrapping.
let adj_bound = pos.ins().iadd_imm(bound, -(access_size as i64));
(IntCC::UnsignedGreaterThan, offset, adj_bound)
} else {
// We need an overflow check for the adjusted offset.
let access_size_val = pos.ins().iconst(addr_ty, access_size as i64);
let (adj_offset, overflow) = pos.ins().iadd_ifcout(offset, access_size_val);
pos.ins().trapif(
isa.unsigned_add_overflow_condition(),
overflow,
ir::TrapCode::HeapOutOfBounds,
);
(IntCC::UnsignedGreaterThan, adj_offset, bound)
};
let oob = pos.ins().icmp(cc, lhs, bound);
pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
let spectre_oob_comparison = if isa.flags().enable_heap_access_spectre_mitigation() {
Some((cc, lhs, bound))
} else {
None
};
compute_addr(
isa,
inst,
heap,
addr_ty,
offset,
pos.func,
spectre_oob_comparison,
);
}
/// Expand a `heap_addr` for a static heap.
fn static_addr(
isa: &dyn TargetIsa,
inst: ir::Inst,
heap: ir::Heap,
mut offset: ir::Value,
access_size: u64,
bound: u64,
func: &mut ir::Function,
cfg: &mut ControlFlowGraph,
) {
let offset_ty = func.dfg.value_type(offset);
let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
// The goal here is to trap if `offset + access_size > bound`.
//
// This first case is a trivial case where we can easily trap.
if access_size > bound {
// This will simply always trap since `offset >= 0`.
pos.ins().trap(ir::TrapCode::HeapOutOfBounds);
pos.func.dfg.replace(inst).iconst(addr_ty, 0);
// Split Block, as the trap is a terminator instruction.
let curr_block = pos.current_block().expect("Cursor is not in a block");
let new_block = pos.func.dfg.make_block();
pos.insert_block(new_block);
cfg.recompute_block(pos.func, curr_block);
cfg.recompute_block(pos.func, new_block);
return;
}
// After the trivial case is done we're now mostly interested in trapping
// if `offset > bound - access_size`. We know `bound - access_size` here is
// non-negative from the above comparison.
//
// If we can know `bound - access_size >= 4GB` then with a 32-bit offset
// we're guaranteed:
//
// bound - access_size >= 4GB > offset
//
// or, in other words, `offset < bound - access_size`, meaning we can't trap
// for any value of `offset`.
//
// With that we have an optimization here where with 32-bit offsets and
// `bound - access_size >= 4GB` we can omit a bounds check.
let limit = bound - access_size;
let mut spectre_oob_comparison = None;
offset = cast_offset_to_pointer_ty(offset, offset_ty, addr_ty, &mut pos);
if offset_ty != ir::types::I32 || limit < 0xffff_ffff {
// Here we want to test the condition `offset > limit` and if that's
// true then this is an out-of-bounds access and needs to trap. For ARM
// and other RISC architectures it's easier to test against an immediate
// that's even instead of odd, so if `limit` is odd then we instead test
// for `offset >= limit + 1`.
//
// The thinking behind this is that:
//
// A >= B + 1 => A - 1 >= B => A > B
//
// where the last step here is true because A/B are integers, which
// should mean that `A >= B + 1` is an equivalent check for `A > B`
let (cc, lhs, limit_imm) = if limit & 1 == 1 {
let limit = limit as i64 + 1;
(IntCC::UnsignedGreaterThanOrEqual, offset, limit)
} else {
let limit = limit as i64;
(IntCC::UnsignedGreaterThan, offset, limit)
};
let oob = pos.ins().icmp_imm(cc, lhs, limit_imm);
pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
if isa.flags().enable_heap_access_spectre_mitigation() {
let limit = pos.ins().iconst(addr_ty, limit_imm);
spectre_oob_comparison = Some((cc, lhs, limit));
}
}
compute_addr(
isa,
inst,
heap,
addr_ty,
offset,
pos.func,
spectre_oob_comparison,
);
}
fn cast_offset_to_pointer_ty(
offset: ir::Value,
offset_ty: ir::Type,
addr_ty: ir::Type,
pos: &mut FuncCursor,
) -> ir::Value {
if offset_ty == addr_ty {
return offset;
}
// Note that using 64-bit heaps on a 32-bit host is not currently supported,
// would require at least a bounds check here to ensure that the truncation
// from 64-to-32 bits doesn't lose any upper bits. For now though we're
// mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
assert!(offset_ty.bits() < addr_ty.bits());
// Convert `offset` to `addr_ty`.
let extended_offset = pos.ins().uextend(addr_ty, offset);
// Add debug value-label alias so that debuginfo can name the extended
// value as the address
let loc = pos.srcloc();
let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
pos.func
.stencil
.dfg
.add_value_label_alias(extended_offset, loc, offset);
extended_offset
}
/// Emit code for the base address computation of a `heap_addr` instruction.
fn compute_addr(
isa: &dyn TargetIsa,
inst: ir::Inst,
heap: ir::Heap,
addr_ty: ir::Type,
offset: ir::Value,
func: &mut ir::Function,
// If we are performing Spectre mitigation with conditional selects, the
// values to compare and the condition code that indicates an out-of bounds
// condition; on this condition, the conditional move will choose a
// speculatively safe address (a zero / null pointer) instead.
spectre_oob_comparison: Option<(IntCC, ir::Value, ir::Value)>,
) {
debug_assert_eq!(func.dfg.value_type(offset), addr_ty);
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
// Add the heap base address base
let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
pos.ins().get_pinned_reg(isa.pointer_type())
} else {
let base_gv = pos.func.heaps[heap].base;
pos.ins().global_value(addr_ty, base_gv)
};
if let Some((cc, a, b)) = spectre_oob_comparison {
let final_addr = pos.ins().iadd(base, offset);
let zero = pos.ins().iconst(addr_ty, 0);
let flags = pos.ins().ifcmp(a, b);
pos.func
.dfg
.replace(inst)
.selectif_spectre_guard(addr_ty, cc, flags, zero, final_addr);
} else {
pos.func.dfg.replace(inst).iadd(base, offset);
}
}