1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
// Copyright 2017-2021 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Parity SCALE Codec
//!
//! Rust implementation of the SCALE (Simple Concatenated Aggregate Little-Endian) data format
//! for types used in the Parity Substrate framework.
//!
//! SCALE is a light-weight format which allows encoding (and decoding) which makes it highly
//! suitable for resource-constrained execution environments like blockchain runtimes and low-power,
//! low-memory devices.
//!
//! It is important to note that the encoding context (knowledge of how the types and data
//! structures look) needs to be known separately at both encoding and decoding ends.
//! The encoded data does not include this contextual information.
//!
//! To get a better understanding of how the encoding is done for different types,
//! take a look at the
//! [SCALE Code page at the Substrate Knowledge Base](https://docs.substrate.io/v3/advanced/scale-codec/).
//!
//! ## Implementation
//!
//! The codec is implemented using the following traits:
//!
//! ### Encode
//!
//! The `Encode` trait is used for encoding of data into the SCALE format. The `Encode` trait
//! contains the following functions:

//!
//! * `size_hint(&self) -> usize`: Gets the capacity (in bytes) required for the encoded data.
//! This is to avoid double-allocation of memory needed for the encoding.
//! It can be an estimate and does not need to be an exact number.
//! If the size is not known, even no good maximum, then we can skip this function from the trait
//! implementation. This is required to be a cheap operation, so should not involve iterations etc.
//! * `encode_to<T: Output>(&self, dest: &mut T)`: Encodes the value and appends it to a destination
//!   buffer.
//! * `encode(&self) -> Vec<u8>`: Encodes the type data and returns a slice.
//! * `using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R`: Encodes the type data and
//!   executes a closure on the encoded value.
//! Returns the result from the executed closure.
//!
//! **Note:** Implementations should override `using_encoded` for value types and `encode_to` for
//! allocating types. `size_hint` should be implemented for all types, wherever possible. Wrapper
//! types should override all methods.
//!
//! ### Decode
//!
//! The `Decode` trait is used for deserialization/decoding of encoded data into the respective
//! types.
//!
//! * `fn decode<I: Input>(value: &mut I) -> Result<Self, Error>`: Tries to decode the value from
//!   SCALE format to the type it is called on.
//! Returns an `Err` if the decoding fails.
//!
//! ### CompactAs
//!
//! The `CompactAs` trait is used for wrapping custom types/structs as compact types, which makes
//! them even more space/memory efficient. The compact encoding is described [here](https://docs.substrate.io/v3/advanced/scale-codec/#compactgeneral-integers).
//!
//! * `encode_as(&self) -> &Self::As`: Encodes the type (self) as a compact type.
//! The type `As` is defined in the same trait and its implementation should be compact encode-able.
//! * `decode_from(_: Self::As) -> Result<Self, Error>`: Decodes the type (self) from a compact
//!   encode-able type.
//!
//! ### HasCompact
//!
//! The `HasCompact` trait, if implemented, tells that the corresponding type is a compact
//! encode-able type.
//!
//! ### EncodeLike
//!
//! The `EncodeLike` trait needs to be implemented for each type manually. When using derive, it is
//! done automatically for you. Basically the trait gives you the opportunity to accept multiple
//! types to a function that all encode to the same representation.
//!
//! ## Usage Examples
//!
//! Following are some examples to demonstrate usage of the codec.
//!
//! ### Simple types
//!
//! ```
//! # // Import macros if derive feature is not used.
//! # #[cfg(not(feature="derive"))]
//! # use parity_scale_codec_derive::{Encode, Decode};
//!
//! use parity_scale_codec::{Encode, Decode};
//!
//! #[derive(Debug, PartialEq, Encode, Decode)]
//! enum EnumType {
//! 	#[codec(index = 15)]
//! 	A,
//! 	B(u32, u64),
//! 	C {
//! 		a: u32,
//! 		b: u64,
//! 	},
//! }
//!
//! let a = EnumType::A;
//! let b = EnumType::B(1, 2);
//! let c = EnumType::C { a: 1, b: 2 };
//!
//! a.using_encoded(|ref slice| {
//!     assert_eq!(slice, &b"\x0f");
//! });
//!
//! b.using_encoded(|ref slice| {
//!     assert_eq!(slice, &b"\x01\x01\0\0\0\x02\0\0\0\0\0\0\0");
//! });
//!
//! c.using_encoded(|ref slice| {
//!     assert_eq!(slice, &b"\x02\x01\0\0\0\x02\0\0\0\0\0\0\0");
//! });
//!
//! let mut da: &[u8] = b"\x0f";
//! assert_eq!(EnumType::decode(&mut da).ok(), Some(a));
//!
//! let mut db: &[u8] = b"\x01\x01\0\0\0\x02\0\0\0\0\0\0\0";
//! assert_eq!(EnumType::decode(&mut db).ok(), Some(b));
//!
//! let mut dc: &[u8] = b"\x02\x01\0\0\0\x02\0\0\0\0\0\0\0";
//! assert_eq!(EnumType::decode(&mut dc).ok(), Some(c));
//!
//! let mut dz: &[u8] = &[0];
//! assert_eq!(EnumType::decode(&mut dz).ok(), None);
//!
//! # fn main() { }
//! ```
//!
//! ### Compact type with HasCompact
//!
//! ```
//! # // Import macros if derive feature is not used.
//! # #[cfg(not(feature="derive"))]
//! # use parity_scale_codec_derive::{Encode, Decode};
//!
//! use parity_scale_codec::{Encode, Decode, Compact, HasCompact};
//!
//! #[derive(Debug, PartialEq, Encode, Decode)]
//! struct Test1CompactHasCompact<T: HasCompact> {
//!     #[codec(compact)]
//!     bar: T,
//! }
//!
//! #[derive(Debug, PartialEq, Encode, Decode)]
//! struct Test1HasCompact<T: HasCompact> {
//!     #[codec(encoded_as = "<T as HasCompact>::Type")]
//!     bar: T,
//! }
//!
//! let test_val: (u64, usize) = (0u64, 1usize);
//!
//! let encoded = Test1HasCompact { bar: test_val.0 }.encode();
//! assert_eq!(encoded.len(), test_val.1);
//! assert_eq!(<Test1CompactHasCompact<u64>>::decode(&mut &encoded[..]).unwrap().bar, test_val.0);
//!
//! # fn main() { }
//! ```
//! ### Type with CompactAs
//!
//! ```rust
//! # // Import macros if derive feature is not used.
//! # #[cfg(not(feature="derive"))]
//! # use parity_scale_codec_derive::{Encode, Decode};
//!
//! use serde_derive::{Serialize, Deserialize};
//! use parity_scale_codec::{Encode, Decode, Compact, HasCompact, CompactAs, Error};
//!
//! #[cfg_attr(feature = "std", derive(Serialize, Deserialize, Debug))]
//! #[derive(PartialEq, Eq, Clone)]
//! struct StructHasCompact(u32);
//!
//! impl CompactAs for StructHasCompact {
//!     type As = u32;
//!
//!     fn encode_as(&self) -> &Self::As {
//!         &12
//!     }
//!
//!     fn decode_from(_: Self::As) -> Result<Self, Error> {
//!         Ok(StructHasCompact(12))
//!     }
//! }
//!
//! impl From<Compact<StructHasCompact>> for StructHasCompact {
//!     fn from(_: Compact<StructHasCompact>) -> Self {
//!         StructHasCompact(12)
//!     }
//! }
//!
//! #[derive(Debug, PartialEq, Encode, Decode)]
//! enum TestGenericHasCompact<T> {
//!     A {
//!         #[codec(compact)] a: T
//!     },
//! }
//!
//! let a = TestGenericHasCompact::A::<StructHasCompact> {
//!     a: StructHasCompact(12325678),
//! };
//!
//! let encoded = a.encode();
//! assert_eq!(encoded.len(), 2);
//!
//! # fn main() { }
//! ```
//!
//! ## Derive attributes
//!
//! The derive implementation supports the following attributes:
//! - `codec(dumb_trait_bound)`: This attribute needs to be placed above the type that one of the
//!   trait should be implemented for. It will make the algorithm that determines the to-add trait
//!   bounds fall back to just use the type parameters of the type. This can be useful for situation
//!   where the algorithm includes private types in the public interface. By using this attribute,
//!   you should not get this error/warning again.
//! - `codec(skip)`: Needs to be placed above a field  or variant and makes it to be skipped while
//!   encoding/decoding.
//! - `codec(compact)`: Needs to be placed above a field and makes the field use compact encoding.
//!   (The type needs to support compact encoding.)
//! - `codec(encoded_as = "OtherType")`: Needs to be placed above a field and makes the field being
//!   encoded by using `OtherType`.
//! - `codec(index = 0)`: Needs to be placed above an enum variant to make the variant use the given
//!   index when encoded. By default the index is determined by counting from `0` beginning wth the
//!   first variant.
//! - `codec(encode_bound)`, `codec(decode_bound)` and `codec(mel_bound)`: All 3 attributes take
//!   in a `where` clause for the `Encode`, `Decode` and `MaxEncodedLen` trait implementation for
//!   the annotated type respectively.
//! - `codec(encode_bound(skip_type_params))`, `codec(decode_bound(skip_type_params))` and
//!   `codec(mel_bound(skip_type_params))`: All 3 sub-attributes take in types as arguments to skip
//!   trait derivation of the corresponding trait, e.g. T in
//!   `codec(encode_bound(skip_type_params(T)))` will not contain a `Encode` trait bound while
//!   `Encode` is being derived for the annotated type.

#![warn(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
#[macro_use]
#[doc(hidden)]
pub extern crate alloc;

#[cfg(feature = "parity-scale-codec-derive")]
#[allow(unused_imports)]
#[macro_use]
extern crate parity_scale_codec_derive;

#[cfg(all(feature = "std", test))]
#[macro_use]
extern crate serde_derive;

#[cfg(feature = "parity-scale-codec-derive")]
pub use parity_scale_codec_derive::*;

#[cfg(feature = "std")]
#[doc(hidden)]
pub mod alloc {
	pub use std::boxed;
	pub use std::vec;
	pub use std::string;
	pub use std::borrow;
	pub use std::collections;
	pub use std::sync;
	pub use std::rc;
}

mod codec;
mod compact;
mod joiner;
mod keyedvec;
#[cfg(feature = "bit-vec")]
mod bit_vec;
#[cfg(feature = "generic-array")]
mod generic_array;
mod decode_all;
mod depth_limit;
mod encode_append;
mod encode_like;
mod error;
#[cfg(feature = "max-encoded-len")]
mod max_encoded_len;

pub use self::error::Error;
pub use self::codec::{
	Input, Output, Decode, Encode, Codec, EncodeAsRef, WrapperTypeEncode, WrapperTypeDecode,
	OptionBool, DecodeLength, FullCodec, FullEncode, decode_vec_with_len
};
#[cfg(feature = "std")]
pub use self::codec::IoReader;
pub use self::compact::{Compact, HasCompact, CompactAs, CompactLen, CompactRef};
pub use self::joiner::Joiner;
pub use self::keyedvec::KeyedVec;
pub use self::decode_all::DecodeAll;
pub use self::depth_limit::DecodeLimit;
pub use self::encode_append::EncodeAppend;
pub use self::encode_like::{EncodeLike, Ref};
#[cfg(feature = "max-encoded-len")]
pub use max_encoded_len::MaxEncodedLen;
/// Derive macro for [`MaxEncodedLen`][max_encoded_len::MaxEncodedLen].
///
/// # Examples
///
/// ```
/// # use parity_scale_codec::{Encode, MaxEncodedLen};
/// #[derive(Encode, MaxEncodedLen)]
/// struct Example;
/// ```
///
/// ```
/// # use parity_scale_codec::{Encode, MaxEncodedLen};
/// #[derive(Encode, MaxEncodedLen)]
/// struct TupleStruct(u8, u32);
///
/// assert_eq!(TupleStruct::max_encoded_len(), u8::max_encoded_len() + u32::max_encoded_len());
/// ```
///
/// ```
/// # use parity_scale_codec::{Encode, MaxEncodedLen};
/// #[derive(Encode, MaxEncodedLen)]
/// enum GenericEnum<T> {
/// 	A,
/// 	B(T),
/// }
///
/// assert_eq!(GenericEnum::<u8>::max_encoded_len(), u8::max_encoded_len() + u8::max_encoded_len());
/// assert_eq!(GenericEnum::<u128>::max_encoded_len(), u8::max_encoded_len() + u128::max_encoded_len());
/// ```
///
/// # Within other macros
///
/// Sometimes the `MaxEncodedLen` trait and macro are used within another macro, and it can't be
/// guaranteed that the `parity_scale_codec` module is available at the call site. In that case, the
/// macro should reexport the `parity_scale_codec` module and specify the path to the reexport:
///
/// ```ignore
/// pub use parity_scale_codec as codec;
///
/// #[derive(Encode, MaxEncodedLen)]
/// #[codec(crate = $crate::codec)]
/// struct Example;
/// ```
#[cfg(all(feature = "derive", feature = "max-encoded-len"))]
pub use parity_scale_codec_derive::MaxEncodedLen;

#[cfg(feature = "bytes")]
pub use self::codec::decode_from_bytes;