1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
//! A Dominator Tree represented as mappings of Blocks to their immediate dominator.
use crate::entity::SecondaryMap;
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
use crate::ir::instructions::BranchInfo;
use crate::ir::{Block, ExpandedProgramPoint, Function, Inst, Layout, ProgramOrder, Value};
use crate::packed_option::PackedOption;
use crate::timing;
use alloc::vec::Vec;
use core::cmp;
use core::cmp::Ordering;
use core::mem;
/// RPO numbers are not first assigned in a contiguous way but as multiples of STRIDE, to leave
/// room for modifications of the dominator tree.
const STRIDE: u32 = 4;
/// Special RPO numbers used during `compute_postorder`.
const DONE: u32 = 1;
const SEEN: u32 = 2;
/// Dominator tree node. We keep one of these per block.
#[derive(Clone, Default)]
struct DomNode {
/// Number of this node in a reverse post-order traversal of the CFG, starting from 1.
/// This number is monotonic in the reverse postorder but not contiguous, since we leave
/// holes for later localized modifications of the dominator tree.
/// Unreachable nodes get number 0, all others are positive.
rpo_number: u32,
/// The immediate dominator of this block, represented as the branch or jump instruction at the
/// end of the dominating basic block.
///
/// This is `None` for unreachable blocks and the entry block which doesn't have an immediate
/// dominator.
idom: PackedOption<Inst>,
}
/// The dominator tree for a single function.
pub struct DominatorTree {
nodes: SecondaryMap<Block, DomNode>,
/// CFG post-order of all reachable blocks.
postorder: Vec<Block>,
/// Scratch memory used by `compute_postorder()`.
stack: Vec<Block>,
valid: bool,
}
/// Methods for querying the dominator tree.
impl DominatorTree {
/// Is `block` reachable from the entry block?
pub fn is_reachable(&self, block: Block) -> bool {
self.nodes[block].rpo_number != 0
}
/// Get the CFG post-order of blocks that was used to compute the dominator tree.
///
/// Note that this post-order is not updated automatically when the CFG is modified. It is
/// computed from scratch and cached by `compute()`.
pub fn cfg_postorder(&self) -> &[Block] {
debug_assert!(self.is_valid());
&self.postorder
}
/// Returns the immediate dominator of `block`.
///
/// The immediate dominator of a basic block is a basic block which we represent by
/// the branch or jump instruction at the end of the basic block. This does not have to be the
/// terminator of its block.
///
/// A branch or jump is said to *dominate* `block` if all control flow paths from the function
/// entry to `block` must go through the branch.
///
/// The *immediate dominator* is the dominator that is closest to `block`. All other dominators
/// also dominate the immediate dominator.
///
/// This returns `None` if `block` is not reachable from the entry block, or if it is the entry block
/// which has no dominators.
pub fn idom(&self, block: Block) -> Option<Inst> {
self.nodes[block].idom.into()
}
/// Compare two blocks relative to the reverse post-order.
fn rpo_cmp_block(&self, a: Block, b: Block) -> Ordering {
self.nodes[a].rpo_number.cmp(&self.nodes[b].rpo_number)
}
/// Compare two program points relative to a reverse post-order traversal of the control-flow
/// graph.
///
/// Return `Ordering::Less` if `a` comes before `b` in the RPO.
///
/// If `a` and `b` belong to the same block, compare their relative position in the block.
pub fn rpo_cmp<A, B>(&self, a: A, b: B, layout: &Layout) -> Ordering
where
A: Into<ExpandedProgramPoint>,
B: Into<ExpandedProgramPoint>,
{
let a = a.into();
let b = b.into();
self.rpo_cmp_block(layout.pp_block(a), layout.pp_block(b))
.then(layout.cmp(a, b))
}
/// Returns `true` if `a` dominates `b`.
///
/// This means that every control-flow path from the function entry to `b` must go through `a`.
///
/// Dominance is ill defined for unreachable blocks. This function can always determine
/// dominance for instructions in the same block, but otherwise returns `false` if either block
/// is unreachable.
///
/// An instruction is considered to dominate itself.
pub fn dominates<A, B>(&self, a: A, b: B, layout: &Layout) -> bool
where
A: Into<ExpandedProgramPoint>,
B: Into<ExpandedProgramPoint>,
{
let a = a.into();
let b = b.into();
match a {
ExpandedProgramPoint::Block(block_a) => {
a == b || self.last_dominator(block_a, b, layout).is_some()
}
ExpandedProgramPoint::Inst(inst_a) => {
let block_a = layout
.inst_block(inst_a)
.expect("Instruction not in layout.");
match self.last_dominator(block_a, b, layout) {
Some(last) => layout.cmp(inst_a, last) != Ordering::Greater,
None => false,
}
}
}
}
/// Find the last instruction in `a` that dominates `b`.
/// If no instructions in `a` dominate `b`, return `None`.
pub fn last_dominator<B>(&self, a: Block, b: B, layout: &Layout) -> Option<Inst>
where
B: Into<ExpandedProgramPoint>,
{
let (mut block_b, mut inst_b) = match b.into() {
ExpandedProgramPoint::Block(block) => (block, None),
ExpandedProgramPoint::Inst(inst) => (
layout.inst_block(inst).expect("Instruction not in layout."),
Some(inst),
),
};
let rpo_a = self.nodes[a].rpo_number;
// Run a finger up the dominator tree from b until we see a.
// Do nothing if b is unreachable.
while rpo_a < self.nodes[block_b].rpo_number {
let idom = match self.idom(block_b) {
Some(idom) => idom,
None => return None, // a is unreachable, so we climbed past the entry
};
block_b = layout.inst_block(idom).expect("Dominator got removed.");
inst_b = Some(idom);
}
if a == block_b {
inst_b
} else {
None
}
}
/// Compute the common dominator of two basic blocks.
///
/// Both basic blocks are assumed to be reachable.
pub fn common_dominator(
&self,
mut a: BlockPredecessor,
mut b: BlockPredecessor,
layout: &Layout,
) -> BlockPredecessor {
loop {
match self.rpo_cmp_block(a.block, b.block) {
Ordering::Less => {
// `a` comes before `b` in the RPO. Move `b` up.
let idom = self.nodes[b.block].idom.expect("Unreachable basic block?");
b = BlockPredecessor::new(
layout.inst_block(idom).expect("Dangling idom instruction"),
idom,
);
}
Ordering::Greater => {
// `b` comes before `a` in the RPO. Move `a` up.
let idom = self.nodes[a.block].idom.expect("Unreachable basic block?");
a = BlockPredecessor::new(
layout.inst_block(idom).expect("Dangling idom instruction"),
idom,
);
}
Ordering::Equal => break,
}
}
debug_assert_eq!(
a.block, b.block,
"Unreachable block passed to common_dominator?"
);
// We're in the same block. The common dominator is the earlier instruction.
if layout.cmp(a.inst, b.inst) == Ordering::Less {
a
} else {
b
}
}
}
impl DominatorTree {
/// Allocate a new blank dominator tree. Use `compute` to compute the dominator tree for a
/// function.
pub fn new() -> Self {
Self {
nodes: SecondaryMap::new(),
postorder: Vec::new(),
stack: Vec::new(),
valid: false,
}
}
/// Allocate and compute a dominator tree.
pub fn with_function(func: &Function, cfg: &ControlFlowGraph) -> Self {
let block_capacity = func.layout.block_capacity();
let mut domtree = Self {
nodes: SecondaryMap::with_capacity(block_capacity),
postorder: Vec::with_capacity(block_capacity),
stack: Vec::new(),
valid: false,
};
domtree.compute(func, cfg);
domtree
}
/// Reset and compute a CFG post-order and dominator tree.
pub fn compute(&mut self, func: &Function, cfg: &ControlFlowGraph) {
let _tt = timing::domtree();
debug_assert!(cfg.is_valid());
self.compute_postorder(func);
self.compute_domtree(func, cfg);
self.valid = true;
}
/// Clear the data structures used to represent the dominator tree. This will leave the tree in
/// a state where `is_valid()` returns false.
pub fn clear(&mut self) {
self.nodes.clear();
self.postorder.clear();
debug_assert!(self.stack.is_empty());
self.valid = false;
}
/// Check if the dominator tree is in a valid state.
///
/// Note that this doesn't perform any kind of validity checks. It simply checks if the
/// `compute()` method has been called since the last `clear()`. It does not check that the
/// dominator tree is consistent with the CFG.
pub fn is_valid(&self) -> bool {
self.valid
}
/// Reset all internal data structures and compute a post-order of the control flow graph.
///
/// This leaves `rpo_number == 1` for all reachable blocks, 0 for unreachable ones.
fn compute_postorder(&mut self, func: &Function) {
self.clear();
self.nodes.resize(func.dfg.num_blocks());
// This algorithm is a depth first traversal (DFT) of the control flow graph, computing a
// post-order of the blocks that are reachable form the entry block. A DFT post-order is not
// unique. The specific order we get is controlled by two factors:
//
// 1. The order each node's children are visited, and
// 2. The method used for pruning graph edges to get a tree.
//
// There are two ways of viewing the CFG as a graph:
//
// 1. Each block is a node, with outgoing edges for all the branches in the block.
// 2. Each basic block is a node, with outgoing edges for the single branch at the end of
// the BB. (A block is a linear sequence of basic blocks).
//
// The first graph is a contraction of the second one. We want to compute a block post-order
// that is compatible both graph interpretations. That is, if you compute a BB post-order
// and then remove those BBs that do not correspond to block headers, you get a post-order of
// the block graph.
//
// Node child order:
//
// In the BB graph, we always go down the fall-through path first and follow the branch
// destination second.
//
// In the block graph, this is equivalent to visiting block successors in a bottom-up
// order, starting from the destination of the block's terminating jump, ending at the
// destination of the first branch in the block.
//
// Edge pruning:
//
// In the BB graph, we keep an edge to a block the first time we visit the *source* side
// of the edge. Any subsequent edges to the same block are pruned.
//
// The equivalent tree is reached in the block graph by keeping the first edge to a block
// in a top-down traversal of the successors. (And then visiting edges in a bottom-up
// order).
//
// This pruning method makes it possible to compute the DFT without storing lots of
// information about the progress through a block.
// During this algorithm only, use `rpo_number` to hold the following state:
//
// 0: block has not yet been reached in the pre-order.
// SEEN: block has been pushed on the stack but successors not yet pushed.
// DONE: Successors pushed.
match func.layout.entry_block() {
Some(block) => {
self.stack.push(block);
self.nodes[block].rpo_number = SEEN;
}
None => return,
}
while let Some(block) = self.stack.pop() {
match self.nodes[block].rpo_number {
SEEN => {
// This is the first time we pop the block, so we need to scan its successors and
// then revisit it.
self.nodes[block].rpo_number = DONE;
self.stack.push(block);
self.push_successors(func, block);
}
DONE => {
// This is the second time we pop the block, so all successors have been
// processed.
self.postorder.push(block);
}
_ => unreachable!(),
}
}
}
/// Push `block` successors onto `self.stack`, filtering out those that have already been seen.
///
/// The successors are pushed in program order which is important to get a split-invariant
/// post-order. Split-invariant means that if a block is split in two, we get the same
/// post-order except for the insertion of the new block header at the split point.
fn push_successors(&mut self, func: &Function, block: Block) {
for inst in func.layout.block_likely_branches(block) {
match func.dfg.analyze_branch(inst) {
BranchInfo::SingleDest(succ, _) => self.push_if_unseen(succ),
BranchInfo::Table(jt, dest) => {
for succ in func.jump_tables[jt].iter() {
self.push_if_unseen(*succ);
}
if let Some(dest) = dest {
self.push_if_unseen(dest);
}
}
BranchInfo::NotABranch => {}
}
}
}
/// Push `block` onto `self.stack` if it has not already been seen.
fn push_if_unseen(&mut self, block: Block) {
if self.nodes[block].rpo_number == 0 {
self.nodes[block].rpo_number = SEEN;
self.stack.push(block);
}
}
/// Build a dominator tree from a control flow graph using Keith D. Cooper's
/// "Simple, Fast Dominator Algorithm."
fn compute_domtree(&mut self, func: &Function, cfg: &ControlFlowGraph) {
// During this algorithm, `rpo_number` has the following values:
//
// 0: block is not reachable.
// 1: block is reachable, but has not yet been visited during the first pass. This is set by
// `compute_postorder`.
// 2+: block is reachable and has an assigned RPO number.
// We'll be iterating over a reverse post-order of the CFG, skipping the entry block.
let (entry_block, postorder) = match self.postorder.as_slice().split_last() {
Some((&eb, rest)) => (eb, rest),
None => return,
};
debug_assert_eq!(Some(entry_block), func.layout.entry_block());
// Do a first pass where we assign RPO numbers to all reachable nodes.
self.nodes[entry_block].rpo_number = 2 * STRIDE;
for (rpo_idx, &block) in postorder.iter().rev().enumerate() {
// Update the current node and give it an RPO number.
// The entry block got 2, the rest start at 3 by multiples of STRIDE to leave
// room for future dominator tree modifications.
//
// Since `compute_idom` will only look at nodes with an assigned RPO number, the
// function will never see an uninitialized predecessor.
//
// Due to the nature of the post-order traversal, every node we visit will have at
// least one predecessor that has previously been visited during this RPO.
self.nodes[block] = DomNode {
idom: self.compute_idom(block, cfg, &func.layout).into(),
rpo_number: (rpo_idx as u32 + 3) * STRIDE,
}
}
// Now that we have RPO numbers for everything and initial immediate dominator estimates,
// iterate until convergence.
//
// If the function is free of irreducible control flow, this will exit after one iteration.
let mut changed = true;
while changed {
changed = false;
for &block in postorder.iter().rev() {
let idom = self.compute_idom(block, cfg, &func.layout).into();
if self.nodes[block].idom != idom {
self.nodes[block].idom = idom;
changed = true;
}
}
}
}
// Compute the immediate dominator for `block` using the current `idom` states for the reachable
// nodes.
fn compute_idom(&self, block: Block, cfg: &ControlFlowGraph, layout: &Layout) -> Inst {
// Get an iterator with just the reachable, already visited predecessors to `block`.
// Note that during the first pass, `rpo_number` is 1 for reachable blocks that haven't
// been visited yet, 0 for unreachable blocks.
let mut reachable_preds = cfg
.pred_iter(block)
.filter(|&BlockPredecessor { block: pred, .. }| self.nodes[pred].rpo_number > 1);
// The RPO must visit at least one predecessor before this node.
let mut idom = reachable_preds
.next()
.expect("block node must have one reachable predecessor");
for pred in reachable_preds {
idom = self.common_dominator(idom, pred, layout);
}
idom.inst
}
}
/// Optional pre-order information that can be computed for a dominator tree.
///
/// This data structure is computed from a `DominatorTree` and provides:
///
/// - A forward traversable dominator tree through the `children()` iterator.
/// - An ordering of blocks according to a dominator tree pre-order.
/// - Constant time dominance checks at the block granularity.
///
/// The information in this auxiliary data structure is not easy to update when the control flow
/// graph changes, which is why it is kept separate.
pub struct DominatorTreePreorder {
nodes: SecondaryMap<Block, ExtraNode>,
// Scratch memory used by `compute_postorder()`.
stack: Vec<Block>,
}
#[derive(Default, Clone)]
struct ExtraNode {
/// First child node in the domtree.
child: PackedOption<Block>,
/// Next sibling node in the domtree. This linked list is ordered according to the CFG RPO.
sibling: PackedOption<Block>,
/// Sequence number for this node in a pre-order traversal of the dominator tree.
/// Unreachable blocks have number 0, the entry block is 1.
pre_number: u32,
/// Maximum `pre_number` for the sub-tree of the dominator tree that is rooted at this node.
/// This is always >= `pre_number`.
pre_max: u32,
}
/// Creating and computing the dominator tree pre-order.
impl DominatorTreePreorder {
/// Create a new blank `DominatorTreePreorder`.
pub fn new() -> Self {
Self {
nodes: SecondaryMap::new(),
stack: Vec::new(),
}
}
/// Recompute this data structure to match `domtree`.
pub fn compute(&mut self, domtree: &DominatorTree, layout: &Layout) {
self.nodes.clear();
debug_assert_eq!(self.stack.len(), 0);
// Step 1: Populate the child and sibling links.
//
// By following the CFG post-order and pushing to the front of the lists, we make sure that
// sibling lists are ordered according to the CFG reverse post-order.
for &block in domtree.cfg_postorder() {
if let Some(idom_inst) = domtree.idom(block) {
let idom = layout.pp_block(idom_inst);
let sib = mem::replace(&mut self.nodes[idom].child, block.into());
self.nodes[block].sibling = sib;
} else {
// The only block without an immediate dominator is the entry.
self.stack.push(block);
}
}
// Step 2. Assign pre-order numbers from a DFS of the dominator tree.
debug_assert!(self.stack.len() <= 1);
let mut n = 0;
while let Some(block) = self.stack.pop() {
n += 1;
let node = &mut self.nodes[block];
node.pre_number = n;
node.pre_max = n;
if let Some(n) = node.sibling.expand() {
self.stack.push(n);
}
if let Some(n) = node.child.expand() {
self.stack.push(n);
}
}
// Step 3. Propagate the `pre_max` numbers up the tree.
// The CFG post-order is topologically ordered w.r.t. dominance so a node comes after all
// its dominator tree children.
for &block in domtree.cfg_postorder() {
if let Some(idom_inst) = domtree.idom(block) {
let idom = layout.pp_block(idom_inst);
let pre_max = cmp::max(self.nodes[block].pre_max, self.nodes[idom].pre_max);
self.nodes[idom].pre_max = pre_max;
}
}
}
}
/// An iterator that enumerates the direct children of a block in the dominator tree.
pub struct ChildIter<'a> {
dtpo: &'a DominatorTreePreorder,
next: PackedOption<Block>,
}
impl<'a> Iterator for ChildIter<'a> {
type Item = Block;
fn next(&mut self) -> Option<Block> {
let n = self.next.expand();
if let Some(block) = n {
self.next = self.dtpo.nodes[block].sibling;
}
n
}
}
/// Query interface for the dominator tree pre-order.
impl DominatorTreePreorder {
/// Get an iterator over the direct children of `block` in the dominator tree.
///
/// These are the block's whose immediate dominator is an instruction in `block`, ordered according
/// to the CFG reverse post-order.
pub fn children(&self, block: Block) -> ChildIter {
ChildIter {
dtpo: self,
next: self.nodes[block].child,
}
}
/// Fast, constant time dominance check with block granularity.
///
/// This computes the same result as `domtree.dominates(a, b)`, but in guaranteed fast constant
/// time. This is less general than the `DominatorTree` method because it only works with block
/// program points.
///
/// A block is considered to dominate itself.
pub fn dominates(&self, a: Block, b: Block) -> bool {
let na = &self.nodes[a];
let nb = &self.nodes[b];
na.pre_number <= nb.pre_number && na.pre_max >= nb.pre_max
}
/// Compare two blocks according to the dominator pre-order.
pub fn pre_cmp_block(&self, a: Block, b: Block) -> Ordering {
self.nodes[a].pre_number.cmp(&self.nodes[b].pre_number)
}
/// Compare two program points according to the dominator tree pre-order.
///
/// This ordering of program points have the property that given a program point, pp, all the
/// program points dominated by pp follow immediately and contiguously after pp in the order.
pub fn pre_cmp<A, B>(&self, a: A, b: B, layout: &Layout) -> Ordering
where
A: Into<ExpandedProgramPoint>,
B: Into<ExpandedProgramPoint>,
{
let a = a.into();
let b = b.into();
self.pre_cmp_block(layout.pp_block(a), layout.pp_block(b))
.then(layout.cmp(a, b))
}
/// Compare two value defs according to the dominator tree pre-order.
///
/// Two values defined at the same program point are compared according to their parameter or
/// result order.
///
/// This is a total ordering of the values in the function.
pub fn pre_cmp_def(&self, a: Value, b: Value, func: &Function) -> Ordering {
let da = func.dfg.value_def(a);
let db = func.dfg.value_def(b);
self.pre_cmp(da, db, &func.layout)
.then_with(|| da.num().cmp(&db.num()))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::types::*;
use crate::ir::{Function, InstBuilder, TrapCode};
#[test]
fn empty() {
let func = Function::new();
let cfg = ControlFlowGraph::with_function(&func);
debug_assert!(cfg.is_valid());
let dtree = DominatorTree::with_function(&func, &cfg);
assert_eq!(0, dtree.nodes.keys().count());
assert_eq!(dtree.cfg_postorder(), &[]);
let mut dtpo = DominatorTreePreorder::new();
dtpo.compute(&dtree, &func.layout);
}
#[test]
fn unreachable_node() {
let mut func = Function::new();
let block0 = func.dfg.make_block();
let v0 = func.dfg.append_block_param(block0, I32);
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.ins().brnz(v0, block2, &[]);
cur.ins().trap(TrapCode::User(0));
cur.insert_block(block1);
let v1 = cur.ins().iconst(I32, 1);
let v2 = cur.ins().iadd(v0, v1);
cur.ins().jump(block0, &[v2]);
cur.insert_block(block2);
cur.ins().return_(&[v0]);
let cfg = ControlFlowGraph::with_function(cur.func);
let dt = DominatorTree::with_function(cur.func, &cfg);
// Fall-through-first, prune-at-source DFT:
//
// block0 {
// brnz block2 {
// trap
// block2 {
// return
// } block2
// } block0
assert_eq!(dt.cfg_postorder(), &[block2, block0]);
let v2_def = cur.func.dfg.value_def(v2).unwrap_inst();
assert!(!dt.dominates(v2_def, block0, &cur.func.layout));
assert!(!dt.dominates(block0, v2_def, &cur.func.layout));
let mut dtpo = DominatorTreePreorder::new();
dtpo.compute(&dt, &cur.func.layout);
assert!(dtpo.dominates(block0, block0));
assert!(!dtpo.dominates(block0, block1));
assert!(dtpo.dominates(block0, block2));
assert!(!dtpo.dominates(block1, block0));
assert!(dtpo.dominates(block1, block1));
assert!(!dtpo.dominates(block1, block2));
assert!(!dtpo.dominates(block2, block0));
assert!(!dtpo.dominates(block2, block1));
assert!(dtpo.dominates(block2, block2));
}
#[test]
fn non_zero_entry_block() {
let mut func = Function::new();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let block3 = func.dfg.make_block();
let cond = func.dfg.append_block_param(block3, I32);
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block3);
let jmp_block3_block1 = cur.ins().jump(block1, &[]);
cur.insert_block(block1);
let br_block1_block0 = cur.ins().brnz(cond, block0, &[]);
let jmp_block1_block2 = cur.ins().jump(block2, &[]);
cur.insert_block(block2);
cur.ins().jump(block0, &[]);
cur.insert_block(block0);
let cfg = ControlFlowGraph::with_function(cur.func);
let dt = DominatorTree::with_function(cur.func, &cfg);
// Fall-through-first, prune-at-source DFT:
//
// block3 {
// block3:jump block1 {
// block1 {
// block1:brnz block0 {
// block1:jump block2 {
// block2 {
// block2:jump block0 (seen)
// } block2
// } block1:jump block2
// block0 {
// } block0
// } block1:brnz block0
// } block1
// } block3:jump block1
// } block3
assert_eq!(dt.cfg_postorder(), &[block2, block0, block1, block3]);
assert_eq!(cur.func.layout.entry_block().unwrap(), block3);
assert_eq!(dt.idom(block3), None);
assert_eq!(dt.idom(block1).unwrap(), jmp_block3_block1);
assert_eq!(dt.idom(block2).unwrap(), jmp_block1_block2);
assert_eq!(dt.idom(block0).unwrap(), br_block1_block0);
assert!(dt.dominates(br_block1_block0, br_block1_block0, &cur.func.layout));
assert!(!dt.dominates(br_block1_block0, jmp_block3_block1, &cur.func.layout));
assert!(dt.dominates(jmp_block3_block1, br_block1_block0, &cur.func.layout));
assert_eq!(
dt.rpo_cmp(block3, block3, &cur.func.layout),
Ordering::Equal
);
assert_eq!(dt.rpo_cmp(block3, block1, &cur.func.layout), Ordering::Less);
assert_eq!(
dt.rpo_cmp(block3, jmp_block3_block1, &cur.func.layout),
Ordering::Less
);
assert_eq!(
dt.rpo_cmp(jmp_block3_block1, jmp_block1_block2, &cur.func.layout),
Ordering::Less
);
}
#[test]
fn backwards_layout() {
let mut func = Function::new();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
let jmp02 = cur.ins().jump(block2, &[]);
cur.insert_block(block1);
let trap = cur.ins().trap(TrapCode::User(5));
cur.insert_block(block2);
let jmp21 = cur.ins().jump(block1, &[]);
let cfg = ControlFlowGraph::with_function(cur.func);
let dt = DominatorTree::with_function(cur.func, &cfg);
assert_eq!(cur.func.layout.entry_block(), Some(block0));
assert_eq!(dt.idom(block0), None);
assert_eq!(dt.idom(block1), Some(jmp21));
assert_eq!(dt.idom(block2), Some(jmp02));
assert!(dt.dominates(block0, block0, &cur.func.layout));
assert!(dt.dominates(block0, jmp02, &cur.func.layout));
assert!(dt.dominates(block0, block1, &cur.func.layout));
assert!(dt.dominates(block0, trap, &cur.func.layout));
assert!(dt.dominates(block0, block2, &cur.func.layout));
assert!(dt.dominates(block0, jmp21, &cur.func.layout));
assert!(!dt.dominates(jmp02, block0, &cur.func.layout));
assert!(dt.dominates(jmp02, jmp02, &cur.func.layout));
assert!(dt.dominates(jmp02, block1, &cur.func.layout));
assert!(dt.dominates(jmp02, trap, &cur.func.layout));
assert!(dt.dominates(jmp02, block2, &cur.func.layout));
assert!(dt.dominates(jmp02, jmp21, &cur.func.layout));
assert!(!dt.dominates(block1, block0, &cur.func.layout));
assert!(!dt.dominates(block1, jmp02, &cur.func.layout));
assert!(dt.dominates(block1, block1, &cur.func.layout));
assert!(dt.dominates(block1, trap, &cur.func.layout));
assert!(!dt.dominates(block1, block2, &cur.func.layout));
assert!(!dt.dominates(block1, jmp21, &cur.func.layout));
assert!(!dt.dominates(trap, block0, &cur.func.layout));
assert!(!dt.dominates(trap, jmp02, &cur.func.layout));
assert!(!dt.dominates(trap, block1, &cur.func.layout));
assert!(dt.dominates(trap, trap, &cur.func.layout));
assert!(!dt.dominates(trap, block2, &cur.func.layout));
assert!(!dt.dominates(trap, jmp21, &cur.func.layout));
assert!(!dt.dominates(block2, block0, &cur.func.layout));
assert!(!dt.dominates(block2, jmp02, &cur.func.layout));
assert!(dt.dominates(block2, block1, &cur.func.layout));
assert!(dt.dominates(block2, trap, &cur.func.layout));
assert!(dt.dominates(block2, block2, &cur.func.layout));
assert!(dt.dominates(block2, jmp21, &cur.func.layout));
assert!(!dt.dominates(jmp21, block0, &cur.func.layout));
assert!(!dt.dominates(jmp21, jmp02, &cur.func.layout));
assert!(dt.dominates(jmp21, block1, &cur.func.layout));
assert!(dt.dominates(jmp21, trap, &cur.func.layout));
assert!(!dt.dominates(jmp21, block2, &cur.func.layout));
assert!(dt.dominates(jmp21, jmp21, &cur.func.layout));
}
}