1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Primitive types used on the node-side.
//!
//! Unlike the `polkadot-primitives` crate, these primitives are only used on the node-side,
//! not shared between the node and the runtime. This crate builds on top of the primitives defined
//! there.
#![deny(missing_docs)]
use std::{pin::Pin, time::Duration};
use bounded_vec::BoundedVec;
use futures::Future;
use parity_scale_codec::{Decode, Encode, Error as CodecError, Input};
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
use polkadot_primitives::v2::{
BlakeTwo256, BlockNumber, CandidateCommitments, CandidateHash, CollatorPair,
CommittedCandidateReceipt, CompactStatement, EncodeAs, Hash, HashT, HeadData, Id as ParaId,
OutboundHrmpMessage, PersistedValidationData, SessionIndex, Signed, UncheckedSigned,
UpwardMessage, ValidationCode, ValidatorIndex, MAX_CODE_SIZE, MAX_POV_SIZE,
};
pub use sp_consensus_babe::{
AllowedSlots as BabeAllowedSlots, BabeEpochConfiguration, Epoch as BabeEpoch,
};
pub use polkadot_parachain::primitives::BlockData;
pub mod approval;
/// Disputes related types.
pub mod disputes;
pub use disputes::{
dispute_is_inactive, CandidateVotes, DisputeMessage, DisputeMessageCheckError, DisputeStatus,
InvalidDisputeVote, SignedDisputeStatement, Timestamp, UncheckedDisputeMessage,
ValidDisputeVote, ACTIVE_DURATION_SECS,
};
// For a 16-ary Merkle Prefix Trie, we can expect at most 16 32-byte hashes per node
// plus some overhead:
// header 1 + bitmap 2 + max partial_key 8 + children 16 * (32 + len 1) + value 32 + value len 1
const MERKLE_NODE_MAX_SIZE: usize = 512 + 100;
// 16-ary Merkle Prefix Trie for 32-bit ValidatorIndex has depth at most 8.
const MERKLE_PROOF_MAX_DEPTH: usize = 8;
/// The bomb limit for decompressing code blobs.
pub const VALIDATION_CODE_BOMB_LIMIT: usize = (MAX_CODE_SIZE * 4u32) as usize;
/// The bomb limit for decompressing PoV blobs.
pub const POV_BOMB_LIMIT: usize = (MAX_POV_SIZE * 4u32) as usize;
/// The amount of time to spend on execution during backing.
pub const BACKING_EXECUTION_TIMEOUT: Duration = Duration::from_secs(2);
/// The amount of time to spend on execution during approval or disputes.
///
/// This is deliberately much longer than the backing execution timeout to
/// ensure that in the absence of extremely large disparities between hardware,
/// blocks that pass backing are considered executable by approval checkers or
/// dispute participants.
///
/// NOTE: If this value is increased significantly, also check the dispute coordinator to consider
/// candidates longer into finalization: `DISPUTE_CANDIDATE_LIFETIME_AFTER_FINALIZATION`.
pub const APPROVAL_EXECUTION_TIMEOUT: Duration = Duration::from_secs(12);
/// How many blocks after finalization an information about backed/included candidate should be
/// kept.
///
/// We don't want to remove scraped candidates on finalization because we want to
/// be sure that disputes will conclude on abandoned forks.
/// Removing the candidate on finalization creates a possibility for an attacker to
/// avoid slashing. If a bad fork is abandoned too quickly because another
/// better one gets finalized the entries for the bad fork will be pruned and we
/// might never participate in a dispute for it.
///
/// This value should consider the timeout we allow for participation in approval-voting. In
/// particular, the following condition should hold:
///
/// slot time * `DISPUTE_CANDIDATE_LIFETIME_AFTER_FINALIZATION` > `APPROVAL_EXECUTION_TIMEOUT`
/// + slot time
pub const DISPUTE_CANDIDATE_LIFETIME_AFTER_FINALIZATION: BlockNumber = 10;
/// Linked to `MAX_FINALITY_LAG` in relay chain selection,
/// `MAX_HEADS_LOOK_BACK` in `approval-voting` and
/// `MAX_BATCH_SCRAPE_ANCESTORS` in `dispute-coordinator`
pub const MAX_FINALITY_LAG: u32 = 500;
/// Type of a session window size.
///
/// We are not using `NonZeroU32` here because `expect` and `unwrap` are not yet const, so global
/// constants of `SessionWindowSize` would require `lazy_static` in that case.
///
/// See: <https://github.com/rust-lang/rust/issues/67441>
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub struct SessionWindowSize(SessionIndex);
#[macro_export]
/// Create a new checked `SessionWindowSize` which cannot be 0.
macro_rules! new_session_window_size {
(0) => {
compile_error!("Must be non zero");
};
(0_u32) => {
compile_error!("Must be non zero");
};
(0 as u32) => {
compile_error!("Must be non zero");
};
(0 as _) => {
compile_error!("Must be non zero");
};
($l:literal) => {
SessionWindowSize::unchecked_new($l as _)
};
}
/// It would be nice to draw this from the chain state, but we have no tools for it right now.
/// On Polkadot this is 1 day, and on Kusama it's 6 hours.
///
/// Number of sessions we want to consider in disputes.
pub const DISPUTE_WINDOW: SessionWindowSize = new_session_window_size!(6);
impl SessionWindowSize {
/// Get the value as `SessionIndex` for doing comparisons with those.
pub fn get(self) -> SessionIndex {
self.0
}
/// Helper function for `new_session_window_size`.
///
/// Don't use it. The only reason it is public, is because otherwise the
/// `new_session_window_size` macro would not work outside of this module.
#[doc(hidden)]
pub const fn unchecked_new(size: SessionIndex) -> Self {
Self(size)
}
}
/// The cumulative weight of a block in a fork-choice rule.
pub type BlockWeight = u32;
/// A statement, where the candidate receipt is included in the `Seconded` variant.
///
/// This is the committed candidate receipt instead of the bare candidate receipt. As such,
/// it gives access to the commitments to validators who have not executed the candidate. This
/// is necessary to allow a block-producing validator to include candidates from outside the para
/// it is assigned to.
#[derive(Clone, PartialEq, Eq, Encode, Decode)]
pub enum Statement {
/// A statement that a validator seconds a candidate.
#[codec(index = 1)]
Seconded(CommittedCandidateReceipt),
/// A statement that a validator has deemed a candidate valid.
#[codec(index = 2)]
Valid(CandidateHash),
}
impl std::fmt::Debug for Statement {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Statement::Seconded(seconded) => write!(f, "Seconded: {:?}", seconded.descriptor),
Statement::Valid(hash) => write!(f, "Valid: {:?}", hash),
}
}
}
impl Statement {
/// Get the candidate hash referenced by this statement.
///
/// If this is a `Statement::Seconded`, this does hash the candidate receipt, which may be expensive
/// for large candidates.
pub fn candidate_hash(&self) -> CandidateHash {
match *self {
Statement::Valid(ref h) => *h,
Statement::Seconded(ref c) => c.hash(),
}
}
/// Transform this statement into its compact version, which references only the hash
/// of the candidate.
pub fn to_compact(&self) -> CompactStatement {
match *self {
Statement::Seconded(ref c) => CompactStatement::Seconded(c.hash()),
Statement::Valid(hash) => CompactStatement::Valid(hash),
}
}
}
impl From<&'_ Statement> for CompactStatement {
fn from(stmt: &Statement) -> Self {
stmt.to_compact()
}
}
impl EncodeAs<CompactStatement> for Statement {
fn encode_as(&self) -> Vec<u8> {
self.to_compact().encode()
}
}
/// A statement, the corresponding signature, and the index of the sender.
///
/// Signing context and validator set should be apparent from context.
///
/// This statement is "full" in the sense that the `Seconded` variant includes the candidate receipt.
/// Only the compact `SignedStatement` is suitable for submission to the chain.
pub type SignedFullStatement = Signed<Statement, CompactStatement>;
/// Variant of `SignedFullStatement` where the signature has not yet been verified.
pub type UncheckedSignedFullStatement = UncheckedSigned<Statement, CompactStatement>;
/// Candidate invalidity details
#[derive(Debug)]
pub enum InvalidCandidate {
/// Failed to execute `validate_block`. This includes function panicking.
ExecutionError(String),
/// Validation outputs check doesn't pass.
InvalidOutputs,
/// Execution timeout.
Timeout,
/// Validation input is over the limit.
ParamsTooLarge(u64),
/// Code size is over the limit.
CodeTooLarge(u64),
/// Code does not decompress correctly.
CodeDecompressionFailure,
/// PoV does not decompress correctly.
PoVDecompressionFailure,
/// Validation function returned invalid data.
BadReturn,
/// Invalid relay chain parent.
BadParent,
/// POV hash does not match.
PoVHashMismatch,
/// Bad collator signature.
BadSignature,
/// Para head hash does not match.
ParaHeadHashMismatch,
/// Validation code hash does not match.
CodeHashMismatch,
/// Validation has generated different candidate commitments.
CommitmentsHashMismatch,
}
/// Result of the validation of the candidate.
#[derive(Debug)]
pub enum ValidationResult {
/// Candidate is valid. The validation process yields these outputs and the persisted validation
/// data used to form inputs.
Valid(CandidateCommitments, PersistedValidationData),
/// Candidate is invalid.
Invalid(InvalidCandidate),
}
/// A Proof-of-Validity
#[derive(PartialEq, Eq, Clone, Encode, Decode, Debug)]
pub struct PoV {
/// The block witness data.
pub block_data: BlockData,
}
impl PoV {
/// Get the blake2-256 hash of the PoV.
pub fn hash(&self) -> Hash {
BlakeTwo256::hash_of(self)
}
}
/// A type that represents a maybe compressed [`PoV`].
#[derive(Clone, Encode, Decode)]
#[cfg(not(target_os = "unknown"))]
pub enum MaybeCompressedPoV {
/// A raw [`PoV`], aka not compressed.
Raw(PoV),
/// The given [`PoV`] is already compressed.
Compressed(PoV),
}
#[cfg(not(target_os = "unknown"))]
impl MaybeCompressedPoV {
/// Convert into a compressed [`PoV`].
///
/// If `self == Raw` it is compressed using [`maybe_compress_pov`].
pub fn into_compressed(self) -> PoV {
match self {
Self::Raw(raw) => maybe_compress_pov(raw),
Self::Compressed(compressed) => compressed,
}
}
}
/// The output of a collator.
///
/// This differs from `CandidateCommitments` in two ways:
///
/// - does not contain the erasure root; that's computed at the Polkadot level, not at Cumulus
/// - contains a proof of validity.
#[derive(Clone, Encode, Decode)]
#[cfg(not(target_os = "unknown"))]
pub struct Collation<BlockNumber = polkadot_primitives::v2::BlockNumber> {
/// Messages destined to be interpreted by the Relay chain itself.
pub upward_messages: Vec<UpwardMessage>,
/// The horizontal messages sent by the parachain.
pub horizontal_messages: Vec<OutboundHrmpMessage<ParaId>>,
/// New validation code.
pub new_validation_code: Option<ValidationCode>,
/// The head-data produced as a result of execution.
pub head_data: HeadData,
/// Proof to verify the state transition of the parachain.
pub proof_of_validity: MaybeCompressedPoV,
/// The number of messages processed from the DMQ.
pub processed_downward_messages: u32,
/// The mark which specifies the block number up to which all inbound HRMP messages are processed.
pub hrmp_watermark: BlockNumber,
}
/// Signal that is being returned when a collation was seconded by a validator.
#[derive(Debug)]
#[cfg(not(target_os = "unknown"))]
pub struct CollationSecondedSignal {
/// The hash of the relay chain block that was used as context to sign [`Self::statement`].
pub relay_parent: Hash,
/// The statement about seconding the collation.
///
/// Anything else than [`Statement::Seconded`](Statement::Seconded) is forbidden here.
pub statement: SignedFullStatement,
}
/// Result of the [`CollatorFn`] invocation.
#[cfg(not(target_os = "unknown"))]
pub struct CollationResult {
/// The collation that was build.
pub collation: Collation,
/// An optional result sender that should be informed about a successfully seconded collation.
///
/// There is no guarantee that this sender is informed ever about any result, it is completely okay to just drop it.
/// However, if it is called, it should be called with the signed statement of a parachain validator seconding the
/// collation.
pub result_sender: Option<futures::channel::oneshot::Sender<CollationSecondedSignal>>,
}
#[cfg(not(target_os = "unknown"))]
impl CollationResult {
/// Convert into the inner values.
pub fn into_inner(
self,
) -> (Collation, Option<futures::channel::oneshot::Sender<CollationSecondedSignal>>) {
(self.collation, self.result_sender)
}
}
/// Collation function.
///
/// Will be called with the hash of the relay chain block the parachain block should be build on and the
/// [`ValidationData`] that provides information about the state of the parachain on the relay chain.
///
/// Returns an optional [`CollationResult`].
#[cfg(not(target_os = "unknown"))]
pub type CollatorFn = Box<
dyn Fn(
Hash,
&PersistedValidationData,
) -> Pin<Box<dyn Future<Output = Option<CollationResult>> + Send>>
+ Send
+ Sync,
>;
/// Configuration for the collation generator
#[cfg(not(target_os = "unknown"))]
pub struct CollationGenerationConfig {
/// Collator's authentication key, so it can sign things.
pub key: CollatorPair,
/// Collation function. See [`CollatorFn`] for more details.
pub collator: CollatorFn,
/// The parachain that this collator collates for
pub para_id: ParaId,
}
#[cfg(not(target_os = "unknown"))]
impl std::fmt::Debug for CollationGenerationConfig {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "CollationGenerationConfig {{ ... }}")
}
}
/// This is the data we keep available for each candidate included in the relay chain.
#[derive(Clone, Encode, Decode, PartialEq, Eq, Debug)]
pub struct AvailableData {
/// The Proof-of-Validation of the candidate.
pub pov: std::sync::Arc<PoV>,
/// The persisted validation data needed for approval checks.
pub validation_data: PersistedValidationData,
}
/// This is a convenience type to allow the Erasure chunk proof to Decode into a nested BoundedVec
#[derive(PartialEq, Eq, Clone, Debug, Hash)]
pub struct Proof(BoundedVec<BoundedVec<u8, 1, MERKLE_NODE_MAX_SIZE>, 1, MERKLE_PROOF_MAX_DEPTH>);
impl Proof {
/// This function allows to convert back to the standard nested Vec format
pub fn iter(&self) -> impl Iterator<Item = &[u8]> {
self.0.iter().map(|v| v.as_slice())
}
/// Construct an invalid dummy proof
///
/// Useful for testing, should absolutely not be used in production.
pub fn dummy_proof() -> Proof {
Proof(BoundedVec::from_vec(vec![BoundedVec::from_vec(vec![0]).unwrap()]).unwrap())
}
}
/// Possible errors when converting from `Vec<Vec<u8>>` into [`Proof`].
#[derive(thiserror::Error, Debug)]
pub enum MerkleProofError {
#[error("Merkle max proof depth exceeded {0} > {} .", MERKLE_PROOF_MAX_DEPTH)]
/// This error signifies that the Proof length exceeds the trie's max depth
MerkleProofDepthExceeded(usize),
#[error("Merkle node max size exceeded {0} > {} .", MERKLE_NODE_MAX_SIZE)]
/// This error signifies that a Proof node exceeds the 16-ary max node size
MerkleProofNodeSizeExceeded(usize),
}
impl TryFrom<Vec<Vec<u8>>> for Proof {
type Error = MerkleProofError;
fn try_from(input: Vec<Vec<u8>>) -> Result<Self, Self::Error> {
if input.len() > MERKLE_PROOF_MAX_DEPTH {
return Err(Self::Error::MerkleProofDepthExceeded(input.len()))
}
let mut out = Vec::new();
for element in input.into_iter() {
let length = element.len();
let data: BoundedVec<u8, 1, MERKLE_NODE_MAX_SIZE> = BoundedVec::from_vec(element)
.map_err(|_| Self::Error::MerkleProofNodeSizeExceeded(length))?;
out.push(data);
}
Ok(Proof(BoundedVec::from_vec(out).expect("Buffer size is deterined above. qed")))
}
}
impl Decode for Proof {
fn decode<I: Input>(value: &mut I) -> Result<Self, CodecError> {
let temp: Vec<Vec<u8>> = Decode::decode(value)?;
let mut out = Vec::new();
for element in temp.into_iter() {
let bounded_temp: Result<BoundedVec<u8, 1, MERKLE_NODE_MAX_SIZE>, CodecError> =
BoundedVec::from_vec(element)
.map_err(|_| "Inner node exceeds maximum node size.".into());
out.push(bounded_temp?);
}
BoundedVec::from_vec(out)
.map(Self)
.map_err(|_| "Merkle proof depth exceeds maximum trie depth".into())
}
}
impl Encode for Proof {
fn size_hint(&self) -> usize {
MERKLE_NODE_MAX_SIZE * MERKLE_PROOF_MAX_DEPTH
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let temp = self.0.iter().map(|v| v.as_vec()).collect::<Vec<_>>();
temp.using_encoded(f)
}
}
impl Serialize for Proof {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_bytes(&self.encode())
}
}
impl<'de> Deserialize<'de> for Proof {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
// Deserialize the string and get individual components
let s = Vec::<u8>::deserialize(deserializer)?;
let mut slice = s.as_slice();
Decode::decode(&mut slice).map_err(de::Error::custom)
}
}
/// A chunk of erasure-encoded block data.
#[derive(PartialEq, Eq, Clone, Encode, Decode, Serialize, Deserialize, Debug, Hash)]
pub struct ErasureChunk {
/// The erasure-encoded chunk of data belonging to the candidate block.
pub chunk: Vec<u8>,
/// The index of this erasure-encoded chunk of data.
pub index: ValidatorIndex,
/// Proof for this chunk's branch in the Merkle tree.
pub proof: Proof,
}
impl ErasureChunk {
/// Convert bounded Vec Proof to regular Vec<Vec<u8>>
pub fn proof(&self) -> &Proof {
&self.proof
}
}
/// Compress a PoV, unless it exceeds the [`POV_BOMB_LIMIT`].
#[cfg(not(target_os = "unknown"))]
pub fn maybe_compress_pov(pov: PoV) -> PoV {
let PoV { block_data: BlockData(raw) } = pov;
let raw = sp_maybe_compressed_blob::compress(&raw, POV_BOMB_LIMIT).unwrap_or(raw);
let pov = PoV { block_data: BlockData(raw) };
pov
}