1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
//! External function calls.
//!
//! To a Cranelift function, all functions are "external". Directly called functions must be
//! declared in the preamble, and all function calls must have a signature.
//!
//! This module declares the data types used to represent external functions and call signatures.
use crate::ir::{ExternalName, SigRef, Type};
use crate::isa::CallConv;
use crate::machinst::RelocDistance;
use alloc::vec::Vec;
use core::fmt;
use core::str::FromStr;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
use super::function::FunctionParameters;
/// Function signature.
///
/// The function signature describes the types of formal parameters and return values along with
/// other details that are needed to call a function correctly.
///
/// A signature can optionally include ISA-specific ABI information which specifies exactly how
/// arguments and return values are passed.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Signature {
/// The arguments passed to the function.
pub params: Vec<AbiParam>,
/// Values returned from the function.
pub returns: Vec<AbiParam>,
/// Calling convention.
pub call_conv: CallConv,
}
impl Signature {
/// Create a new blank signature.
pub fn new(call_conv: CallConv) -> Self {
Self {
params: Vec::new(),
returns: Vec::new(),
call_conv,
}
}
/// Clear the signature so it is identical to a fresh one returned by `new()`.
pub fn clear(&mut self, call_conv: CallConv) {
self.params.clear();
self.returns.clear();
self.call_conv = call_conv;
}
/// Find the index of a presumed unique special-purpose parameter.
pub fn special_param_index(&self, purpose: ArgumentPurpose) -> Option<usize> {
self.params.iter().rposition(|arg| arg.purpose == purpose)
}
/// Find the index of a presumed unique special-purpose parameter.
pub fn special_return_index(&self, purpose: ArgumentPurpose) -> Option<usize> {
self.returns.iter().rposition(|arg| arg.purpose == purpose)
}
/// Does this signature have a parameter whose `ArgumentPurpose` is
/// `purpose`?
pub fn uses_special_param(&self, purpose: ArgumentPurpose) -> bool {
self.special_param_index(purpose).is_some()
}
/// Does this signature have a return whose `ArgumentPurpose` is `purpose`?
pub fn uses_special_return(&self, purpose: ArgumentPurpose) -> bool {
self.special_return_index(purpose).is_some()
}
/// How many special parameters does this function have?
pub fn num_special_params(&self) -> usize {
self.params
.iter()
.filter(|p| p.purpose != ArgumentPurpose::Normal)
.count()
}
/// How many special returns does this function have?
pub fn num_special_returns(&self) -> usize {
self.returns
.iter()
.filter(|r| r.purpose != ArgumentPurpose::Normal)
.count()
}
/// Does this signature take an struct return pointer parameter?
pub fn uses_struct_return_param(&self) -> bool {
self.uses_special_param(ArgumentPurpose::StructReturn)
}
/// Does this return more than one normal value? (Pre-struct return
/// legalization)
pub fn is_multi_return(&self) -> bool {
self.returns
.iter()
.filter(|r| r.purpose == ArgumentPurpose::Normal)
.count()
> 1
}
}
fn write_list(f: &mut fmt::Formatter, args: &[AbiParam]) -> fmt::Result {
match args.split_first() {
None => {}
Some((first, rest)) => {
write!(f, "{}", first)?;
for arg in rest {
write!(f, ", {}", arg)?;
}
}
}
Ok(())
}
impl fmt::Display for Signature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "(")?;
write_list(f, &self.params)?;
write!(f, ")")?;
if !self.returns.is_empty() {
write!(f, " -> ")?;
write_list(f, &self.returns)?;
}
write!(f, " {}", self.call_conv)
}
}
/// Function parameter or return value descriptor.
///
/// This describes the value type being passed to or from a function along with flags that affect
/// how the argument is passed.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct AbiParam {
/// Type of the argument value.
pub value_type: Type,
/// Special purpose of argument, or `Normal`.
pub purpose: ArgumentPurpose,
/// Method for extending argument to a full register.
pub extension: ArgumentExtension,
}
impl AbiParam {
/// Create a parameter with default flags.
pub fn new(vt: Type) -> Self {
Self {
value_type: vt,
extension: ArgumentExtension::None,
purpose: ArgumentPurpose::Normal,
}
}
/// Create a special-purpose parameter that is not (yet) bound to a specific register.
pub fn special(vt: Type, purpose: ArgumentPurpose) -> Self {
Self {
value_type: vt,
extension: ArgumentExtension::None,
purpose,
}
}
/// Convert `self` to a parameter with the `uext` flag set.
pub fn uext(self) -> Self {
debug_assert!(self.value_type.is_int(), "uext on {} arg", self.value_type);
Self {
extension: ArgumentExtension::Uext,
..self
}
}
/// Convert `self` to a parameter type with the `sext` flag set.
pub fn sext(self) -> Self {
debug_assert!(self.value_type.is_int(), "sext on {} arg", self.value_type);
Self {
extension: ArgumentExtension::Sext,
..self
}
}
}
impl fmt::Display for AbiParam {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.value_type)?;
match self.extension {
ArgumentExtension::None => {}
ArgumentExtension::Uext => write!(f, " uext")?,
ArgumentExtension::Sext => write!(f, " sext")?,
}
if self.purpose != ArgumentPurpose::Normal {
write!(f, " {}", self.purpose)?;
}
Ok(())
}
}
/// Function argument extension options.
///
/// On some architectures, small integer function arguments and/or return values are extended to
/// the width of a general-purpose register.
///
/// This attribute specifies how an argument or return value should be extended *if the platform
/// and ABI require it*. Because the frontend (CLIF generator) does not know anything about the
/// particulars of the target's ABI, and the CLIF should be platform-independent, these attributes
/// specify *how* to extend (according to the signedness of the original program) rather than
/// *whether* to extend.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum ArgumentExtension {
/// No extension, high bits are indeterminate.
None,
/// Unsigned extension: high bits in register are 0.
Uext,
/// Signed extension: high bits in register replicate sign bit.
Sext,
}
/// The special purpose of a function argument.
///
/// Function arguments and return values are used to pass user program values between functions,
/// but they are also used to represent special registers with significance to the ABI such as
/// frame pointers and callee-saved registers.
///
/// The argument purpose is used to indicate any special meaning of an argument or return value.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum ArgumentPurpose {
/// A normal user program value passed to or from a function.
Normal,
/// A C struct passed as argument.
StructArgument(u32),
/// Struct return pointer.
///
/// When a function needs to return more data than will fit in registers, the caller passes a
/// pointer to a memory location where the return value can be written. In some ABIs, this
/// struct return pointer is passed in a specific register.
///
/// This argument kind can also appear as a return value for ABIs that require a function with
/// a `StructReturn` pointer argument to also return that pointer in a register.
StructReturn,
/// A VM context pointer.
///
/// This is a pointer to a context struct containing details about the current sandbox. It is
/// used as a base pointer for `vmctx` global values.
VMContext,
/// A signature identifier.
///
/// This is a special-purpose argument used to identify the calling convention expected by the
/// caller in an indirect call. The callee can verify that the expected signature ID matches.
SignatureId,
/// A stack limit pointer.
///
/// This is a pointer to a stack limit. It is used to check the current stack pointer
/// against. Can only appear once in a signature.
StackLimit,
}
impl fmt::Display for ArgumentPurpose {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(match self {
Self::Normal => "normal",
Self::StructArgument(size) => return write!(f, "sarg({})", size),
Self::StructReturn => "sret",
Self::VMContext => "vmctx",
Self::SignatureId => "sigid",
Self::StackLimit => "stack_limit",
})
}
}
impl FromStr for ArgumentPurpose {
type Err = ();
fn from_str(s: &str) -> Result<Self, ()> {
match s {
"normal" => Ok(Self::Normal),
"sret" => Ok(Self::StructReturn),
"vmctx" => Ok(Self::VMContext),
"sigid" => Ok(Self::SignatureId),
"stack_limit" => Ok(Self::StackLimit),
_ if s.starts_with("sarg(") => {
if !s.ends_with(")") {
return Err(());
}
// Parse 'sarg(size)'
let size: u32 = s["sarg(".len()..s.len() - 1].parse().map_err(|_| ())?;
Ok(Self::StructArgument(size))
}
_ => Err(()),
}
}
}
/// An external function.
///
/// Information about a function that can be called directly with a direct `call` instruction.
#[derive(Clone, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct ExtFuncData {
/// Name of the external function.
pub name: ExternalName,
/// Call signature of function.
pub signature: SigRef,
/// Will this function be defined nearby, such that it will always be a certain distance away,
/// after linking? If so, references to it can avoid going through a GOT or PLT. Note that
/// symbols meant to be preemptible cannot be considered colocated.
///
/// If `true`, some backends may use relocation forms that have limited range. The exact
/// distance depends on the code model in use. Currently on AArch64, for example, Cranelift
/// uses a custom code model supporting up to +/- 128MB displacements. If it is unknown how
/// far away the target will be, it is best not to set the `colocated` flag; in general, this
/// flag is best used when the target is known to be in the same unit of code generation, such
/// as a Wasm module.
///
/// See the documentation for [`RelocDistance`](crate::machinst::RelocDistance) for more details. A
/// `colocated` flag value of `true` implies `RelocDistance::Near`.
pub colocated: bool,
}
impl ExtFuncData {
/// Return an estimate of the distance to the referred-to function symbol.
pub fn reloc_distance(&self) -> RelocDistance {
if self.colocated {
RelocDistance::Near
} else {
RelocDistance::Far
}
}
/// Returns a displayable version of the `ExtFuncData`, with or without extra context to
/// prettify the output.
pub fn display<'a>(
&'a self,
params: Option<&'a FunctionParameters>,
) -> DisplayableExtFuncData<'a> {
DisplayableExtFuncData {
ext_func: self,
params,
}
}
}
/// A displayable `ExtFuncData`, with extra context to prettify the output.
pub struct DisplayableExtFuncData<'a> {
ext_func: &'a ExtFuncData,
params: Option<&'a FunctionParameters>,
}
impl<'a> fmt::Display for DisplayableExtFuncData<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.ext_func.colocated {
write!(f, "colocated ")?;
}
write!(
f,
"{} {}",
self.ext_func.name.display(self.params),
self.ext_func.signature
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ir::types::{B8, F32, I32};
use alloc::string::ToString;
#[test]
fn argument_type() {
let t = AbiParam::new(I32);
assert_eq!(t.to_string(), "i32");
let mut t = t.uext();
assert_eq!(t.to_string(), "i32 uext");
assert_eq!(t.sext().to_string(), "i32 sext");
t.purpose = ArgumentPurpose::StructReturn;
assert_eq!(t.to_string(), "i32 uext sret");
}
#[test]
fn argument_purpose() {
let all_purpose = [
(ArgumentPurpose::Normal, "normal"),
(ArgumentPurpose::StructReturn, "sret"),
(ArgumentPurpose::VMContext, "vmctx"),
(ArgumentPurpose::SignatureId, "sigid"),
(ArgumentPurpose::StackLimit, "stack_limit"),
(ArgumentPurpose::StructArgument(42), "sarg(42)"),
];
for &(e, n) in &all_purpose {
assert_eq!(e.to_string(), n);
assert_eq!(Ok(e), n.parse());
}
}
#[test]
fn call_conv() {
for &cc in &[
CallConv::Fast,
CallConv::Cold,
CallConv::SystemV,
CallConv::WindowsFastcall,
] {
assert_eq!(Ok(cc), cc.to_string().parse())
}
}
#[test]
fn signatures() {
let mut sig = Signature::new(CallConv::WindowsFastcall);
assert_eq!(sig.to_string(), "() windows_fastcall");
sig.params.push(AbiParam::new(I32));
assert_eq!(sig.to_string(), "(i32) windows_fastcall");
sig.returns.push(AbiParam::new(F32));
assert_eq!(sig.to_string(), "(i32) -> f32 windows_fastcall");
sig.params.push(AbiParam::new(I32.by(4).unwrap()));
assert_eq!(sig.to_string(), "(i32, i32x4) -> f32 windows_fastcall");
sig.returns.push(AbiParam::new(B8));
assert_eq!(sig.to_string(), "(i32, i32x4) -> f32, b8 windows_fastcall");
}
}