1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
// This file is part of Substrate.

// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Utility library for managing tree-like ordered data with logic for pruning
//! the tree while finalizing nodes.

#![warn(missing_docs)]

use codec::{Decode, Encode};
use std::{cmp::Reverse, fmt};

/// Error occurred when iterating with the tree.
#[derive(Clone, Debug, PartialEq)]
pub enum Error<E> {
	/// Adding duplicate node to tree.
	Duplicate,
	/// Finalizing descendent of tree node without finalizing ancestor(s).
	UnfinalizedAncestor,
	/// Imported or finalized node that is an ancestor of previously finalized node.
	Revert,
	/// Error throw by client when checking for node ancestry.
	Client(E),
}

impl<E: std::error::Error> fmt::Display for Error<E> {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		let message = match *self {
			Error::Duplicate => "Hash already exists in Tree".into(),
			Error::UnfinalizedAncestor => "Finalized descendent of Tree node without finalizing its ancestor(s) first".into(),
			Error::Revert => "Tried to import or finalize node that is an ancestor of a previously finalized node".into(),
			Error::Client(ref err) => format!("Client error: {}", err),
		};
		write!(f, "{}", message)
	}
}

impl<E: std::error::Error> std::error::Error for Error<E> {
	fn cause(&self) -> Option<&dyn std::error::Error> {
		None
	}
}

impl<E: std::error::Error> From<E> for Error<E> {
	fn from(err: E) -> Error<E> {
		Error::Client(err)
	}
}

/// Result of finalizing a node (that could be a part of the tree or not).
#[derive(Debug, PartialEq)]
pub enum FinalizationResult<V> {
	/// The tree has changed, optionally return the value associated with the finalized node.
	Changed(Option<V>),
	/// The tree has not changed.
	Unchanged,
}

/// Filtering action.
#[derive(Debug, PartialEq)]
pub enum FilterAction {
	/// Remove the node and its subtree.
	Remove,
	/// Maintain the node.
	KeepNode,
	/// Maintain the node and its subtree.
	KeepTree,
}

/// A tree data structure that stores several nodes across multiple branches.
///
/// Top-level branches are called roots. The tree has functionality for
/// finalizing nodes, which means that that node is traversed, and all competing
/// branches are pruned. It also guarantees that nodes in the tree are finalized
/// in order. Each node is uniquely identified by its hash but can be ordered by
/// its number. In order to build the tree an external function must be provided
/// when interacting with the tree to establish a node's ancestry.
#[derive(Clone, Debug, Decode, Encode, PartialEq)]
pub struct ForkTree<H, N, V> {
	roots: Vec<Node<H, N, V>>,
	best_finalized_number: Option<N>,
}

impl<H, N, V> ForkTree<H, N, V>
where
	H: PartialEq,
	N: Ord,
{
	/// Create a new empty tree.
	pub fn new() -> ForkTree<H, N, V> {
		ForkTree { roots: Vec::new(), best_finalized_number: None }
	}

	/// Rebalance the tree, i.e. sort child nodes by max branch depth (decreasing).
	///
	/// Most operations in the tree are performed with depth-first search
	/// starting from the leftmost node at every level, since this tree is meant
	/// to be used in a blockchain context, a good heuristic is that the node
	/// we'll be looking for at any point will likely be in one of the deepest chains
	/// (i.e. the longest ones).
	pub fn rebalance(&mut self) {
		self.roots.sort_by_key(|n| Reverse(n.max_depth()));
		let mut stack: Vec<_> = self.roots.iter_mut().collect();
		while let Some(node) = stack.pop() {
			node.children.sort_by_key(|n| Reverse(n.max_depth()));
			stack.extend(node.children.iter_mut());
		}
	}

	/// Import a new node into the tree. The given function `is_descendent_of`
	/// should return `true` if the second hash (target) is a descendent of the
	/// first hash (base). This method assumes that nodes in the same branch are
	/// imported in order.
	///
	/// Returns `true` if the imported node is a root.
	// WARNING: some users of this method (i.e. consensus epoch changes tree) currently silently
	// rely on a **post-order DFS** traversal. If we are using instead a top-down traversal method
	// then the `is_descendent_of` closure, when used after a warp-sync, may end up querying the
	// backend for a block (the one corresponding to the root) that is not present and thus will
	// return a wrong result.
	pub fn import<F, E>(
		&mut self,
		hash: H,
		number: N,
		data: V,
		is_descendent_of: &F,
	) -> Result<bool, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		let (children, is_root) =
			match self.find_node_where_mut(&hash, &number, is_descendent_of, &|_| true)? {
				Some(parent) => (&mut parent.children, false),
				None => (&mut self.roots, true),
			};

		if children.iter().any(|elem| elem.hash == hash) {
			return Err(Error::Duplicate)
		}

		children.push(Node { data, hash, number, children: Default::default() });

		if children.len() == 1 {
			// Rebalance may be required only if we've extended the branch depth.
			self.rebalance();
		}

		Ok(is_root)
	}

	/// Iterates over the existing roots in the tree.
	pub fn roots(&self) -> impl Iterator<Item = (&H, &N, &V)> {
		self.roots.iter().map(|node| (&node.hash, &node.number, &node.data))
	}

	fn node_iter(&self) -> impl Iterator<Item = &Node<H, N, V>> {
		// we need to reverse the order of roots to maintain the expected
		// ordering since the iterator uses a stack to track state.
		ForkTreeIterator { stack: self.roots.iter().rev().collect() }
	}

	/// Iterates the nodes in the tree in pre-order.
	pub fn iter(&self) -> impl Iterator<Item = (&H, &N, &V)> {
		self.node_iter().map(|node| (&node.hash, &node.number, &node.data))
	}

	/// Map fork tree into values of new types.
	///
	/// Tree traversal technique (e.g. BFS vs DFS) is left as not specified and
	/// may be subject to change in the future. In other words, your predicates
	/// should not rely on the observed traversal technique currently in use.
	pub fn map<VT, F>(self, f: &mut F) -> ForkTree<H, N, VT>
	where
		F: FnMut(&H, &N, V) -> VT,
	{
		let mut queue: Vec<_> =
			self.roots.into_iter().rev().map(|node| (usize::MAX, node)).collect();
		let mut next_queue = Vec::new();
		let mut output = Vec::new();

		while !queue.is_empty() {
			for (parent_index, node) in queue.drain(..) {
				let new_data = f(&node.hash, &node.number, node.data);
				let new_node = Node {
					hash: node.hash,
					number: node.number,
					data: new_data,
					children: Vec::with_capacity(node.children.len()),
				};

				let node_id = output.len();
				output.push((parent_index, new_node));

				for child in node.children.into_iter().rev() {
					next_queue.push((node_id, child));
				}
			}

			std::mem::swap(&mut queue, &mut next_queue);
		}

		let mut roots = Vec::new();
		while let Some((parent_index, new_node)) = output.pop() {
			if parent_index == usize::MAX {
				roots.push(new_node);
			} else {
				output[parent_index].1.children.push(new_node);
			}
		}

		ForkTree { roots, best_finalized_number: self.best_finalized_number }
	}

	/// Find a node in the tree that is the deepest ancestor of the given
	/// block hash and which passes the given predicate. The given function
	/// `is_descendent_of` should return `true` if the second hash (target)
	/// is a descendent of the first hash (base).
	pub fn find_node_where<F, E, P>(
		&self,
		hash: &H,
		number: &N,
		is_descendent_of: &F,
		predicate: &P,
	) -> Result<Option<&Node<H, N, V>>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		let maybe_path = self.find_node_index_where(hash, number, is_descendent_of, predicate)?;
		Ok(maybe_path.map(|path| {
			let children =
				path.iter().take(path.len() - 1).fold(&self.roots, |curr, &i| &curr[i].children);
			&children[path[path.len() - 1]]
		}))
	}

	/// Same as [`find_node_where`](ForkTree::find_node_where), but returns mutable reference.
	pub fn find_node_where_mut<F, E, P>(
		&mut self,
		hash: &H,
		number: &N,
		is_descendent_of: &F,
		predicate: &P,
	) -> Result<Option<&mut Node<H, N, V>>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		let maybe_path = self.find_node_index_where(hash, number, is_descendent_of, predicate)?;
		Ok(maybe_path.map(|path| {
			let children = path
				.iter()
				.take(path.len() - 1)
				.fold(&mut self.roots, |curr, &i| &mut curr[i].children);
			&mut children[path[path.len() - 1]]
		}))
	}

	/// Same as [`find_node_where`](ForkTree::find_node_where), but returns indices.
	///
	/// The returned indices represent the full path to reach the matching node starting
	/// from first to last, i.e. the earliest index in the traverse path goes first, and the final
	/// index in the traverse path goes last. If a node is found that matches the predicate
	/// the returned path should always contain at least one index, otherwise `None` is
	/// returned.
	// WARNING: some users of this method (i.e. consensus epoch changes tree) currently silently
	// rely on a **post-order DFS** traversal. If we are using instead a top-down traversal method
	// then the `is_descendent_of` closure, when used after a warp-sync, will end up querying the
	// backend for a block (the one corresponding to the root) that is not present and thus will
	// return a wrong result.
	pub fn find_node_index_where<F, E, P>(
		&self,
		hash: &H,
		number: &N,
		is_descendent_of: &F,
		predicate: &P,
	) -> Result<Option<Vec<usize>>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		let mut stack = vec![];
		let mut root_idx = 0;
		let mut found = false;
		let mut is_descendent = false;

		while root_idx < self.roots.len() {
			if *number <= self.roots[root_idx].number {
				root_idx += 1;
				continue
			}
			// The second element in the stack tuple tracks what is the **next** children
			// index to search into. If we find an ancestor then we stop searching into
			// alternative branches and we focus on the current path up to the root.
			stack.push((&self.roots[root_idx], 0));
			while let Some((node, i)) = stack.pop() {
				if i < node.children.len() && !is_descendent {
					stack.push((node, i + 1));
					if node.children[i].number < *number {
						stack.push((&node.children[i], 0));
					}
				} else if is_descendent || is_descendent_of(&node.hash, hash)? {
					is_descendent = true;
					if predicate(&node.data) {
						found = true;
						break
					}
				}
			}

			// If the element we are looking for is a descendent of the current root
			// then we can stop the search.
			if is_descendent {
				break
			}
			root_idx += 1;
		}

		Ok(if found {
			// The path is the root index followed by the indices of all the children
			// we were processing when we found the element (remember the stack
			// contains the index of the **next** children to process).
			let path: Vec<_> =
				std::iter::once(root_idx).chain(stack.iter().map(|(_, i)| *i - 1)).collect();
			Some(path)
		} else {
			None
		})
	}

	/// Prune the tree, removing all non-canonical nodes. We find the node in the
	/// tree that is the deepest ancestor of the given hash and that passes the
	/// given predicate. If such a node exists, we re-root the tree to this
	/// node. Otherwise the tree remains unchanged. The given function
	/// `is_descendent_of` should return `true` if the second hash (target) is a
	/// descendent of the first hash (base).
	///
	/// Returns all pruned node data.
	pub fn prune<F, E, P>(
		&mut self,
		hash: &H,
		number: &N,
		is_descendent_of: &F,
		predicate: &P,
	) -> Result<impl Iterator<Item = (H, N, V)>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		let root_index =
			match self.find_node_index_where(hash, number, is_descendent_of, predicate)? {
				Some(idx) => idx,
				None => return Ok(RemovedIterator { stack: Vec::new() }),
			};

		let mut old_roots = std::mem::take(&mut self.roots);

		let curr_children = root_index
			.iter()
			.take(root_index.len() - 1)
			.fold(&mut old_roots, |curr, idx| &mut curr[*idx].children);
		let mut root = curr_children.remove(root_index[root_index.len() - 1]);

		let mut removed = old_roots;

		// we found the deepest ancestor of the finalized block, so we prune
		// out any children that don't include the finalized block.
		let root_children = std::mem::take(&mut root.children);
		let mut is_first = true;

		for child in root_children {
			if is_first &&
				(child.number == *number && child.hash == *hash ||
					child.number < *number && is_descendent_of(&child.hash, hash)?)
			{
				root.children.push(child);
				// assuming that the tree is well formed only one child should pass this
				// requirement due to ancestry restrictions (i.e. they must be different forks).
				is_first = false;
			} else {
				removed.push(child);
			}
		}

		self.roots = vec![root];
		self.rebalance();

		Ok(RemovedIterator { stack: removed })
	}

	/// Finalize a root in the tree and return it, return `None` in case no root
	/// with the given hash exists. All other roots are pruned, and the children
	/// of the finalized node become the new roots.
	pub fn finalize_root(&mut self, hash: &H) -> Option<V> {
		self.roots
			.iter()
			.position(|node| node.hash == *hash)
			.map(|position| self.finalize_root_at(position))
	}

	/// Finalize root at given position. See `finalize_root` comment for details.
	fn finalize_root_at(&mut self, position: usize) -> V {
		let node = self.roots.swap_remove(position);
		self.roots = node.children;
		self.best_finalized_number = Some(node.number);
		node.data
	}

	/// Finalize a node in the tree. This method will make sure that the node
	/// being finalized is either an existing root (and return its data), or a
	/// node from a competing branch (not in the tree), tree pruning is done
	/// accordingly. The given function `is_descendent_of` should return `true`
	/// if the second hash (target) is a descendent of the first hash (base).
	pub fn finalize<F, E>(
		&mut self,
		hash: &H,
		number: N,
		is_descendent_of: &F,
	) -> Result<FinalizationResult<V>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		// check if one of the current roots is being finalized
		if let Some(root) = self.finalize_root(hash) {
			return Ok(FinalizationResult::Changed(Some(root)))
		}

		// make sure we're not finalizing a descendent of any root
		for root in self.roots.iter() {
			if number > root.number && is_descendent_of(&root.hash, hash)? {
				return Err(Error::UnfinalizedAncestor)
			}
		}

		// we finalized a block earlier than any existing root (or possibly
		// another fork not part of the tree). make sure to only keep roots that
		// are part of the finalized branch
		let mut changed = false;
		let roots = std::mem::take(&mut self.roots);

		for root in roots {
			if root.number > number && is_descendent_of(hash, &root.hash)? {
				self.roots.push(root);
			} else {
				changed = true;
			}
		}

		self.best_finalized_number = Some(number);

		if changed {
			Ok(FinalizationResult::Changed(None))
		} else {
			Ok(FinalizationResult::Unchanged)
		}
	}

	/// Finalize a node in the tree and all its ancestors. The given function
	/// `is_descendent_of` should return `true` if the second hash (target) is
	// a descendent of the first hash (base).
	pub fn finalize_with_ancestors<F, E>(
		&mut self,
		hash: &H,
		number: N,
		is_descendent_of: &F,
	) -> Result<FinalizationResult<V>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		// check if one of the current roots is being finalized
		if let Some(root) = self.finalize_root(hash) {
			return Ok(FinalizationResult::Changed(Some(root)))
		}

		// we need to:
		// 1) remove all roots that are not ancestors AND not descendants of finalized block;
		// 2) if node is descendant - just leave it;
		// 3) if node is ancestor - 'open it'
		let mut changed = false;
		let mut idx = 0;
		while idx != self.roots.len() {
			let (is_finalized, is_descendant, is_ancestor) = {
				let root = &self.roots[idx];
				let is_finalized = root.hash == *hash;
				let is_descendant =
					!is_finalized && root.number > number && is_descendent_of(hash, &root.hash)?;
				let is_ancestor = !is_finalized &&
					!is_descendant && root.number < number &&
					is_descendent_of(&root.hash, hash)?;
				(is_finalized, is_descendant, is_ancestor)
			};

			// if we have met finalized root - open it and return
			if is_finalized {
				return Ok(FinalizationResult::Changed(Some(self.finalize_root_at(idx))))
			}

			// if node is descendant of finalized block - just leave it as is
			if is_descendant {
				idx += 1;
				continue
			}

			// if node is ancestor of finalized block - remove it and continue with children
			if is_ancestor {
				let root = self.roots.swap_remove(idx);
				self.roots.extend(root.children);
				changed = true;
				continue
			}

			// if node is neither ancestor, nor descendant of the finalized block - remove it
			self.roots.swap_remove(idx);
			changed = true;
		}

		self.best_finalized_number = Some(number);

		if changed {
			Ok(FinalizationResult::Changed(None))
		} else {
			Ok(FinalizationResult::Unchanged)
		}
	}

	/// Checks if any node in the tree is finalized by either finalizing the
	/// node itself or a node's descendent that's not in the tree, guaranteeing
	/// that the node being finalized isn't a descendent of (or equal to) any of
	/// the node's children. Returns `Some(true)` if the node being finalized is
	/// a root, `Some(false)` if the node being finalized is not a root, and
	/// `None` if no node in the tree is finalized. The given `predicate` is
	/// checked on the prospective finalized root and must pass for finalization
	/// to occur. The given function `is_descendent_of` should return `true` if
	/// the second hash (target) is a descendent of the first hash (base).
	pub fn finalizes_any_with_descendent_if<F, P, E>(
		&self,
		hash: &H,
		number: N,
		is_descendent_of: &F,
		predicate: P,
	) -> Result<Option<bool>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		// check if the given hash is equal or a descendent of any node in the
		// tree, if we find a valid node that passes the predicate then we must
		// ensure that we're not finalizing past any of its child nodes.
		for node in self.node_iter() {
			if predicate(&node.data) && (node.hash == *hash || is_descendent_of(&node.hash, hash)?)
			{
				for child in node.children.iter() {
					if child.number <= number &&
						(child.hash == *hash || is_descendent_of(&child.hash, hash)?)
					{
						return Err(Error::UnfinalizedAncestor)
					}
				}

				return Ok(Some(self.roots.iter().any(|root| root.hash == node.hash)))
			}
		}

		Ok(None)
	}

	/// Finalize a root in the tree by either finalizing the node itself or a
	/// node's descendent that's not in the tree, guaranteeing that the node
	/// being finalized isn't a descendent of (or equal to) any of the root's
	/// children. The given `predicate` is checked on the prospective finalized
	/// root and must pass for finalization to occur. The given function
	/// `is_descendent_of` should return `true` if the second hash (target) is a
	/// descendent of the first hash (base).
	pub fn finalize_with_descendent_if<F, P, E>(
		&mut self,
		hash: &H,
		number: N,
		is_descendent_of: &F,
		predicate: P,
	) -> Result<FinalizationResult<V>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		// check if the given hash is equal or a a descendent of any root, if we
		// find a valid root that passes the predicate then we must ensure that
		// we're not finalizing past any children node.
		let mut position = None;
		for (i, root) in self.roots.iter().enumerate() {
			if predicate(&root.data) && (root.hash == *hash || is_descendent_of(&root.hash, hash)?)
			{
				for child in root.children.iter() {
					if child.number <= number &&
						(child.hash == *hash || is_descendent_of(&child.hash, hash)?)
					{
						return Err(Error::UnfinalizedAncestor)
					}
				}

				position = Some(i);
				break
			}
		}

		let node_data = position.map(|i| {
			let node = self.roots.swap_remove(i);
			self.roots = node.children;
			self.best_finalized_number = Some(node.number);
			node.data
		});

		// Retain only roots that are descendents of the finalized block (this
		// happens if the node has been properly finalized) or that are
		// ancestors (or equal) to the finalized block (in this case the node
		// wasn't finalized earlier presumably because the predicate didn't
		// pass).
		let mut changed = false;
		let roots = std::mem::take(&mut self.roots);

		for root in roots {
			let retain = root.number > number && is_descendent_of(hash, &root.hash)? ||
				root.number == number && root.hash == *hash ||
				is_descendent_of(&root.hash, hash)?;

			if retain {
				self.roots.push(root);
			} else {
				changed = true;
			}
		}

		self.best_finalized_number = Some(number);

		match (node_data, changed) {
			(Some(data), _) => Ok(FinalizationResult::Changed(Some(data))),
			(None, true) => Ok(FinalizationResult::Changed(None)),
			(None, false) => Ok(FinalizationResult::Unchanged),
		}
	}

	/// Remove from the tree some nodes (and their subtrees) using a `filter` predicate.
	///
	/// The `filter` is called over tree nodes and returns a filter action:
	/// - `Remove` if the node and its subtree should be removed;
	/// - `KeepNode` if we should maintain the node and keep processing the tree.
	/// - `KeepTree` if we should maintain the node and its entire subtree.
	///
	/// An iterator over all the pruned nodes is returned.
	pub fn drain_filter<F>(&mut self, filter: F) -> impl Iterator<Item = (H, N, V)>
	where
		F: Fn(&H, &N, &V) -> FilterAction,
	{
		let mut removed = vec![];
		let mut retained = Vec::new();

		let mut queue: Vec<_> = std::mem::take(&mut self.roots)
			.into_iter()
			.rev()
			.map(|node| (usize::MAX, node))
			.collect();
		let mut next_queue = Vec::new();

		while !queue.is_empty() {
			for (parent_idx, mut node) in queue.drain(..) {
				match filter(&node.hash, &node.number, &node.data) {
					FilterAction::KeepNode => {
						let node_idx = retained.len();
						let children = std::mem::take(&mut node.children);
						retained.push((parent_idx, node));
						for child in children.into_iter().rev() {
							next_queue.push((node_idx, child));
						}
					},
					FilterAction::KeepTree => {
						retained.push((parent_idx, node));
					},
					FilterAction::Remove => {
						removed.push(node);
					},
				}
			}

			std::mem::swap(&mut queue, &mut next_queue);
		}

		while let Some((parent_idx, node)) = retained.pop() {
			if parent_idx == usize::MAX {
				self.roots.push(node);
			} else {
				retained[parent_idx].1.children.push(node);
			}
		}

		if !removed.is_empty() {
			self.rebalance();
		}
		RemovedIterator { stack: removed }
	}
}

// Workaround for: https://github.com/rust-lang/rust/issues/34537
use node_implementation::Node;

mod node_implementation {
	use super::*;

	#[derive(Clone, Debug, Decode, Encode, PartialEq)]
	pub struct Node<H, N, V> {
		pub hash: H,
		pub number: N,
		pub data: V,
		pub children: Vec<Node<H, N, V>>,
	}

	impl<H: PartialEq, N: Ord, V> Node<H, N, V> {
		/// Finds the max depth among all branches descendent from this node.
		pub fn max_depth(&self) -> usize {
			let mut max: usize = 0;
			let mut stack = vec![(self, 0)];
			while let Some((node, height)) = stack.pop() {
				if height > max {
					max = height;
				}
				node.children.iter().for_each(|n| stack.push((n, height + 1)));
			}
			max
		}
	}
}

struct ForkTreeIterator<'a, H, N, V> {
	stack: Vec<&'a Node<H, N, V>>,
}

impl<'a, H, N, V> Iterator for ForkTreeIterator<'a, H, N, V> {
	type Item = &'a Node<H, N, V>;

	fn next(&mut self) -> Option<Self::Item> {
		self.stack.pop().map(|node| {
			// child nodes are stored ordered by max branch height (decreasing),
			// we want to keep this ordering while iterating but since we're
			// using a stack for iterator state we need to reverse it.
			self.stack.extend(node.children.iter().rev());
			node
		})
	}
}

struct RemovedIterator<H, N, V> {
	stack: Vec<Node<H, N, V>>,
}

impl<H, N, V> Iterator for RemovedIterator<H, N, V> {
	type Item = (H, N, V);

	fn next(&mut self) -> Option<Self::Item> {
		self.stack.pop().map(|mut node| {
			// child nodes are stored ordered by max branch height (decreasing),
			// we want to keep this ordering while iterating but since we're
			// using a stack for iterator state we need to reverse it.
			let children = std::mem::take(&mut node.children);

			self.stack.extend(children.into_iter().rev());
			(node.hash, node.number, node.data)
		})
	}
}

#[cfg(test)]
mod test {
	use crate::FilterAction;

	use super::{Error, FinalizationResult, ForkTree};

	#[derive(Debug, PartialEq)]
	struct TestError;

	impl std::fmt::Display for TestError {
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			write!(f, "TestError")
		}
	}

	impl std::error::Error for TestError {}

	fn test_fork_tree<'a>(
	) -> (ForkTree<&'a str, u64, ()>, impl Fn(&&str, &&str) -> Result<bool, TestError>) {
		let mut tree = ForkTree::new();

		#[rustfmt::skip]
		//
		//     - B - C - D - E
		//    /
		//   /   - G
		//  /   /
		// A - F - H - I
		//  \       \
		//   \       - L - M - N
		//    \          \
		//     \          - O
		//      - J - K
		//
		// (where N is not a part of fork tree)
		//
		// NOTE: the tree will get automatically rebalance on import and won't be laid out like the
		// diagram above. the children will be ordered by subtree depth and the longest branches
		// will be on the leftmost side of the tree.
		let is_descendent_of = |base: &&str, block: &&str| -> Result<bool, TestError> {
			let letters = vec!["B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O"];
			match (*base, *block) {
				("A", b) => Ok(letters.into_iter().any(|n| n == b)),
				("B", b) => Ok(b == "C" || b == "D" || b == "E"),
				("C", b) => Ok(b == "D" || b == "E"),
				("D", b) => Ok(b == "E"),
				("E", _) => Ok(false),
				("F", b) =>
					Ok(b == "G" || b == "H" || b == "I" || b == "L" || b == "M" || b == "N" || b == "O"),
				("G", _) => Ok(false),
				("H", b) => Ok(b == "I" || b == "L" || b == "M" || b == "N" || b == "O"),
				("I", _) => Ok(false),
				("J", b) => Ok(b == "K"),
				("K", _) => Ok(false),
				("L", b) => Ok(b == "M" || b == "O" || b == "N"),
				("M", b) => Ok(b == "N"),
				("O", _) => Ok(false),
				("0", _) => Ok(true),
				_ => Ok(false),
			}
		};

		tree.import("A", 1, (), &is_descendent_of).unwrap();

		tree.import("B", 2, (), &is_descendent_of).unwrap();
		tree.import("C", 3, (), &is_descendent_of).unwrap();
		tree.import("D", 4, (), &is_descendent_of).unwrap();
		tree.import("E", 5, (), &is_descendent_of).unwrap();

		tree.import("F", 2, (), &is_descendent_of).unwrap();
		tree.import("G", 3, (), &is_descendent_of).unwrap();

		tree.import("H", 3, (), &is_descendent_of).unwrap();
		tree.import("I", 4, (), &is_descendent_of).unwrap();
		tree.import("L", 4, (), &is_descendent_of).unwrap();
		tree.import("M", 5, (), &is_descendent_of).unwrap();
		tree.import("O", 5, (), &is_descendent_of).unwrap();

		tree.import("J", 2, (), &is_descendent_of).unwrap();
		tree.import("K", 3, (), &is_descendent_of).unwrap();

		(tree, is_descendent_of)
	}

	#[test]
	fn import_doesnt_revert() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		tree.finalize_root(&"A");

		assert_eq!(tree.best_finalized_number, Some(1));

		assert_eq!(tree.import("A", 1, (), &is_descendent_of), Err(Error::Revert));
	}

	#[test]
	fn import_doesnt_add_duplicates() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		assert_eq!(tree.import("A", 1, (), &is_descendent_of), Err(Error::Duplicate));

		assert_eq!(tree.import("I", 4, (), &is_descendent_of), Err(Error::Duplicate));

		assert_eq!(tree.import("G", 3, (), &is_descendent_of), Err(Error::Duplicate));

		assert_eq!(tree.import("K", 3, (), &is_descendent_of), Err(Error::Duplicate));
	}

	#[test]
	fn finalize_root_works() {
		let finalize_a = || {
			let (mut tree, ..) = test_fork_tree();

			assert_eq!(tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(), vec![("A", 1)]);

			// finalizing "A" opens up three possible forks
			tree.finalize_root(&"A");

			assert_eq!(
				tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(),
				vec![("B", 2), ("F", 2), ("J", 2)],
			);

			tree
		};

		{
			let mut tree = finalize_a();

			// finalizing "B" will progress on its fork and remove any other competing forks
			tree.finalize_root(&"B");

			assert_eq!(tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(), vec![("C", 3)],);

			// all the other forks have been pruned
			assert!(tree.roots.len() == 1);
		}

		{
			let mut tree = finalize_a();

			// finalizing "J" will progress on its fork and remove any other competing forks
			tree.finalize_root(&"J");

			assert_eq!(tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(), vec![("K", 3)],);

			// all the other forks have been pruned
			assert!(tree.roots.len() == 1);
		}
	}

	#[test]
	fn finalize_works() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		let original_roots = tree.roots.clone();

		// finalizing a block prior to any in the node doesn't change the tree
		assert_eq!(tree.finalize(&"0", 0, &is_descendent_of), Ok(FinalizationResult::Unchanged));

		assert_eq!(tree.roots, original_roots);

		// finalizing "A" opens up three possible forks
		assert_eq!(
			tree.finalize(&"A", 1, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(),
			vec![("B", 2), ("F", 2), ("J", 2)],
		);

		// finalizing anything lower than what we observed will fail
		assert_eq!(tree.best_finalized_number, Some(1));

		assert_eq!(tree.finalize(&"Z", 1, &is_descendent_of), Err(Error::Revert));

		// trying to finalize a node without finalizing its ancestors first will fail
		assert_eq!(tree.finalize(&"H", 3, &is_descendent_of), Err(Error::UnfinalizedAncestor));

		// after finalizing "F" we can finalize "H"
		assert_eq!(
			tree.finalize(&"F", 2, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.finalize(&"H", 3, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(),
			vec![("L", 4), ("I", 4)],
		);

		// finalizing a node from another fork that isn't part of the tree clears the tree
		assert_eq!(
			tree.finalize(&"Z", 5, &is_descendent_of),
			Ok(FinalizationResult::Changed(None)),
		);

		assert!(tree.roots.is_empty());
	}

	#[test]
	fn finalize_with_ancestor_works() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		let original_roots = tree.roots.clone();

		// finalizing a block prior to any in the node doesn't change the tree
		assert_eq!(
			tree.finalize_with_ancestors(&"0", 0, &is_descendent_of),
			Ok(FinalizationResult::Unchanged),
		);

		assert_eq!(tree.roots, original_roots);

		// finalizing "A" opens up three possible forks
		assert_eq!(
			tree.finalize_with_ancestors(&"A", 1, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(),
			vec![("B", 2), ("F", 2), ("J", 2)],
		);

		// finalizing H:
		// 1) removes roots that are not ancestors/descendants of H (B, J)
		// 2) opens root that is ancestor of H (F -> G+H)
		// 3) finalizes the just opened root H (H -> I + L)
		assert_eq!(
			tree.finalize_with_ancestors(&"H", 3, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(),
			vec![("L", 4), ("I", 4)],
		);

		assert_eq!(tree.best_finalized_number, Some(3));

		// finalizing N (which is not a part of the tree):
		// 1) removes roots that are not ancestors/descendants of N (I)
		// 2) opens root that is ancestor of N (L -> M+O)
		// 3) removes roots that are not ancestors/descendants of N (O)
		// 4) opens root that is ancestor of N (M -> {})
		assert_eq!(
			tree.finalize_with_ancestors(&"N", 6, &is_descendent_of),
			Ok(FinalizationResult::Changed(None)),
		);

		assert_eq!(tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(), vec![],);

		assert_eq!(tree.best_finalized_number, Some(6));
	}

	#[test]
	fn finalize_with_descendent_works() {
		#[derive(Debug, PartialEq)]
		struct Change {
			effective: u64,
		}

		let (mut tree, is_descendent_of) = {
			let mut tree = ForkTree::new();

			let is_descendent_of = |base: &&str, block: &&str| -> Result<bool, TestError> {
				// A0 #1 - (B #2) - (C #5) - D #10 - E #15 - (F #100)
				//                            \
				//                             - (G #100)
				//
				// A1 #1
				//
				// Nodes B, C, F and G  are not part of the tree.
				match (*base, *block) {
					("A0", b) => Ok(b == "B" || b == "C" || b == "D" || b == "E" || b == "G"),
					("A1", _) => Ok(false),
					("C", b) => Ok(b == "D"),
					("D", b) => Ok(b == "E" || b == "F" || b == "G"),
					("E", b) => Ok(b == "F"),
					_ => Ok(false),
				}
			};

			let is_root = tree.import("A0", 1, Change { effective: 5 }, &is_descendent_of).unwrap();
			assert!(is_root);
			let is_root = tree.import("A1", 1, Change { effective: 5 }, &is_descendent_of).unwrap();
			assert!(is_root);
			let is_root =
				tree.import("D", 10, Change { effective: 10 }, &is_descendent_of).unwrap();
			assert!(!is_root);
			let is_root =
				tree.import("E", 15, Change { effective: 50 }, &is_descendent_of).unwrap();
			assert!(!is_root);

			(tree, is_descendent_of)
		};

		assert_eq!(
			tree.finalizes_any_with_descendent_if(
				&"B",
				2,
				&is_descendent_of,
				|c| c.effective <= 2,
			),
			Ok(None),
		);

		// finalizing "D" is not allowed since it is not a root.
		assert_eq!(
			tree.finalize_with_descendent_if(&"D", 10, &is_descendent_of, |c| c.effective <= 10),
			Err(Error::UnfinalizedAncestor)
		);

		// finalizing "D" will finalize a block from the tree, but it can't be applied yet
		// since it is not a root change.
		assert_eq!(
			tree.finalizes_any_with_descendent_if(&"D", 10, &is_descendent_of, |c| c.effective ==
				10),
			Ok(Some(false)),
		);

		// finalizing "E" is not allowed since there are not finalized anchestors.
		assert_eq!(
			tree.finalizes_any_with_descendent_if(&"E", 15, &is_descendent_of, |c| c.effective ==
				10),
			Err(Error::UnfinalizedAncestor)
		);

		// finalizing "B" doesn't finalize "A0" since the predicate doesn't pass,
		// although it will clear out "A1" from the tree
		assert_eq!(
			tree.finalize_with_descendent_if(&"B", 2, &is_descendent_of, |c| c.effective <= 2),
			Ok(FinalizationResult::Changed(None)),
		);

		assert_eq!(tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(), vec![("A0", 1)],);

		// finalizing "C" will finalize the node "A0" and prune it out of the tree
		assert_eq!(
			tree.finalizes_any_with_descendent_if(
				&"C",
				5,
				&is_descendent_of,
				|c| c.effective <= 5,
			),
			Ok(Some(true)),
		);

		assert_eq!(
			tree.finalize_with_descendent_if(&"C", 5, &is_descendent_of, |c| c.effective <= 5),
			Ok(FinalizationResult::Changed(Some(Change { effective: 5 }))),
		);

		assert_eq!(tree.roots().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(), vec![("D", 10)],);

		// finalizing "F" will fail since it would finalize past "E" without finalizing "D" first
		assert_eq!(
			tree.finalizes_any_with_descendent_if(&"F", 100, &is_descendent_of, |c| c.effective <=
				100,),
			Err(Error::UnfinalizedAncestor),
		);

		// it will work with "G" though since it is not in the same branch as "E"
		assert_eq!(
			tree.finalizes_any_with_descendent_if(&"G", 100, &is_descendent_of, |c| c.effective <=
				100),
			Ok(Some(true)),
		);

		assert_eq!(
			tree.finalize_with_descendent_if(&"G", 100, &is_descendent_of, |c| c.effective <= 100),
			Ok(FinalizationResult::Changed(Some(Change { effective: 10 }))),
		);

		// "E" will be pruned out
		assert_eq!(tree.roots().count(), 0);
	}

	#[test]
	fn iter_iterates_in_preorder() {
		let (tree, ..) = test_fork_tree();
		assert_eq!(
			tree.iter().map(|(h, n, _)| (*h, *n)).collect::<Vec<_>>(),
			vec![
				("A", 1),
				("B", 2),
				("C", 3),
				("D", 4),
				("E", 5),
				("F", 2),
				("H", 3),
				("L", 4),
				("M", 5),
				("O", 5),
				("I", 4),
				("G", 3),
				("J", 2),
				("K", 3),
			],
		);
	}

	#[test]
	fn minimizes_calls_to_is_descendent_of() {
		use std::sync::atomic::{AtomicUsize, Ordering};

		let n_is_descendent_of_calls = AtomicUsize::new(0);

		let is_descendent_of = |_: &&str, _: &&str| -> Result<bool, TestError> {
			n_is_descendent_of_calls.fetch_add(1, Ordering::SeqCst);
			Ok(true)
		};

		{
			// Deep tree where we want to call `finalizes_any_with_descendent_if`. The
			// search for the node should first check the predicate (which is cheaper) and
			// only then call `is_descendent_of`
			let mut tree = ForkTree::new();
			let letters = vec!["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"];

			for (i, letter) in letters.iter().enumerate() {
				tree.import::<_, TestError>(*letter, i, i, &|_, _| Ok(true)).unwrap();
			}

			// "L" is a descendent of "K", but the predicate will only pass for "K",
			// therefore only one call to `is_descendent_of` should be made
			assert_eq!(
				tree.finalizes_any_with_descendent_if(&"L", 11, &is_descendent_of, |i| *i == 10,),
				Ok(Some(false)),
			);

			assert_eq!(n_is_descendent_of_calls.load(Ordering::SeqCst), 1);
		}

		n_is_descendent_of_calls.store(0, Ordering::SeqCst);

		{
			// Multiple roots in the tree where we want to call `finalize_with_descendent_if`.
			// The search for the root node should first check the predicate (which is cheaper)
			// and only then call `is_descendent_of`
			let mut tree = ForkTree::new();
			let letters = vec!["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"];

			for (i, letter) in letters.iter().enumerate() {
				tree.import::<_, TestError>(*letter, i, i, &|_, _| Ok(false)).unwrap();
			}

			// "L" is a descendent of "K", but the predicate will only pass for "K",
			// therefore only one call to `is_descendent_of` should be made
			assert_eq!(
				tree.finalize_with_descendent_if(&"L", 11, &is_descendent_of, |i| *i == 10,),
				Ok(FinalizationResult::Changed(Some(10))),
			);

			assert_eq!(n_is_descendent_of_calls.load(Ordering::SeqCst), 1);
		}
	}

	#[test]
	fn map_works() {
		let (mut tree, _) = test_fork_tree();

		// Extend the single root fork-tree to also excercise the roots order during map.
		let is_descendent_of = |_: &&str, _: &&str| -> Result<bool, TestError> { Ok(false) };
		let is_root = tree.import("A1", 1, (), &is_descendent_of).unwrap();
		assert!(is_root);
		let is_root = tree.import("A2", 1, (), &is_descendent_of).unwrap();
		assert!(is_root);

		let old_tree = tree.clone();
		let new_tree = tree.map(&mut |hash, _, _| hash.to_owned());

		// Check content and order
		assert!(new_tree.iter().all(|(hash, _, data)| hash == data));
		assert_eq!(
			old_tree.iter().map(|(hash, _, _)| *hash).collect::<Vec<_>>(),
			new_tree.iter().map(|(hash, _, _)| *hash).collect::<Vec<_>>(),
		);
	}

	#[test]
	fn prune_works() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		let removed = tree.prune(&"C", &3, &is_descendent_of, &|_| true).unwrap();

		assert_eq!(tree.roots.iter().map(|node| node.hash).collect::<Vec<_>>(), vec!["B"]);

		assert_eq!(
			tree.iter().map(|(hash, _, _)| *hash).collect::<Vec<_>>(),
			vec!["B", "C", "D", "E"],
		);

		assert_eq!(
			removed.map(|(hash, _, _)| hash).collect::<Vec<_>>(),
			vec!["A", "F", "H", "L", "M", "O", "I", "G", "J", "K"]
		);

		let removed = tree.prune(&"E", &5, &is_descendent_of, &|_| true).unwrap();

		assert_eq!(tree.roots.iter().map(|node| node.hash).collect::<Vec<_>>(), vec!["D"]);

		assert_eq!(tree.iter().map(|(hash, _, _)| *hash).collect::<Vec<_>>(), vec!["D", "E"]);

		assert_eq!(removed.map(|(hash, _, _)| hash).collect::<Vec<_>>(), vec!["B", "C"]);
	}

	#[test]
	fn find_node_backtracks_after_finding_highest_descending_node() {
		let mut tree = ForkTree::new();

		// A - B
		//  \
		//   — C
		//
		let is_descendent_of = |base: &&str, block: &&str| -> Result<bool, TestError> {
			match (*base, *block) {
				("A", b) => Ok(b == "B" || b == "C" || b == "D"),
				("B", b) | ("C", b) => Ok(b == "D"),
				("0", _) => Ok(true),
				_ => Ok(false),
			}
		};

		tree.import("A", 1, 1, &is_descendent_of).unwrap();
		tree.import("B", 2, 2, &is_descendent_of).unwrap();
		tree.import("C", 2, 4, &is_descendent_of).unwrap();

		// when searching the tree we reach node `C`, but the
		// predicate doesn't pass. we should backtrack to `B`, but not to `A`,
		// since "B" fulfills the predicate.
		let node = tree.find_node_where(&"D", &3, &is_descendent_of, &|data| *data < 3).unwrap();

		assert_eq!(node.unwrap().hash, "B");
	}

	#[test]
	fn rebalance_works() {
		let (mut tree, _) = test_fork_tree();

		// the tree is automatically rebalanced on import, therefore we should iterate in preorder
		// exploring the longest forks first. check the ascii art above to understand the expected
		// output below.
		assert_eq!(
			tree.iter().map(|(h, _, _)| *h).collect::<Vec<_>>(),
			vec!["A", "B", "C", "D", "E", "F", "H", "L", "M", "O", "I", "G", "J", "K"],
		);

		// let's add a block "P" which is a descendent of block "O"
		let is_descendent_of = |base: &&str, block: &&str| -> Result<bool, TestError> {
			match (*base, *block) {
				(b, "P") => Ok(vec!["A", "F", "H", "L", "O"].into_iter().any(|n| n == b)),
				_ => Ok(false),
			}
		};

		tree.import("P", 6, (), &is_descendent_of).unwrap();

		// this should re-order the tree, since the branch "A -> B -> C -> D -> E" is no longer tied
		// with 5 blocks depth. additionally "O" should be visited before "M" now, since it has one
		// descendent "P" which makes that branch 6 blocks long.
		assert_eq!(
			tree.iter().map(|(h, _, _)| *h).collect::<Vec<_>>(),
			["A", "F", "H", "L", "O", "P", "M", "I", "G", "B", "C", "D", "E", "J", "K"]
		);
	}

	#[test]
	fn drain_filter_works() {
		let (mut tree, _) = test_fork_tree();

		let filter = |h: &&str, _: &u64, _: &()| match *h {
			"A" | "B" | "F" | "G" => FilterAction::KeepNode,
			"C" => FilterAction::KeepTree,
			"H" | "J" => FilterAction::Remove,
			_ => panic!("Unexpected filtering for node: {}", *h),
		};

		let removed = tree.drain_filter(filter);

		assert_eq!(
			tree.iter().map(|(h, _, _)| *h).collect::<Vec<_>>(),
			["A", "B", "C", "D", "E", "F", "G"]
		);

		assert_eq!(
			removed.map(|(h, _, _)| h).collect::<Vec<_>>(),
			["H", "L", "M", "O", "I", "J", "K"]
		);
	}

	#[test]
	fn find_node_index_works() {
		let (tree, is_descendent_of) = test_fork_tree();

		let path = tree
			.find_node_index_where(&"D", &4, &is_descendent_of, &|_| true)
			.unwrap()
			.unwrap();
		assert_eq!(path, [0, 0, 0]);

		let path = tree
			.find_node_index_where(&"O", &5, &is_descendent_of, &|_| true)
			.unwrap()
			.unwrap();
		assert_eq!(path, [0, 1, 0, 0]);

		let path = tree
			.find_node_index_where(&"N", &6, &is_descendent_of, &|_| true)
			.unwrap()
			.unwrap();
		assert_eq!(path, [0, 1, 0, 0, 0]);
	}

	#[test]
	fn find_node_index_with_predicate_works() {
		let is_descendent_of = |parent: &char, child: &char| match *parent {
			'A' => Ok(['B', 'C', 'D', 'E', 'F'].contains(child)),
			'B' => Ok(['C', 'D'].contains(child)),
			'C' => Ok(['D'].contains(child)),
			'E' => Ok(['F'].contains(child)),
			'D' | 'F' => Ok(false),
			_ => Err(TestError),
		};

		// A(t) --- B(f) --- C(t) --- D(f)
		//      \-- E(t) --- F(f)
		let mut tree: ForkTree<char, u8, bool> = ForkTree::new();
		tree.import('A', 1, true, &is_descendent_of).unwrap();
		tree.import('B', 2, false, &is_descendent_of).unwrap();
		tree.import('C', 3, true, &is_descendent_of).unwrap();
		tree.import('D', 4, false, &is_descendent_of).unwrap();

		tree.import('E', 2, true, &is_descendent_of).unwrap();
		tree.import('F', 3, false, &is_descendent_of).unwrap();

		let path = tree
			.find_node_index_where(&'D', &4, &is_descendent_of, &|&value| !value)
			.unwrap()
			.unwrap();
		assert_eq!(path, [0, 0]);

		let path = tree
			.find_node_index_where(&'D', &4, &is_descendent_of, &|&value| value)
			.unwrap()
			.unwrap();
		assert_eq!(path, [0, 0, 0]);

		let path = tree
			.find_node_index_where(&'F', &3, &is_descendent_of, &|&value| !value)
			.unwrap();
		assert_eq!(path, None);

		let path = tree
			.find_node_index_where(&'F', &3, &is_descendent_of, &|&value| value)
			.unwrap()
			.unwrap();
		assert_eq!(path, [0, 1]);
	}

	#[test]
	fn find_node_works() {
		let (tree, is_descendent_of) = test_fork_tree();

		let node = tree.find_node_where(&"B", &2, &is_descendent_of, &|_| true).unwrap().unwrap();
		assert_eq!((node.hash, node.number), ("A", 1));

		let node = tree.find_node_where(&"D", &4, &is_descendent_of, &|_| true).unwrap().unwrap();
		assert_eq!((node.hash, node.number), ("C", 3));

		let node = tree.find_node_where(&"O", &5, &is_descendent_of, &|_| true).unwrap().unwrap();
		assert_eq!((node.hash, node.number), ("L", 4));

		let node = tree.find_node_where(&"N", &6, &is_descendent_of, &|_| true).unwrap().unwrap();
		assert_eq!((node.hash, node.number), ("M", 5));
	}

	#[test]
	fn post_order_traversal_requirement() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		// Test for the post-order DFS traversal requirement as specified by the
		// `find_node_index_where` and `import` comments.
		let is_descendent_of_for_post_order = |parent: &&str, child: &&str| match *parent {
			"A" => Err(TestError),
			"K" if *child == "Z" => Ok(true),
			_ => is_descendent_of(parent, child),
		};

		// Post order traversal requirement for `find_node_index_where`
		let path = tree
			.find_node_index_where(&"N", &6, &is_descendent_of_for_post_order, &|_| true)
			.unwrap()
			.unwrap();
		assert_eq!(path, [0, 1, 0, 0, 0]);

		// Post order traversal requirement for `import`
		let res = tree.import(&"Z", 100, (), &is_descendent_of_for_post_order);
		assert_eq!(res, Ok(false));
		assert_eq!(
			tree.iter().map(|node| *node.0).collect::<Vec<_>>(),
			vec!["A", "B", "C", "D", "E", "F", "H", "L", "M", "O", "I", "G", "J", "K", "Z"],
		);
	}
}