1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
//! Array-based data structures using densely numbered entity references as mapping keys.
//!
//! This crate defines a number of data structures based on arrays. The arrays are not indexed by
//! `usize` as usual, but by *entity references* which are integers wrapped in new-types. This has
//! a couple advantages:
//!
//! - Improved type safety. The various map and set types accept a specific key type, so there is
//! no confusion about the meaning of an array index, as there is with plain arrays.
//! - Smaller indexes. The normal `usize` index is often 64 bits which is way too large for most
//! purposes. The entity reference types can be smaller, allowing for more compact data
//! structures.
//!
//! The `EntityRef` trait should be implemented by types to be used as indexed. The `entity_impl!`
//! macro provides convenient defaults for types wrapping `u32` which is common.
//!
//! - [`PrimaryMap`](struct.PrimaryMap.html) is used to keep track of a vector of entities,
//! assigning a unique entity reference to each.
//! - [`SecondaryMap`](struct.SecondaryMap.html) is used to associate secondary information to an
//! entity. The map is implemented as a simple vector, so it does not keep track of which
//! entities have been inserted. Instead, any unknown entities map to the default value.
//! - [`SparseMap`](struct.SparseMap.html) is used to associate secondary information to a small
//! number of entities. It tracks accurately which entities have been inserted. This is a
//! specialized data structure which can use a lot of memory, so read the documentation before
//! using it.
//! - [`EntitySet`](struct.EntitySet.html) is used to represent a secondary set of entities.
//! The set is implemented as a simple vector, so it does not keep track of which entities have
//! been inserted into the primary map. Instead, any unknown entities are not in the set.
//! - [`EntityList`](struct.EntityList.html) is a compact representation of lists of entity
//! references allocated from an associated memory pool. It has a much smaller footprint than
//! `Vec`.
#![deny(missing_docs, trivial_numeric_casts, unused_extern_crates)]
#![warn(unused_import_braces)]
#![cfg_attr(feature = "clippy", plugin(clippy(conf_file = "../../clippy.toml")))]
#![cfg_attr(feature = "cargo-clippy", allow(clippy::new_without_default))]
#![cfg_attr(
feature = "cargo-clippy",
warn(
clippy::float_arithmetic,
clippy::mut_mut,
clippy::nonminimal_bool,
clippy::map_unwrap_or,
clippy::clippy::print_stdout,
clippy::unicode_not_nfc,
clippy::use_self
)
)]
#![no_std]
extern crate alloc;
// Re-export core so that the macros works with both std and no_std crates
#[doc(hidden)]
pub extern crate core as __core;
/// A type wrapping a small integer index should implement `EntityRef` so it can be used as the key
/// of an `SecondaryMap` or `SparseMap`.
pub trait EntityRef: Copy + Eq {
/// Create a new entity reference from a small integer.
/// This should crash if the requested index is not representable.
fn new(_: usize) -> Self;
/// Get the index that was used to create this entity reference.
fn index(self) -> usize;
}
/// Macro which provides the common implementation of a 32-bit entity reference.
#[macro_export]
macro_rules! entity_impl {
// Basic traits.
($entity:ident) => {
impl $crate::EntityRef for $entity {
#[inline]
fn new(index: usize) -> Self {
debug_assert!(index < ($crate::__core::u32::MAX as usize));
$entity(index as u32)
}
#[inline]
fn index(self) -> usize {
self.0 as usize
}
}
impl $crate::packed_option::ReservedValue for $entity {
#[inline]
fn reserved_value() -> $entity {
$entity($crate::__core::u32::MAX)
}
#[inline]
fn is_reserved_value(&self) -> bool {
self.0 == $crate::__core::u32::MAX
}
}
impl $entity {
/// Create a new instance from a `u32`.
#[allow(dead_code)]
#[inline]
pub fn from_u32(x: u32) -> Self {
debug_assert!(x < $crate::__core::u32::MAX);
$entity(x)
}
/// Return the underlying index value as a `u32`.
#[allow(dead_code)]
#[inline]
pub fn as_u32(self) -> u32 {
self.0
}
/// Return the raw bit encoding for this instance.
#[allow(dead_code)]
#[inline]
pub fn as_bits(self) -> u32 {
self.0
}
/// Create a new instance from the raw bit encoding.
#[allow(dead_code)]
#[inline]
pub fn from_bits(x: u32) -> Self {
$entity(x)
}
}
};
// Include basic `Display` impl using the given display prefix.
// Display a `Block` reference as "block12".
($entity:ident, $display_prefix:expr) => {
entity_impl!($entity);
impl $crate::__core::fmt::Display for $entity {
fn fmt(&self, f: &mut $crate::__core::fmt::Formatter) -> $crate::__core::fmt::Result {
write!(f, concat!($display_prefix, "{}"), self.0)
}
}
impl $crate::__core::fmt::Debug for $entity {
fn fmt(&self, f: &mut $crate::__core::fmt::Formatter) -> $crate::__core::fmt::Result {
(self as &dyn $crate::__core::fmt::Display).fmt(f)
}
}
};
// Alternate form for tuples we can't directly construct; providing "to" and "from" expressions
// to turn an index *into* an entity, or get an index *from* an entity.
($entity:ident, $display_prefix:expr, $arg:ident, $to_expr:expr, $from_expr:expr) => {
impl $crate::EntityRef for $entity {
#[inline]
fn new(index: usize) -> Self {
debug_assert!(index < ($crate::__core::u32::MAX as usize));
let $arg = index as u32;
$to_expr
}
#[inline]
fn index(self) -> usize {
let $arg = self;
$from_expr as usize
}
}
impl $crate::packed_option::ReservedValue for $entity {
#[inline]
fn reserved_value() -> $entity {
$entity::from_u32($crate::__core::u32::MAX)
}
#[inline]
fn is_reserved_value(&self) -> bool {
self.as_u32() == $crate::__core::u32::MAX
}
}
impl $entity {
/// Create a new instance from a `u32`.
#[allow(dead_code)]
#[inline]
pub fn from_u32(x: u32) -> Self {
debug_assert!(x < $crate::__core::u32::MAX);
let $arg = x;
$to_expr
}
/// Return the underlying index value as a `u32`.
#[allow(dead_code)]
#[inline]
pub fn as_u32(self) -> u32 {
let $arg = self;
$from_expr
}
}
impl $crate::__core::fmt::Display for $entity {
fn fmt(&self, f: &mut $crate::__core::fmt::Formatter) -> $crate::__core::fmt::Result {
write!(f, concat!($display_prefix, "{}"), self.as_u32())
}
}
impl $crate::__core::fmt::Debug for $entity {
fn fmt(&self, f: &mut $crate::__core::fmt::Formatter) -> $crate::__core::fmt::Result {
(self as &dyn $crate::__core::fmt::Display).fmt(f)
}
}
};
}
pub mod packed_option;
mod boxed_slice;
mod iter;
mod keys;
mod list;
mod map;
mod primary;
mod set;
mod sparse;
pub use self::boxed_slice::BoxedSlice;
pub use self::iter::{Iter, IterMut};
pub use self::keys::Keys;
pub use self::list::{EntityList, ListPool};
pub use self::map::SecondaryMap;
pub use self::primary::PrimaryMap;
pub use self::set::EntitySet;
pub use self::sparse::{SparseMap, SparseMapValue, SparseSet};
/// A collection of tests to ensure that use of the different `entity_impl!` forms will generate
/// `EntityRef` implementations that behave the same way.
#[cfg(test)]
mod tests {
/// A macro used to emit some basic tests to show that entities behave as we expect.
macro_rules! entity_test {
($entity:ident) => {
#[test]
fn from_usize_to_u32() {
let e = $entity::new(42);
assert_eq!(e.as_u32(), 42_u32);
}
#[test]
fn from_u32_to_usize() {
let e = $entity::from_u32(42);
assert_eq!(e.index(), 42_usize);
}
#[test]
fn comparisons_work() {
let a = $entity::from_u32(42);
let b = $entity::new(42);
assert_eq!(a, b);
}
#[should_panic]
#[test]
fn cannot_construct_from_reserved_u32() {
use crate::packed_option::ReservedValue;
let reserved = $entity::reserved_value().as_u32();
let _ = $entity::from_u32(reserved); // panic
}
#[should_panic]
#[test]
fn cannot_construct_from_reserved_usize() {
use crate::packed_option::ReservedValue;
let reserved = $entity::reserved_value().index();
let _ = $entity::new(reserved); // panic
}
};
}
/// Test cases for a plain ol' `EntityRef` implementation.
mod basic_entity {
use crate::EntityRef;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct BasicEntity(u32);
entity_impl!(BasicEntity);
entity_test!(BasicEntity);
}
/// Test cases for an `EntityRef` implementation that includes a display prefix.
mod prefix_entity {
use crate::EntityRef;
#[derive(Clone, Copy, PartialEq, Eq)]
struct PrefixEntity(u32);
entity_impl!(PrefixEntity, "prefix-");
entity_test!(PrefixEntity);
#[test]
fn display_prefix_works() {
let e = PrefixEntity::new(0);
assert_eq!(alloc::format!("{}", e), "prefix-0");
}
}
/// Test cases for an `EntityRef` implementation for a type we can only construct through
/// other means, such as calls to `core::convert::From<u32>`.
mod other_entity {
mod inner {
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct InnerEntity(u32);
impl From<u32> for InnerEntity {
fn from(x: u32) -> Self {
Self(x)
}
}
impl From<InnerEntity> for u32 {
fn from(x: InnerEntity) -> Self {
x.0
}
}
}
use {self::inner::InnerEntity, crate::EntityRef};
entity_impl!(InnerEntity, "inner-", i, InnerEntity::from(i), u32::from(i));
entity_test!(InnerEntity);
#[test]
fn display_prefix_works() {
let e = InnerEntity::new(0);
assert_eq!(alloc::format!("{}", e), "inner-0");
}
}
}